1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 // Optimization of sign / zero extension instructions. It may be extended to
15 // handle other instructions with similar properties.
16 //
17 // On some targets, some instructions, e.g. X86 sign / zero extension, may
18 // leave the source value in the lower part of the result. This optimization
19 // will replace some uses of the pre-extension value with uses of the
20 // sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 // Optimization of comparison instructions. For instance, in this code:
25 //
26 // sub r1, 1
27 // cmp r1, 0
28 // bz L1
29 //
30 // If the "sub" instruction all ready sets (or could be modified to set) the
31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 // eliminate the "cmp" instruction.
33 //
34 // Another instance, in this code:
35 //
36 // sub r1, r3 | sub r1, imm
37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 // bge L1
39 //
40 // If the branch instruction can use flag from "sub", then we can replace
41 // "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 // Loads that can be folded into a later instruction. A load is foldable
46 // if it loads to virtual registers and the virtual register defined has
47 // a single use.
48 //
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 //
51 // Rewrite copies and bitcasts to avoid cross register bank copies
52 // when possible.
53 // E.g., Consider the following example, where capital and lower
54 // letters denote different register file:
55 // b = copy A <-- cross-bank copy
56 // C = copy b <-- cross-bank copy
57 // =>
58 // b = copy A <-- cross-bank copy
59 // C = copy A <-- same-bank copy
60 //
61 // E.g., for bitcast:
62 // b = bitcast A <-- cross-bank copy
63 // C = bitcast b <-- cross-bank copy
64 // =>
65 // b = bitcast A <-- cross-bank copy
66 // C = copy A <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68
69 #include "llvm/CodeGen/Passes.h"
70 #include "llvm/ADT/DenseMap.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineInstrBuilder.h"
76 #include "llvm/CodeGen/MachineRegisterInfo.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Target/TargetInstrInfo.h"
81 #include "llvm/Target/TargetRegisterInfo.h"
82 #include "llvm/Target/TargetSubtargetInfo.h"
83 #include <utility>
84 using namespace llvm;
85
86 #define DEBUG_TYPE "peephole-opt"
87
88 // Optimize Extensions
89 static cl::opt<bool>
90 Aggressive("aggressive-ext-opt", cl::Hidden,
91 cl::desc("Aggressive extension optimization"));
92
93 static cl::opt<bool>
94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
95 cl::desc("Disable the peephole optimizer"));
96
97 static cl::opt<bool>
98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
99 cl::desc("Disable advanced copy optimization"));
100
101 static cl::opt<bool> DisableNAPhysCopyOpt(
102 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
103 cl::desc("Disable non-allocatable physical register copy optimization"));
104
105 // Limit the number of PHI instructions to process
106 // in PeepholeOptimizer::getNextSource.
107 static cl::opt<unsigned> RewritePHILimit(
108 "rewrite-phi-limit", cl::Hidden, cl::init(10),
109 cl::desc("Limit the length of PHI chains to lookup"));
110
111 STATISTIC(NumReuse, "Number of extension results reused");
112 STATISTIC(NumCmps, "Number of compares eliminated");
113 STATISTIC(NumImmFold, "Number of move immediate folded");
114 STATISTIC(NumLoadFold, "Number of loads folded");
115 STATISTIC(NumSelects, "Number of selects optimized");
116 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
117 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
118 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
119
120 namespace {
121 class ValueTrackerResult;
122
123 class PeepholeOptimizer : public MachineFunctionPass {
124 const TargetInstrInfo *TII;
125 const TargetRegisterInfo *TRI;
126 MachineRegisterInfo *MRI;
127 MachineDominatorTree *DT; // Machine dominator tree
128
129 public:
130 static char ID; // Pass identification
PeepholeOptimizer()131 PeepholeOptimizer() : MachineFunctionPass(ID) {
132 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
133 }
134
135 bool runOnMachineFunction(MachineFunction &MF) override;
136
getAnalysisUsage(AnalysisUsage & AU) const137 void getAnalysisUsage(AnalysisUsage &AU) const override {
138 AU.setPreservesCFG();
139 MachineFunctionPass::getAnalysisUsage(AU);
140 if (Aggressive) {
141 AU.addRequired<MachineDominatorTree>();
142 AU.addPreserved<MachineDominatorTree>();
143 }
144 }
145
146 /// \brief Track Def -> Use info used for rewriting copies.
147 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult>
148 RewriteMapTy;
149
150 private:
151 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
152 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
153 SmallPtrSetImpl<MachineInstr*> &LocalMIs);
154 bool optimizeSelect(MachineInstr *MI,
155 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
156 bool optimizeCondBranch(MachineInstr *MI);
157 bool optimizeCoalescableCopy(MachineInstr *MI);
158 bool optimizeUncoalescableCopy(MachineInstr *MI,
159 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
160 bool findNextSource(unsigned Reg, unsigned SubReg,
161 RewriteMapTy &RewriteMap);
162 bool isMoveImmediate(MachineInstr *MI,
163 SmallSet<unsigned, 4> &ImmDefRegs,
164 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
165 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
166 SmallSet<unsigned, 4> &ImmDefRegs,
167 DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
168
169 /// \brief If copy instruction \p MI is a virtual register copy, track it in
170 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
171 /// previously seen as a copy, replace the uses of this copy with the
172 /// previously seen copy's destination register.
173 bool foldRedundantCopy(MachineInstr *MI,
174 SmallSet<unsigned, 4> &CopySrcRegs,
175 DenseMap<unsigned, MachineInstr *> &CopyMIs);
176
177 /// \brief Is the register \p Reg a non-allocatable physical register?
178 bool isNAPhysCopy(unsigned Reg);
179
180 /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical
181 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
182 /// non-allocatable physical register was previously copied to a virtual
183 /// registered and hasn't been clobbered, the virt->phys copy can be
184 /// deleted.
185 bool foldRedundantNAPhysCopy(
186 MachineInstr *MI,
187 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
188
189 bool isLoadFoldable(MachineInstr *MI,
190 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
191
192 /// \brief Check whether \p MI is understood by the register coalescer
193 /// but may require some rewriting.
isCoalescableCopy(const MachineInstr & MI)194 bool isCoalescableCopy(const MachineInstr &MI) {
195 // SubregToRegs are not interesting, because they are already register
196 // coalescer friendly.
197 return MI.isCopy() || (!DisableAdvCopyOpt &&
198 (MI.isRegSequence() || MI.isInsertSubreg() ||
199 MI.isExtractSubreg()));
200 }
201
202 /// \brief Check whether \p MI is a copy like instruction that is
203 /// not recognized by the register coalescer.
isUncoalescableCopy(const MachineInstr & MI)204 bool isUncoalescableCopy(const MachineInstr &MI) {
205 return MI.isBitcast() ||
206 (!DisableAdvCopyOpt &&
207 (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
208 MI.isExtractSubregLike()));
209 }
210 };
211
212 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the
213 /// returned sources for a given search and the instructions where the sources
214 /// were tracked from.
215 class ValueTrackerResult {
216 private:
217 /// Track all sources found by one ValueTracker query.
218 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs;
219
220 /// Instruction using the sources in 'RegSrcs'.
221 const MachineInstr *Inst;
222
223 public:
ValueTrackerResult()224 ValueTrackerResult() : Inst(nullptr) {}
ValueTrackerResult(unsigned Reg,unsigned SubReg)225 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) {
226 addSource(Reg, SubReg);
227 }
228
isValid() const229 bool isValid() const { return getNumSources() > 0; }
230
setInst(const MachineInstr * I)231 void setInst(const MachineInstr *I) { Inst = I; }
getInst() const232 const MachineInstr *getInst() const { return Inst; }
233
clear()234 void clear() {
235 RegSrcs.clear();
236 Inst = nullptr;
237 }
238
addSource(unsigned SrcReg,unsigned SrcSubReg)239 void addSource(unsigned SrcReg, unsigned SrcSubReg) {
240 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg));
241 }
242
setSource(int Idx,unsigned SrcReg,unsigned SrcSubReg)243 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
244 assert(Idx < getNumSources() && "Reg pair source out of index");
245 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg);
246 }
247
getNumSources() const248 int getNumSources() const { return RegSrcs.size(); }
249
getSrcReg(int Idx) const250 unsigned getSrcReg(int Idx) const {
251 assert(Idx < getNumSources() && "Reg source out of index");
252 return RegSrcs[Idx].Reg;
253 }
254
getSrcSubReg(int Idx) const255 unsigned getSrcSubReg(int Idx) const {
256 assert(Idx < getNumSources() && "SubReg source out of index");
257 return RegSrcs[Idx].SubReg;
258 }
259
operator ==(const ValueTrackerResult & Other)260 bool operator==(const ValueTrackerResult &Other) {
261 if (Other.getInst() != getInst())
262 return false;
263
264 if (Other.getNumSources() != getNumSources())
265 return false;
266
267 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
268 if (Other.getSrcReg(i) != getSrcReg(i) ||
269 Other.getSrcSubReg(i) != getSrcSubReg(i))
270 return false;
271 return true;
272 }
273 };
274
275 /// \brief Helper class to track the possible sources of a value defined by
276 /// a (chain of) copy related instructions.
277 /// Given a definition (instruction and definition index), this class
278 /// follows the use-def chain to find successive suitable sources.
279 /// The given source can be used to rewrite the definition into
280 /// def = COPY src.
281 ///
282 /// For instance, let us consider the following snippet:
283 /// v0 =
284 /// v2 = INSERT_SUBREG v1, v0, sub0
285 /// def = COPY v2.sub0
286 ///
287 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
288 /// suitable sources:
289 /// v2.sub0 and v0.
290 /// Then, def can be rewritten into def = COPY v0.
291 class ValueTracker {
292 private:
293 /// The current point into the use-def chain.
294 const MachineInstr *Def;
295 /// The index of the definition in Def.
296 unsigned DefIdx;
297 /// The sub register index of the definition.
298 unsigned DefSubReg;
299 /// The register where the value can be found.
300 unsigned Reg;
301 /// Specifiy whether or not the value tracking looks through
302 /// complex instructions. When this is false, the value tracker
303 /// bails on everything that is not a copy or a bitcast.
304 ///
305 /// Note: This could have been implemented as a specialized version of
306 /// the ValueTracker class but that would have complicated the code of
307 /// the users of this class.
308 bool UseAdvancedTracking;
309 /// MachineRegisterInfo used to perform tracking.
310 const MachineRegisterInfo &MRI;
311 /// Optional TargetInstrInfo used to perform some complex
312 /// tracking.
313 const TargetInstrInfo *TII;
314
315 /// \brief Dispatcher to the right underlying implementation of
316 /// getNextSource.
317 ValueTrackerResult getNextSourceImpl();
318 /// \brief Specialized version of getNextSource for Copy instructions.
319 ValueTrackerResult getNextSourceFromCopy();
320 /// \brief Specialized version of getNextSource for Bitcast instructions.
321 ValueTrackerResult getNextSourceFromBitcast();
322 /// \brief Specialized version of getNextSource for RegSequence
323 /// instructions.
324 ValueTrackerResult getNextSourceFromRegSequence();
325 /// \brief Specialized version of getNextSource for InsertSubreg
326 /// instructions.
327 ValueTrackerResult getNextSourceFromInsertSubreg();
328 /// \brief Specialized version of getNextSource for ExtractSubreg
329 /// instructions.
330 ValueTrackerResult getNextSourceFromExtractSubreg();
331 /// \brief Specialized version of getNextSource for SubregToReg
332 /// instructions.
333 ValueTrackerResult getNextSourceFromSubregToReg();
334 /// \brief Specialized version of getNextSource for PHI instructions.
335 ValueTrackerResult getNextSourceFromPHI();
336
337 public:
338 /// \brief Create a ValueTracker instance for the value defined by \p Reg.
339 /// \p DefSubReg represents the sub register index the value tracker will
340 /// track. It does not need to match the sub register index used in the
341 /// definition of \p Reg.
342 /// \p UseAdvancedTracking specifies whether or not the value tracker looks
343 /// through complex instructions. By default (false), it handles only copy
344 /// and bitcast instructions.
345 /// If \p Reg is a physical register, a value tracker constructed with
346 /// this constructor will not find any alternative source.
347 /// Indeed, when \p Reg is a physical register that constructor does not
348 /// know which definition of \p Reg it should track.
349 /// Use the next constructor to track a physical register.
ValueTracker(unsigned Reg,unsigned DefSubReg,const MachineRegisterInfo & MRI,bool UseAdvancedTracking=false,const TargetInstrInfo * TII=nullptr)350 ValueTracker(unsigned Reg, unsigned DefSubReg,
351 const MachineRegisterInfo &MRI,
352 bool UseAdvancedTracking = false,
353 const TargetInstrInfo *TII = nullptr)
354 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
355 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
356 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
357 Def = MRI.getVRegDef(Reg);
358 DefIdx = MRI.def_begin(Reg).getOperandNo();
359 }
360 }
361
362 /// \brief Create a ValueTracker instance for the value defined by
363 /// the pair \p MI, \p DefIdx.
364 /// Unlike the other constructor, the value tracker produced by this one
365 /// may be able to find a new source when the definition is a physical
366 /// register.
367 /// This could be useful to rewrite target specific instructions into
368 /// generic copy instructions.
ValueTracker(const MachineInstr & MI,unsigned DefIdx,unsigned DefSubReg,const MachineRegisterInfo & MRI,bool UseAdvancedTracking=false,const TargetInstrInfo * TII=nullptr)369 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
370 const MachineRegisterInfo &MRI,
371 bool UseAdvancedTracking = false,
372 const TargetInstrInfo *TII = nullptr)
373 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
374 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
375 assert(DefIdx < Def->getDesc().getNumDefs() &&
376 Def->getOperand(DefIdx).isReg() && "Invalid definition");
377 Reg = Def->getOperand(DefIdx).getReg();
378 }
379
380 /// \brief Following the use-def chain, get the next available source
381 /// for the tracked value.
382 /// \return A ValueTrackerResult containing a set of registers
383 /// and sub registers with tracked values. A ValueTrackerResult with
384 /// an empty set of registers means no source was found.
385 ValueTrackerResult getNextSource();
386
387 /// \brief Get the last register where the initial value can be found.
388 /// Initially this is the register of the definition.
389 /// Then, after each successful call to getNextSource, this is the
390 /// register of the last source.
getReg() const391 unsigned getReg() const { return Reg; }
392 };
393 }
394
395 char PeepholeOptimizer::ID = 0;
396 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
397 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
398 "Peephole Optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)399 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
400 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
401 "Peephole Optimizations", false, false)
402
403 /// If instruction is a copy-like instruction, i.e. it reads a single register
404 /// and writes a single register and it does not modify the source, and if the
405 /// source value is preserved as a sub-register of the result, then replace all
406 /// reachable uses of the source with the subreg of the result.
407 ///
408 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
409 /// the code. Since this code does not currently share EXTRACTs, just ignore all
410 /// debug uses.
411 bool PeepholeOptimizer::
412 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
413 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
414 unsigned SrcReg, DstReg, SubIdx;
415 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
416 return false;
417
418 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
419 TargetRegisterInfo::isPhysicalRegister(SrcReg))
420 return false;
421
422 if (MRI->hasOneNonDBGUse(SrcReg))
423 // No other uses.
424 return false;
425
426 // Ensure DstReg can get a register class that actually supports
427 // sub-registers. Don't change the class until we commit.
428 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
429 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
430 if (!DstRC)
431 return false;
432
433 // The ext instr may be operating on a sub-register of SrcReg as well.
434 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
435 // register.
436 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
437 // SrcReg:SubIdx should be replaced.
438 bool UseSrcSubIdx =
439 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
440
441 // The source has other uses. See if we can replace the other uses with use of
442 // the result of the extension.
443 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
444 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
445 ReachedBBs.insert(UI.getParent());
446
447 // Uses that are in the same BB of uses of the result of the instruction.
448 SmallVector<MachineOperand*, 8> Uses;
449
450 // Uses that the result of the instruction can reach.
451 SmallVector<MachineOperand*, 8> ExtendedUses;
452
453 bool ExtendLife = true;
454 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
455 MachineInstr *UseMI = UseMO.getParent();
456 if (UseMI == MI)
457 continue;
458
459 if (UseMI->isPHI()) {
460 ExtendLife = false;
461 continue;
462 }
463
464 // Only accept uses of SrcReg:SubIdx.
465 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
466 continue;
467
468 // It's an error to translate this:
469 //
470 // %reg1025 = <sext> %reg1024
471 // ...
472 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
473 //
474 // into this:
475 //
476 // %reg1025 = <sext> %reg1024
477 // ...
478 // %reg1027 = COPY %reg1025:4
479 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
480 //
481 // The problem here is that SUBREG_TO_REG is there to assert that an
482 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
483 // the COPY here, it will give us the value after the <sext>, not the
484 // original value of %reg1024 before <sext>.
485 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
486 continue;
487
488 MachineBasicBlock *UseMBB = UseMI->getParent();
489 if (UseMBB == MBB) {
490 // Local uses that come after the extension.
491 if (!LocalMIs.count(UseMI))
492 Uses.push_back(&UseMO);
493 } else if (ReachedBBs.count(UseMBB)) {
494 // Non-local uses where the result of the extension is used. Always
495 // replace these unless it's a PHI.
496 Uses.push_back(&UseMO);
497 } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
498 // We may want to extend the live range of the extension result in order
499 // to replace these uses.
500 ExtendedUses.push_back(&UseMO);
501 } else {
502 // Both will be live out of the def MBB anyway. Don't extend live range of
503 // the extension result.
504 ExtendLife = false;
505 break;
506 }
507 }
508
509 if (ExtendLife && !ExtendedUses.empty())
510 // Extend the liveness of the extension result.
511 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
512
513 // Now replace all uses.
514 bool Changed = false;
515 if (!Uses.empty()) {
516 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
517
518 // Look for PHI uses of the extended result, we don't want to extend the
519 // liveness of a PHI input. It breaks all kinds of assumptions down
520 // stream. A PHI use is expected to be the kill of its source values.
521 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
522 if (UI.isPHI())
523 PHIBBs.insert(UI.getParent());
524
525 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
526 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
527 MachineOperand *UseMO = Uses[i];
528 MachineInstr *UseMI = UseMO->getParent();
529 MachineBasicBlock *UseMBB = UseMI->getParent();
530 if (PHIBBs.count(UseMBB))
531 continue;
532
533 // About to add uses of DstReg, clear DstReg's kill flags.
534 if (!Changed) {
535 MRI->clearKillFlags(DstReg);
536 MRI->constrainRegClass(DstReg, DstRC);
537 }
538
539 unsigned NewVR = MRI->createVirtualRegister(RC);
540 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
541 TII->get(TargetOpcode::COPY), NewVR)
542 .addReg(DstReg, 0, SubIdx);
543 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
544 if (UseSrcSubIdx) {
545 Copy->getOperand(0).setSubReg(SubIdx);
546 Copy->getOperand(0).setIsUndef();
547 }
548 UseMO->setReg(NewVR);
549 ++NumReuse;
550 Changed = true;
551 }
552 }
553
554 return Changed;
555 }
556
557 /// If the instruction is a compare and the previous instruction it's comparing
558 /// against already sets (or could be modified to set) the same flag as the
559 /// compare, then we can remove the comparison and use the flag from the
560 /// previous instruction.
optimizeCmpInstr(MachineInstr * MI,MachineBasicBlock * MBB)561 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
562 MachineBasicBlock *MBB) {
563 // If this instruction is a comparison against zero and isn't comparing a
564 // physical register, we can try to optimize it.
565 unsigned SrcReg, SrcReg2;
566 int CmpMask, CmpValue;
567 if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
568 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
569 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
570 return false;
571
572 // Attempt to optimize the comparison instruction.
573 if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
574 ++NumCmps;
575 return true;
576 }
577
578 return false;
579 }
580
581 /// Optimize a select instruction.
optimizeSelect(MachineInstr * MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)582 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
583 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
584 unsigned TrueOp = 0;
585 unsigned FalseOp = 0;
586 bool Optimizable = false;
587 SmallVector<MachineOperand, 4> Cond;
588 if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable))
589 return false;
590 if (!Optimizable)
591 return false;
592 if (!TII->optimizeSelect(*MI, LocalMIs))
593 return false;
594 MI->eraseFromParent();
595 ++NumSelects;
596 return true;
597 }
598
599 /// \brief Check if a simpler conditional branch can be
600 // generated
optimizeCondBranch(MachineInstr * MI)601 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
602 return TII->optimizeCondBranch(*MI);
603 }
604
605 /// \brief Try to find the next source that share the same register file
606 /// for the value defined by \p Reg and \p SubReg.
607 /// When true is returned, the \p RewriteMap can be used by the client to
608 /// retrieve all Def -> Use along the way up to the next source. Any found
609 /// Use that is not itself a key for another entry, is the next source to
610 /// use. During the search for the next source, multiple sources can be found
611 /// given multiple incoming sources of a PHI instruction. In this case, we
612 /// look in each PHI source for the next source; all found next sources must
613 /// share the same register file as \p Reg and \p SubReg. The client should
614 /// then be capable to rewrite all intermediate PHIs to get the next source.
615 /// \return False if no alternative sources are available. True otherwise.
findNextSource(unsigned Reg,unsigned SubReg,RewriteMapTy & RewriteMap)616 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg,
617 RewriteMapTy &RewriteMap) {
618 // Do not try to find a new source for a physical register.
619 // So far we do not have any motivating example for doing that.
620 // Thus, instead of maintaining untested code, we will revisit that if
621 // that changes at some point.
622 if (TargetRegisterInfo::isPhysicalRegister(Reg))
623 return false;
624 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
625
626 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook;
627 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg);
628 SrcToLook.push_back(CurSrcPair);
629
630 unsigned PHICount = 0;
631 while (!SrcToLook.empty() && PHICount < RewritePHILimit) {
632 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val();
633 // As explained above, do not handle physical registers
634 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg))
635 return false;
636
637 CurSrcPair = Pair;
638 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI,
639 !DisableAdvCopyOpt, TII);
640 ValueTrackerResult Res;
641 bool ShouldRewrite = false;
642
643 do {
644 // Follow the chain of copies until we reach the top of the use-def chain
645 // or find a more suitable source.
646 Res = ValTracker.getNextSource();
647 if (!Res.isValid())
648 break;
649
650 // Insert the Def -> Use entry for the recently found source.
651 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
652 if (CurSrcRes.isValid()) {
653 assert(CurSrcRes == Res && "ValueTrackerResult found must match");
654 // An existent entry with multiple sources is a PHI cycle we must avoid.
655 // Otherwise it's an entry with a valid next source we already found.
656 if (CurSrcRes.getNumSources() > 1) {
657 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n");
658 return false;
659 }
660 break;
661 }
662 RewriteMap.insert(std::make_pair(CurSrcPair, Res));
663
664 // ValueTrackerResult usually have one source unless it's the result from
665 // a PHI instruction. Add the found PHI edges to be looked up further.
666 unsigned NumSrcs = Res.getNumSources();
667 if (NumSrcs > 1) {
668 PHICount++;
669 for (unsigned i = 0; i < NumSrcs; ++i)
670 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair(
671 Res.getSrcReg(i), Res.getSrcSubReg(i)));
672 break;
673 }
674
675 CurSrcPair.Reg = Res.getSrcReg(0);
676 CurSrcPair.SubReg = Res.getSrcSubReg(0);
677 // Do not extend the live-ranges of physical registers as they add
678 // constraints to the register allocator. Moreover, if we want to extend
679 // the live-range of a physical register, unlike SSA virtual register,
680 // we will have to check that they aren't redefine before the related use.
681 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
682 return false;
683
684 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
685 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC,
686 CurSrcPair.SubReg);
687 } while (!ShouldRewrite);
688
689 // Continue looking for new sources...
690 if (Res.isValid())
691 continue;
692
693 // Do not continue searching for a new source if the there's at least
694 // one use-def which cannot be rewritten.
695 if (!ShouldRewrite)
696 return false;
697 }
698
699 if (PHICount >= RewritePHILimit) {
700 DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
701 return false;
702 }
703
704 // If we did not find a more suitable source, there is nothing to optimize.
705 return CurSrcPair.Reg != Reg;
706 }
707
708 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are
709 /// guaranteed to have the same register class. This is necessary whenever we
710 /// successfully traverse a PHI instruction and find suitable sources coming
711 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
712 /// suitable to be used in a new COPY instruction.
713 static MachineInstr *
insertPHI(MachineRegisterInfo * MRI,const TargetInstrInfo * TII,const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> & SrcRegs,MachineInstr * OrigPHI)714 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
715 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs,
716 MachineInstr *OrigPHI) {
717 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
718
719 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg);
720 unsigned NewVR = MRI->createVirtualRegister(NewRC);
721 MachineBasicBlock *MBB = OrigPHI->getParent();
722 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(),
723 TII->get(TargetOpcode::PHI), NewVR);
724
725 unsigned MBBOpIdx = 2;
726 for (auto RegPair : SrcRegs) {
727 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
728 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB());
729 // Since we're extended the lifetime of RegPair.Reg, clear the
730 // kill flags to account for that and make RegPair.Reg reaches
731 // the new PHI.
732 MRI->clearKillFlags(RegPair.Reg);
733 MBBOpIdx += 2;
734 }
735
736 return MIB;
737 }
738
739 namespace {
740 /// \brief Helper class to rewrite the arguments of a copy-like instruction.
741 class CopyRewriter {
742 protected:
743 /// The copy-like instruction.
744 MachineInstr &CopyLike;
745 /// The index of the source being rewritten.
746 unsigned CurrentSrcIdx;
747
748 public:
CopyRewriter(MachineInstr & MI)749 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
750
~CopyRewriter()751 virtual ~CopyRewriter() {}
752
753 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
754 /// the related value that it affects (TrackReg, TrackSubReg).
755 /// A source is considered rewritable if its register class and the
756 /// register class of the related TrackReg may not be register
757 /// coalescer friendly. In other words, given a copy-like instruction
758 /// not all the arguments may be returned at rewritable source, since
759 /// some arguments are none to be register coalescer friendly.
760 ///
761 /// Each call of this method moves the current source to the next
762 /// rewritable source.
763 /// For instance, let CopyLike be the instruction to rewrite.
764 /// CopyLike has one definition and one source:
765 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
766 ///
767 /// The first call will give the first rewritable source, i.e.,
768 /// the only source this instruction has:
769 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
770 /// This source defines the whole definition, i.e.,
771 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
772 ///
773 /// The second and subsequent calls will return false, as there is only one
774 /// rewritable source.
775 ///
776 /// \return True if a rewritable source has been found, false otherwise.
777 /// The output arguments are valid if and only if true is returned.
getNextRewritableSource(unsigned & SrcReg,unsigned & SrcSubReg,unsigned & TrackReg,unsigned & TrackSubReg)778 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
779 unsigned &TrackReg,
780 unsigned &TrackSubReg) {
781 // If CurrentSrcIdx == 1, this means this function has already been called
782 // once. CopyLike has one definition and one argument, thus, there is
783 // nothing else to rewrite.
784 if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
785 return false;
786 // This is the first call to getNextRewritableSource.
787 // Move the CurrentSrcIdx to remember that we made that call.
788 CurrentSrcIdx = 1;
789 // The rewritable source is the argument.
790 const MachineOperand &MOSrc = CopyLike.getOperand(1);
791 SrcReg = MOSrc.getReg();
792 SrcSubReg = MOSrc.getSubReg();
793 // What we track are the alternative sources of the definition.
794 const MachineOperand &MODef = CopyLike.getOperand(0);
795 TrackReg = MODef.getReg();
796 TrackSubReg = MODef.getSubReg();
797 return true;
798 }
799
800 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
801 /// if possible.
802 /// \return True if the rewriting was possible, false otherwise.
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)803 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
804 if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
805 return false;
806 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
807 MOSrc.setReg(NewReg);
808 MOSrc.setSubReg(NewSubReg);
809 return true;
810 }
811
812 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
813 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
814 /// multiple sources for a given \p Def are found along the way, we found a
815 /// PHI instructions that needs to be rewritten.
816 /// TODO: HandleMultipleSources should be removed once we test PHI handling
817 /// with coalescable copies.
818 TargetInstrInfo::RegSubRegPair
getNewSource(MachineRegisterInfo * MRI,const TargetInstrInfo * TII,TargetInstrInfo::RegSubRegPair Def,PeepholeOptimizer::RewriteMapTy & RewriteMap,bool HandleMultipleSources=true)819 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
820 TargetInstrInfo::RegSubRegPair Def,
821 PeepholeOptimizer::RewriteMapTy &RewriteMap,
822 bool HandleMultipleSources = true) {
823
824 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
825 do {
826 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
827 // If there are no entries on the map, LookupSrc is the new source.
828 if (!Res.isValid())
829 return LookupSrc;
830
831 // There's only one source for this definition, keep searching...
832 unsigned NumSrcs = Res.getNumSources();
833 if (NumSrcs == 1) {
834 LookupSrc.Reg = Res.getSrcReg(0);
835 LookupSrc.SubReg = Res.getSrcSubReg(0);
836 continue;
837 }
838
839 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
840 if (!HandleMultipleSources)
841 break;
842
843 // Multiple sources, recurse into each source to find a new source
844 // for it. Then, rewrite the PHI accordingly to its new edges.
845 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs;
846 for (unsigned i = 0; i < NumSrcs; ++i) {
847 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i),
848 Res.getSrcSubReg(i));
849 NewPHISrcs.push_back(
850 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
851 }
852
853 // Build the new PHI node and return its def register as the new source.
854 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst());
855 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI);
856 DEBUG(dbgs() << "-- getNewSource\n");
857 DEBUG(dbgs() << " Replacing: " << *OrigPHI);
858 DEBUG(dbgs() << " With: " << *NewPHI);
859 const MachineOperand &MODef = NewPHI->getOperand(0);
860 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg());
861
862 } while (1);
863
864 return TargetInstrInfo::RegSubRegPair(0, 0);
865 }
866
867 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
868 /// and create a new COPY instruction. More info about RewriteMap in
869 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
870 /// Uncoalescable copies, since they are copy like instructions that aren't
871 /// recognized by the register allocator.
872 virtual MachineInstr *
RewriteSource(TargetInstrInfo::RegSubRegPair Def,PeepholeOptimizer::RewriteMapTy & RewriteMap)873 RewriteSource(TargetInstrInfo::RegSubRegPair Def,
874 PeepholeOptimizer::RewriteMapTy &RewriteMap) {
875 return nullptr;
876 }
877 };
878
879 /// \brief Helper class to rewrite uncoalescable copy like instructions
880 /// into new COPY (coalescable friendly) instructions.
881 class UncoalescableRewriter : public CopyRewriter {
882 protected:
883 const TargetInstrInfo &TII;
884 MachineRegisterInfo &MRI;
885 /// The number of defs in the bitcast
886 unsigned NumDefs;
887
888 public:
UncoalescableRewriter(MachineInstr & MI,const TargetInstrInfo & TII,MachineRegisterInfo & MRI)889 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII,
890 MachineRegisterInfo &MRI)
891 : CopyRewriter(MI), TII(TII), MRI(MRI) {
892 NumDefs = MI.getDesc().getNumDefs();
893 }
894
895 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg)
896 /// All such sources need to be considered rewritable in order to
897 /// rewrite a uncoalescable copy-like instruction. This method return
898 /// each definition that must be checked if rewritable.
899 ///
getNextRewritableSource(unsigned & SrcReg,unsigned & SrcSubReg,unsigned & TrackReg,unsigned & TrackSubReg)900 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
901 unsigned &TrackReg,
902 unsigned &TrackSubReg) override {
903 // Find the next non-dead definition and continue from there.
904 if (CurrentSrcIdx == NumDefs)
905 return false;
906
907 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
908 ++CurrentSrcIdx;
909 if (CurrentSrcIdx == NumDefs)
910 return false;
911 }
912
913 // What we track are the alternative sources of the definition.
914 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
915 TrackReg = MODef.getReg();
916 TrackSubReg = MODef.getSubReg();
917
918 CurrentSrcIdx++;
919 return true;
920 }
921
922 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
923 /// and create a new COPY instruction. More info about RewriteMap in
924 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
925 /// Uncoalescable copies, since they are copy like instructions that aren't
926 /// recognized by the register allocator.
927 MachineInstr *
RewriteSource(TargetInstrInfo::RegSubRegPair Def,PeepholeOptimizer::RewriteMapTy & RewriteMap)928 RewriteSource(TargetInstrInfo::RegSubRegPair Def,
929 PeepholeOptimizer::RewriteMapTy &RewriteMap) override {
930 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
931 "We do not rewrite physical registers");
932
933 // Find the new source to use in the COPY rewrite.
934 TargetInstrInfo::RegSubRegPair NewSrc =
935 getNewSource(&MRI, &TII, Def, RewriteMap);
936
937 // Insert the COPY.
938 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg);
939 unsigned NewVR = MRI.createVirtualRegister(DefRC);
940
941 MachineInstr *NewCopy =
942 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
943 TII.get(TargetOpcode::COPY), NewVR)
944 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
945
946 NewCopy->getOperand(0).setSubReg(Def.SubReg);
947 if (Def.SubReg)
948 NewCopy->getOperand(0).setIsUndef();
949
950 DEBUG(dbgs() << "-- RewriteSource\n");
951 DEBUG(dbgs() << " Replacing: " << CopyLike);
952 DEBUG(dbgs() << " With: " << *NewCopy);
953 MRI.replaceRegWith(Def.Reg, NewVR);
954 MRI.clearKillFlags(NewVR);
955
956 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
957 // account for that.
958 MRI.clearKillFlags(NewSrc.Reg);
959
960 return NewCopy;
961 }
962 };
963
964 /// \brief Specialized rewriter for INSERT_SUBREG instruction.
965 class InsertSubregRewriter : public CopyRewriter {
966 public:
InsertSubregRewriter(MachineInstr & MI)967 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
968 assert(MI.isInsertSubreg() && "Invalid instruction");
969 }
970
971 /// \brief See CopyRewriter::getNextRewritableSource.
972 /// Here CopyLike has the following form:
973 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
974 /// Src1 has the same register class has dst, hence, there is
975 /// nothing to rewrite.
976 /// Src2.src2SubIdx, may not be register coalescer friendly.
977 /// Therefore, the first call to this method returns:
978 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
979 /// (TrackReg, TrackSubReg) = (dst, subIdx).
980 ///
981 /// Subsequence calls will return false.
getNextRewritableSource(unsigned & SrcReg,unsigned & SrcSubReg,unsigned & TrackReg,unsigned & TrackSubReg)982 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
983 unsigned &TrackReg,
984 unsigned &TrackSubReg) override {
985 // If we already get the only source we can rewrite, return false.
986 if (CurrentSrcIdx == 2)
987 return false;
988 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
989 CurrentSrcIdx = 2;
990 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
991 SrcReg = MOInsertedReg.getReg();
992 SrcSubReg = MOInsertedReg.getSubReg();
993 const MachineOperand &MODef = CopyLike.getOperand(0);
994
995 // We want to track something that is compatible with the
996 // partial definition.
997 TrackReg = MODef.getReg();
998 if (MODef.getSubReg())
999 // Bail if we have to compose sub-register indices.
1000 return false;
1001 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
1002 return true;
1003 }
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)1004 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1005 if (CurrentSrcIdx != 2)
1006 return false;
1007 // We are rewriting the inserted reg.
1008 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1009 MO.setReg(NewReg);
1010 MO.setSubReg(NewSubReg);
1011 return true;
1012 }
1013 };
1014
1015 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
1016 class ExtractSubregRewriter : public CopyRewriter {
1017 const TargetInstrInfo &TII;
1018
1019 public:
ExtractSubregRewriter(MachineInstr & MI,const TargetInstrInfo & TII)1020 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
1021 : CopyRewriter(MI), TII(TII) {
1022 assert(MI.isExtractSubreg() && "Invalid instruction");
1023 }
1024
1025 /// \brief See CopyRewriter::getNextRewritableSource.
1026 /// Here CopyLike has the following form:
1027 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
1028 /// There is only one rewritable source: Src.subIdx,
1029 /// which defines dst.dstSubIdx.
getNextRewritableSource(unsigned & SrcReg,unsigned & SrcSubReg,unsigned & TrackReg,unsigned & TrackSubReg)1030 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
1031 unsigned &TrackReg,
1032 unsigned &TrackSubReg) override {
1033 // If we already get the only source we can rewrite, return false.
1034 if (CurrentSrcIdx == 1)
1035 return false;
1036 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
1037 CurrentSrcIdx = 1;
1038 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
1039 SrcReg = MOExtractedReg.getReg();
1040 // If we have to compose sub-register indices, bail out.
1041 if (MOExtractedReg.getSubReg())
1042 return false;
1043
1044 SrcSubReg = CopyLike.getOperand(2).getImm();
1045
1046 // We want to track something that is compatible with the definition.
1047 const MachineOperand &MODef = CopyLike.getOperand(0);
1048 TrackReg = MODef.getReg();
1049 TrackSubReg = MODef.getSubReg();
1050 return true;
1051 }
1052
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)1053 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1054 // The only source we can rewrite is the input register.
1055 if (CurrentSrcIdx != 1)
1056 return false;
1057
1058 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1059
1060 // If we find a source that does not require to extract something,
1061 // rewrite the operation with a copy.
1062 if (!NewSubReg) {
1063 // Move the current index to an invalid position.
1064 // We do not want another call to this method to be able
1065 // to do any change.
1066 CurrentSrcIdx = -1;
1067 // Rewrite the operation as a COPY.
1068 // Get rid of the sub-register index.
1069 CopyLike.RemoveOperand(2);
1070 // Morph the operation into a COPY.
1071 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1072 return true;
1073 }
1074 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1075 return true;
1076 }
1077 };
1078
1079 /// \brief Specialized rewriter for REG_SEQUENCE instruction.
1080 class RegSequenceRewriter : public CopyRewriter {
1081 public:
RegSequenceRewriter(MachineInstr & MI)1082 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
1083 assert(MI.isRegSequence() && "Invalid instruction");
1084 }
1085
1086 /// \brief See CopyRewriter::getNextRewritableSource.
1087 /// Here CopyLike has the following form:
1088 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1089 /// Each call will return a different source, walking all the available
1090 /// source.
1091 ///
1092 /// The first call returns:
1093 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1094 /// (TrackReg, TrackSubReg) = (dst, subIdx1).
1095 ///
1096 /// The second call returns:
1097 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1098 /// (TrackReg, TrackSubReg) = (dst, subIdx2).
1099 ///
1100 /// And so on, until all the sources have been traversed, then
1101 /// it returns false.
getNextRewritableSource(unsigned & SrcReg,unsigned & SrcSubReg,unsigned & TrackReg,unsigned & TrackSubReg)1102 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
1103 unsigned &TrackReg,
1104 unsigned &TrackSubReg) override {
1105 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1106
1107 // If this is the first call, move to the first argument.
1108 if (CurrentSrcIdx == 0) {
1109 CurrentSrcIdx = 1;
1110 } else {
1111 // Otherwise, move to the next argument and check that it is valid.
1112 CurrentSrcIdx += 2;
1113 if (CurrentSrcIdx >= CopyLike.getNumOperands())
1114 return false;
1115 }
1116 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1117 SrcReg = MOInsertedReg.getReg();
1118 // If we have to compose sub-register indices, bail out.
1119 if ((SrcSubReg = MOInsertedReg.getSubReg()))
1120 return false;
1121
1122 // We want to track something that is compatible with the related
1123 // partial definition.
1124 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1125
1126 const MachineOperand &MODef = CopyLike.getOperand(0);
1127 TrackReg = MODef.getReg();
1128 // If we have to compose sub-registers, bail.
1129 return MODef.getSubReg() == 0;
1130 }
1131
RewriteCurrentSource(unsigned NewReg,unsigned NewSubReg)1132 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1133 // We cannot rewrite out of bound operands.
1134 // Moreover, rewritable sources are at odd positions.
1135 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1136 return false;
1137
1138 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1139 MO.setReg(NewReg);
1140 MO.setSubReg(NewSubReg);
1141 return true;
1142 }
1143 };
1144 } // End namespace.
1145
1146 /// \brief Get the appropriated CopyRewriter for \p MI.
1147 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
1148 /// if no rewriter works for \p MI.
getCopyRewriter(MachineInstr & MI,const TargetInstrInfo & TII,MachineRegisterInfo & MRI)1149 static CopyRewriter *getCopyRewriter(MachineInstr &MI,
1150 const TargetInstrInfo &TII,
1151 MachineRegisterInfo &MRI) {
1152 // Handle uncoalescable copy-like instructions.
1153 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1154 MI.isExtractSubregLike()))
1155 return new UncoalescableRewriter(MI, TII, MRI);
1156
1157 switch (MI.getOpcode()) {
1158 default:
1159 return nullptr;
1160 case TargetOpcode::COPY:
1161 return new CopyRewriter(MI);
1162 case TargetOpcode::INSERT_SUBREG:
1163 return new InsertSubregRewriter(MI);
1164 case TargetOpcode::EXTRACT_SUBREG:
1165 return new ExtractSubregRewriter(MI, TII);
1166 case TargetOpcode::REG_SEQUENCE:
1167 return new RegSequenceRewriter(MI);
1168 }
1169 llvm_unreachable(nullptr);
1170 }
1171
1172 /// \brief Optimize generic copy instructions to avoid cross
1173 /// register bank copy. The optimization looks through a chain of
1174 /// copies and tries to find a source that has a compatible register
1175 /// class.
1176 /// Two register classes are considered to be compatible if they share
1177 /// the same register bank.
1178 /// New copies issued by this optimization are register allocator
1179 /// friendly. This optimization does not remove any copy as it may
1180 /// overconstrain the register allocator, but replaces some operands
1181 /// when possible.
1182 /// \pre isCoalescableCopy(*MI) is true.
1183 /// \return True, when \p MI has been rewritten. False otherwise.
optimizeCoalescableCopy(MachineInstr * MI)1184 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
1185 assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
1186 assert(MI->getDesc().getNumDefs() == 1 &&
1187 "Coalescer can understand multiple defs?!");
1188 const MachineOperand &MODef = MI->getOperand(0);
1189 // Do not rewrite physical definitions.
1190 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
1191 return false;
1192
1193 bool Changed = false;
1194 // Get the right rewriter for the current copy.
1195 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
1196 // If none exists, bail out.
1197 if (!CpyRewriter)
1198 return false;
1199 // Rewrite each rewritable source.
1200 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
1201 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
1202 TrackSubReg)) {
1203 // Keep track of PHI nodes and its incoming edges when looking for sources.
1204 RewriteMapTy RewriteMap;
1205 // Try to find a more suitable source. If we failed to do so, or get the
1206 // actual source, move to the next source.
1207 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap))
1208 continue;
1209
1210 // Get the new source to rewrite. TODO: Only enable handling of multiple
1211 // sources (PHIs) once we have a motivating example and testcases for it.
1212 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg);
1213 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource(
1214 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */);
1215 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0)
1216 continue;
1217
1218 // Rewrite source.
1219 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1220 // We may have extended the live-range of NewSrc, account for that.
1221 MRI->clearKillFlags(NewSrc.Reg);
1222 Changed = true;
1223 }
1224 }
1225 // TODO: We could have a clean-up method to tidy the instruction.
1226 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1227 // => v0 = COPY v1
1228 // Currently we haven't seen motivating example for that and we
1229 // want to avoid untested code.
1230 NumRewrittenCopies += Changed;
1231 return Changed;
1232 }
1233
1234 /// \brief Optimize copy-like instructions to create
1235 /// register coalescer friendly instruction.
1236 /// The optimization tries to kill-off the \p MI by looking
1237 /// through a chain of copies to find a source that has a compatible
1238 /// register class.
1239 /// If such a source is found, it replace \p MI by a generic COPY
1240 /// operation.
1241 /// \pre isUncoalescableCopy(*MI) is true.
1242 /// \return True, when \p MI has been optimized. In that case, \p MI has
1243 /// been removed from its parent.
1244 /// All COPY instructions created, are inserted in \p LocalMIs.
optimizeUncoalescableCopy(MachineInstr * MI,SmallPtrSetImpl<MachineInstr * > & LocalMIs)1245 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1246 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1247 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
1248
1249 // Check if we can rewrite all the values defined by this instruction.
1250 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs;
1251 // Get the right rewriter for the current copy.
1252 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
1253 // If none exists, bail out.
1254 if (!CpyRewriter)
1255 return false;
1256
1257 // Rewrite each rewritable source by generating new COPYs. This works
1258 // differently from optimizeCoalescableCopy since it first makes sure that all
1259 // definitions can be rewritten.
1260 RewriteMapTy RewriteMap;
1261 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg;
1262 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg,
1263 CopyDefSubReg)) {
1264 // If a physical register is here, this is probably for a good reason.
1265 // Do not rewrite that.
1266 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg))
1267 return false;
1268
1269 // If we do not know how to rewrite this definition, there is no point
1270 // in trying to kill this instruction.
1271 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg);
1272 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap))
1273 return false;
1274
1275 RewritePairs.push_back(Def);
1276 }
1277
1278 // The change is possible for all defs, do it.
1279 for (const auto &Def : RewritePairs) {
1280 // Rewrite the "copy" in a way the register coalescer understands.
1281 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap);
1282 assert(NewCopy && "Should be able to always generate a new copy");
1283 LocalMIs.insert(NewCopy);
1284 }
1285
1286 // MI is now dead.
1287 MI->eraseFromParent();
1288 ++NumUncoalescableCopies;
1289 return true;
1290 }
1291
1292 /// Check whether MI is a candidate for folding into a later instruction.
1293 /// We only fold loads to virtual registers and the virtual register defined
1294 /// has a single use.
isLoadFoldable(MachineInstr * MI,SmallSet<unsigned,16> & FoldAsLoadDefCandidates)1295 bool PeepholeOptimizer::isLoadFoldable(
1296 MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1297 if (!MI->canFoldAsLoad() || !MI->mayLoad())
1298 return false;
1299 const MCInstrDesc &MCID = MI->getDesc();
1300 if (MCID.getNumDefs() != 1)
1301 return false;
1302
1303 unsigned Reg = MI->getOperand(0).getReg();
1304 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1305 // loads. It should be checked when processing uses of the load, since
1306 // uses can be removed during peephole.
1307 if (!MI->getOperand(0).getSubReg() &&
1308 TargetRegisterInfo::isVirtualRegister(Reg) &&
1309 MRI->hasOneNonDBGUse(Reg)) {
1310 FoldAsLoadDefCandidates.insert(Reg);
1311 return true;
1312 }
1313 return false;
1314 }
1315
isMoveImmediate(MachineInstr * MI,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1316 bool PeepholeOptimizer::isMoveImmediate(
1317 MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs,
1318 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1319 const MCInstrDesc &MCID = MI->getDesc();
1320 if (!MI->isMoveImmediate())
1321 return false;
1322 if (MCID.getNumDefs() != 1)
1323 return false;
1324 unsigned Reg = MI->getOperand(0).getReg();
1325 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1326 ImmDefMIs.insert(std::make_pair(Reg, MI));
1327 ImmDefRegs.insert(Reg);
1328 return true;
1329 }
1330
1331 return false;
1332 }
1333
1334 /// Try folding register operands that are defined by move immediate
1335 /// instructions, i.e. a trivial constant folding optimization, if
1336 /// and only if the def and use are in the same BB.
foldImmediate(MachineInstr * MI,MachineBasicBlock * MBB,SmallSet<unsigned,4> & ImmDefRegs,DenseMap<unsigned,MachineInstr * > & ImmDefMIs)1337 bool PeepholeOptimizer::foldImmediate(
1338 MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs,
1339 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1340 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1341 MachineOperand &MO = MI->getOperand(i);
1342 if (!MO.isReg() || MO.isDef())
1343 continue;
1344 // Ignore dead implicit defs.
1345 if (MO.isImplicit() && MO.isDead())
1346 continue;
1347 unsigned Reg = MO.getReg();
1348 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1349 continue;
1350 if (ImmDefRegs.count(Reg) == 0)
1351 continue;
1352 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1353 assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1354 if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) {
1355 ++NumImmFold;
1356 return true;
1357 }
1358 }
1359 return false;
1360 }
1361
1362 // FIXME: This is very simple and misses some cases which should be handled when
1363 // motivating examples are found.
1364 //
1365 // The copy rewriting logic should look at uses as well as defs and be able to
1366 // eliminate copies across blocks.
1367 //
1368 // Later copies that are subregister extracts will also not be eliminated since
1369 // only the first copy is considered.
1370 //
1371 // e.g.
1372 // %vreg1 = COPY %vreg0
1373 // %vreg2 = COPY %vreg0:sub1
1374 //
1375 // Should replace %vreg2 uses with %vreg1:sub1
foldRedundantCopy(MachineInstr * MI,SmallSet<unsigned,4> & CopySrcRegs,DenseMap<unsigned,MachineInstr * > & CopyMIs)1376 bool PeepholeOptimizer::foldRedundantCopy(
1377 MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs,
1378 DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1379 assert(MI->isCopy() && "expected a COPY machine instruction");
1380
1381 unsigned SrcReg = MI->getOperand(1).getReg();
1382 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1383 return false;
1384
1385 unsigned DstReg = MI->getOperand(0).getReg();
1386 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1387 return false;
1388
1389 if (CopySrcRegs.insert(SrcReg).second) {
1390 // First copy of this reg seen.
1391 CopyMIs.insert(std::make_pair(SrcReg, MI));
1392 return false;
1393 }
1394
1395 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1396
1397 unsigned SrcSubReg = MI->getOperand(1).getSubReg();
1398 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1399
1400 // Can't replace different subregister extracts.
1401 if (SrcSubReg != PrevSrcSubReg)
1402 return false;
1403
1404 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
1405
1406 // Only replace if the copy register class is the same.
1407 //
1408 // TODO: If we have multiple copies to different register classes, we may want
1409 // to track multiple copies of the same source register.
1410 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1411 return false;
1412
1413 MRI->replaceRegWith(DstReg, PrevDstReg);
1414
1415 // Lifetime of the previous copy has been extended.
1416 MRI->clearKillFlags(PrevDstReg);
1417 return true;
1418 }
1419
isNAPhysCopy(unsigned Reg)1420 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1421 return TargetRegisterInfo::isPhysicalRegister(Reg) &&
1422 !MRI->isAllocatable(Reg);
1423 }
1424
foldRedundantNAPhysCopy(MachineInstr * MI,DenseMap<unsigned,MachineInstr * > & NAPhysToVirtMIs)1425 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1426 MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1427 assert(MI->isCopy() && "expected a COPY machine instruction");
1428
1429 if (DisableNAPhysCopyOpt)
1430 return false;
1431
1432 unsigned DstReg = MI->getOperand(0).getReg();
1433 unsigned SrcReg = MI->getOperand(1).getReg();
1434 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
1435 // %vreg = COPY %PHYSREG
1436 // Avoid using a datastructure which can track multiple live non-allocatable
1437 // phys->virt copies since LLVM doesn't seem to do this.
1438 NAPhysToVirtMIs.insert({SrcReg, MI});
1439 return false;
1440 }
1441
1442 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1443 return false;
1444
1445 // %PHYSREG = COPY %vreg
1446 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1447 if (PrevCopy == NAPhysToVirtMIs.end()) {
1448 // We can't remove the copy: there was an intervening clobber of the
1449 // non-allocatable physical register after the copy to virtual.
1450 DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI
1451 << '\n');
1452 return false;
1453 }
1454
1455 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1456 if (PrevDstReg == SrcReg) {
1457 // Remove the virt->phys copy: we saw the virtual register definition, and
1458 // the non-allocatable physical register's state hasn't changed since then.
1459 DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n');
1460 ++NumNAPhysCopies;
1461 return true;
1462 }
1463
1464 // Potential missed optimization opportunity: we saw a different virtual
1465 // register get a copy of the non-allocatable physical register, and we only
1466 // track one such copy. Avoid getting confused by this new non-allocatable
1467 // physical register definition, and remove it from the tracked copies.
1468 DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n');
1469 NAPhysToVirtMIs.erase(PrevCopy);
1470 return false;
1471 }
1472
runOnMachineFunction(MachineFunction & MF)1473 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1474 if (skipFunction(*MF.getFunction()))
1475 return false;
1476
1477 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1478 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1479
1480 if (DisablePeephole)
1481 return false;
1482
1483 TII = MF.getSubtarget().getInstrInfo();
1484 TRI = MF.getSubtarget().getRegisterInfo();
1485 MRI = &MF.getRegInfo();
1486 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1487
1488 bool Changed = false;
1489
1490 for (MachineBasicBlock &MBB : MF) {
1491 bool SeenMoveImm = false;
1492
1493 // During this forward scan, at some point it needs to answer the question
1494 // "given a pointer to an MI in the current BB, is it located before or
1495 // after the current instruction".
1496 // To perform this, the following set keeps track of the MIs already seen
1497 // during the scan, if a MI is not in the set, it is assumed to be located
1498 // after. Newly created MIs have to be inserted in the set as well.
1499 SmallPtrSet<MachineInstr*, 16> LocalMIs;
1500 SmallSet<unsigned, 4> ImmDefRegs;
1501 DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1502 SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1503
1504 // Track when a non-allocatable physical register is copied to a virtual
1505 // register so that useless moves can be removed.
1506 //
1507 // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG`
1508 // without any intervening re-definition of %PHYSREG.
1509 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1510
1511 // Set of virtual registers that are copied from.
1512 SmallSet<unsigned, 4> CopySrcRegs;
1513 DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1514
1515 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1516 MII != MIE; ) {
1517 MachineInstr *MI = &*MII;
1518 // We may be erasing MI below, increment MII now.
1519 ++MII;
1520 LocalMIs.insert(MI);
1521
1522 // Skip debug values. They should not affect this peephole optimization.
1523 if (MI->isDebugValue())
1524 continue;
1525
1526 // If we run into an instruction we can't fold across, discard
1527 // the load candidates.
1528 if (MI->isLoadFoldBarrier())
1529 FoldAsLoadDefCandidates.clear();
1530
1531 if (MI->isPosition() || MI->isPHI())
1532 continue;
1533
1534 if (!MI->isCopy()) {
1535 for (const auto &Op : MI->operands()) {
1536 // Visit all operands: definitions can be implicit or explicit.
1537 if (Op.isReg()) {
1538 unsigned Reg = Op.getReg();
1539 if (Op.isDef() && isNAPhysCopy(Reg)) {
1540 const auto &Def = NAPhysToVirtMIs.find(Reg);
1541 if (Def != NAPhysToVirtMIs.end()) {
1542 // A new definition of the non-allocatable physical register
1543 // invalidates previous copies.
1544 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
1545 << '\n');
1546 NAPhysToVirtMIs.erase(Def);
1547 }
1548 }
1549 } else if (Op.isRegMask()) {
1550 const uint32_t *RegMask = Op.getRegMask();
1551 for (auto &RegMI : NAPhysToVirtMIs) {
1552 unsigned Def = RegMI.first;
1553 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1554 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
1555 << '\n');
1556 NAPhysToVirtMIs.erase(Def);
1557 }
1558 }
1559 }
1560 }
1561 }
1562
1563 if (MI->isImplicitDef() || MI->isKill())
1564 continue;
1565
1566 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1567 // Blow away all non-allocatable physical registers knowledge since we
1568 // don't know what's correct anymore.
1569 //
1570 // FIXME: handle explicit asm clobbers.
1571 DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI
1572 << '\n');
1573 NAPhysToVirtMIs.clear();
1574 continue;
1575 }
1576
1577 if ((isUncoalescableCopy(*MI) &&
1578 optimizeUncoalescableCopy(MI, LocalMIs)) ||
1579 (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) ||
1580 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
1581 // MI is deleted.
1582 LocalMIs.erase(MI);
1583 Changed = true;
1584 continue;
1585 }
1586
1587 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
1588 Changed = true;
1589 continue;
1590 }
1591
1592 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
1593 // MI is just rewritten.
1594 Changed = true;
1595 continue;
1596 }
1597
1598 if (MI->isCopy() &&
1599 (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) ||
1600 foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) {
1601 LocalMIs.erase(MI);
1602 MI->eraseFromParent();
1603 Changed = true;
1604 continue;
1605 }
1606
1607 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
1608 SeenMoveImm = true;
1609 } else {
1610 Changed |= optimizeExtInstr(MI, &MBB, LocalMIs);
1611 // optimizeExtInstr might have created new instructions after MI
1612 // and before the already incremented MII. Adjust MII so that the
1613 // next iteration sees the new instructions.
1614 MII = MI;
1615 ++MII;
1616 if (SeenMoveImm)
1617 Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs);
1618 }
1619
1620 // Check whether MI is a load candidate for folding into a later
1621 // instruction. If MI is not a candidate, check whether we can fold an
1622 // earlier load into MI.
1623 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
1624 !FoldAsLoadDefCandidates.empty()) {
1625 const MCInstrDesc &MIDesc = MI->getDesc();
1626 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
1627 ++i) {
1628 const MachineOperand &MOp = MI->getOperand(i);
1629 if (!MOp.isReg())
1630 continue;
1631 unsigned FoldAsLoadDefReg = MOp.getReg();
1632 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1633 // We need to fold load after optimizeCmpInstr, since
1634 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1635 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1636 // we need it for markUsesInDebugValueAsUndef().
1637 unsigned FoldedReg = FoldAsLoadDefReg;
1638 MachineInstr *DefMI = nullptr;
1639 if (MachineInstr *FoldMI =
1640 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1641 // Update LocalMIs since we replaced MI with FoldMI and deleted
1642 // DefMI.
1643 DEBUG(dbgs() << "Replacing: " << *MI);
1644 DEBUG(dbgs() << " With: " << *FoldMI);
1645 LocalMIs.erase(MI);
1646 LocalMIs.erase(DefMI);
1647 LocalMIs.insert(FoldMI);
1648 MI->eraseFromParent();
1649 DefMI->eraseFromParent();
1650 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1651 FoldAsLoadDefCandidates.erase(FoldedReg);
1652 ++NumLoadFold;
1653 // MI is replaced with FoldMI.
1654 Changed = true;
1655 break;
1656 }
1657 }
1658 }
1659 }
1660 }
1661 }
1662
1663 return Changed;
1664 }
1665
getNextSourceFromCopy()1666 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1667 assert(Def->isCopy() && "Invalid definition");
1668 // Copy instruction are supposed to be: Def = Src.
1669 // If someone breaks this assumption, bad things will happen everywhere.
1670 assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1671
1672 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1673 // If we look for a different subreg, it means we want a subreg of src.
1674 // Bails as we do not support composing subregs yet.
1675 return ValueTrackerResult();
1676 // Otherwise, we want the whole source.
1677 const MachineOperand &Src = Def->getOperand(1);
1678 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1679 }
1680
getNextSourceFromBitcast()1681 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1682 assert(Def->isBitcast() && "Invalid definition");
1683
1684 // Bail if there are effects that a plain copy will not expose.
1685 if (Def->hasUnmodeledSideEffects())
1686 return ValueTrackerResult();
1687
1688 // Bitcasts with more than one def are not supported.
1689 if (Def->getDesc().getNumDefs() != 1)
1690 return ValueTrackerResult();
1691 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1692 // If we look for a different subreg, it means we want a subreg of the src.
1693 // Bails as we do not support composing subregs yet.
1694 return ValueTrackerResult();
1695
1696 unsigned SrcIdx = Def->getNumOperands();
1697 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1698 ++OpIdx) {
1699 const MachineOperand &MO = Def->getOperand(OpIdx);
1700 if (!MO.isReg() || !MO.getReg())
1701 continue;
1702 // Ignore dead implicit defs.
1703 if (MO.isImplicit() && MO.isDead())
1704 continue;
1705 assert(!MO.isDef() && "We should have skipped all the definitions by now");
1706 if (SrcIdx != EndOpIdx)
1707 // Multiple sources?
1708 return ValueTrackerResult();
1709 SrcIdx = OpIdx;
1710 }
1711 const MachineOperand &Src = Def->getOperand(SrcIdx);
1712 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1713 }
1714
getNextSourceFromRegSequence()1715 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1716 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1717 "Invalid definition");
1718
1719 if (Def->getOperand(DefIdx).getSubReg())
1720 // If we are composing subregs, bail out.
1721 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1722 // This should almost never happen as the SSA property is tracked at
1723 // the register level (as opposed to the subreg level).
1724 // I.e.,
1725 // Def.sub0 =
1726 // Def.sub1 =
1727 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1728 // Def. Thus, it must not be generated.
1729 // However, some code could theoretically generates a single
1730 // Def.sub0 (i.e, not defining the other subregs) and we would
1731 // have this case.
1732 // If we can ascertain (or force) that this never happens, we could
1733 // turn that into an assertion.
1734 return ValueTrackerResult();
1735
1736 if (!TII)
1737 // We could handle the REG_SEQUENCE here, but we do not want to
1738 // duplicate the code from the generic TII.
1739 return ValueTrackerResult();
1740
1741 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1742 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1743 return ValueTrackerResult();
1744
1745 // We are looking at:
1746 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1747 // Check if one of the operand defines the subreg we are interested in.
1748 for (auto &RegSeqInput : RegSeqInputRegs) {
1749 if (RegSeqInput.SubIdx == DefSubReg) {
1750 if (RegSeqInput.SubReg)
1751 // Bail if we have to compose sub registers.
1752 return ValueTrackerResult();
1753
1754 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1755 }
1756 }
1757
1758 // If the subreg we are tracking is super-defined by another subreg,
1759 // we could follow this value. However, this would require to compose
1760 // the subreg and we do not do that for now.
1761 return ValueTrackerResult();
1762 }
1763
getNextSourceFromInsertSubreg()1764 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1765 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1766 "Invalid definition");
1767
1768 if (Def->getOperand(DefIdx).getSubReg())
1769 // If we are composing subreg, bail out.
1770 // Same remark as getNextSourceFromRegSequence.
1771 // I.e., this may be turned into an assert.
1772 return ValueTrackerResult();
1773
1774 if (!TII)
1775 // We could handle the REG_SEQUENCE here, but we do not want to
1776 // duplicate the code from the generic TII.
1777 return ValueTrackerResult();
1778
1779 TargetInstrInfo::RegSubRegPair BaseReg;
1780 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
1781 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1782 return ValueTrackerResult();
1783
1784 // We are looking at:
1785 // Def = INSERT_SUBREG v0, v1, sub1
1786 // There are two cases:
1787 // 1. DefSubReg == sub1, get v1.
1788 // 2. DefSubReg != sub1, the value may be available through v0.
1789
1790 // #1 Check if the inserted register matches the required sub index.
1791 if (InsertedReg.SubIdx == DefSubReg) {
1792 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1793 }
1794 // #2 Otherwise, if the sub register we are looking for is not partial
1795 // defined by the inserted element, we can look through the main
1796 // register (v0).
1797 const MachineOperand &MODef = Def->getOperand(DefIdx);
1798 // If the result register (Def) and the base register (v0) do not
1799 // have the same register class or if we have to compose
1800 // subregisters, bail out.
1801 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1802 BaseReg.SubReg)
1803 return ValueTrackerResult();
1804
1805 // Get the TRI and check if the inserted sub-register overlaps with the
1806 // sub-register we are tracking.
1807 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1808 if (!TRI ||
1809 (TRI->getSubRegIndexLaneMask(DefSubReg) &
1810 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
1811 return ValueTrackerResult();
1812 // At this point, the value is available in v0 via the same subreg
1813 // we used for Def.
1814 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1815 }
1816
getNextSourceFromExtractSubreg()1817 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1818 assert((Def->isExtractSubreg() ||
1819 Def->isExtractSubregLike()) && "Invalid definition");
1820 // We are looking at:
1821 // Def = EXTRACT_SUBREG v0, sub0
1822
1823 // Bail if we have to compose sub registers.
1824 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1825 if (DefSubReg)
1826 return ValueTrackerResult();
1827
1828 if (!TII)
1829 // We could handle the EXTRACT_SUBREG here, but we do not want to
1830 // duplicate the code from the generic TII.
1831 return ValueTrackerResult();
1832
1833 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
1834 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1835 return ValueTrackerResult();
1836
1837 // Bail if we have to compose sub registers.
1838 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1839 if (ExtractSubregInputReg.SubReg)
1840 return ValueTrackerResult();
1841 // Otherwise, the value is available in the v0.sub0.
1842 return ValueTrackerResult(ExtractSubregInputReg.Reg,
1843 ExtractSubregInputReg.SubIdx);
1844 }
1845
getNextSourceFromSubregToReg()1846 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
1847 assert(Def->isSubregToReg() && "Invalid definition");
1848 // We are looking at:
1849 // Def = SUBREG_TO_REG Imm, v0, sub0
1850
1851 // Bail if we have to compose sub registers.
1852 // If DefSubReg != sub0, we would have to check that all the bits
1853 // we track are included in sub0 and if yes, we would have to
1854 // determine the right subreg in v0.
1855 if (DefSubReg != Def->getOperand(3).getImm())
1856 return ValueTrackerResult();
1857 // Bail if we have to compose sub registers.
1858 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
1859 if (Def->getOperand(2).getSubReg())
1860 return ValueTrackerResult();
1861
1862 return ValueTrackerResult(Def->getOperand(2).getReg(),
1863 Def->getOperand(3).getImm());
1864 }
1865
1866 /// \brief Explore each PHI incoming operand and return its sources
getNextSourceFromPHI()1867 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
1868 assert(Def->isPHI() && "Invalid definition");
1869 ValueTrackerResult Res;
1870
1871 // If we look for a different subreg, bail as we do not support composing
1872 // subregs yet.
1873 if (Def->getOperand(0).getSubReg() != DefSubReg)
1874 return ValueTrackerResult();
1875
1876 // Return all register sources for PHI instructions.
1877 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
1878 auto &MO = Def->getOperand(i);
1879 assert(MO.isReg() && "Invalid PHI instruction");
1880 Res.addSource(MO.getReg(), MO.getSubReg());
1881 }
1882
1883 return Res;
1884 }
1885
getNextSourceImpl()1886 ValueTrackerResult ValueTracker::getNextSourceImpl() {
1887 assert(Def && "This method needs a valid definition");
1888
1889 assert(((Def->getOperand(DefIdx).isDef() &&
1890 (DefIdx < Def->getDesc().getNumDefs() ||
1891 Def->getDesc().isVariadic())) ||
1892 Def->getOperand(DefIdx).isImplicit()) &&
1893 "Invalid DefIdx");
1894 if (Def->isCopy())
1895 return getNextSourceFromCopy();
1896 if (Def->isBitcast())
1897 return getNextSourceFromBitcast();
1898 // All the remaining cases involve "complex" instructions.
1899 // Bail if we did not ask for the advanced tracking.
1900 if (!UseAdvancedTracking)
1901 return ValueTrackerResult();
1902 if (Def->isRegSequence() || Def->isRegSequenceLike())
1903 return getNextSourceFromRegSequence();
1904 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
1905 return getNextSourceFromInsertSubreg();
1906 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
1907 return getNextSourceFromExtractSubreg();
1908 if (Def->isSubregToReg())
1909 return getNextSourceFromSubregToReg();
1910 if (Def->isPHI())
1911 return getNextSourceFromPHI();
1912 return ValueTrackerResult();
1913 }
1914
getNextSource()1915 ValueTrackerResult ValueTracker::getNextSource() {
1916 // If we reach a point where we cannot move up in the use-def chain,
1917 // there is nothing we can get.
1918 if (!Def)
1919 return ValueTrackerResult();
1920
1921 ValueTrackerResult Res = getNextSourceImpl();
1922 if (Res.isValid()) {
1923 // Update definition, definition index, and subregister for the
1924 // next call of getNextSource.
1925 // Update the current register.
1926 bool OneRegSrc = Res.getNumSources() == 1;
1927 if (OneRegSrc)
1928 Reg = Res.getSrcReg(0);
1929 // Update the result before moving up in the use-def chain
1930 // with the instruction containing the last found sources.
1931 Res.setInst(Def);
1932
1933 // If we can still move up in the use-def chain, move to the next
1934 // definition.
1935 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
1936 Def = MRI.getVRegDef(Reg);
1937 DefIdx = MRI.def_begin(Reg).getOperandNo();
1938 DefSubReg = Res.getSrcSubReg(0);
1939 return Res;
1940 }
1941 }
1942 // If we end up here, this means we will not be able to find another source
1943 // for the next iteration. Make sure any new call to getNextSource bails out
1944 // early by cutting the use-def chain.
1945 Def = nullptr;
1946 return Res;
1947 }
1948