xref: /aosp_15_r20/external/llvm-libc/test/src/math/LdExpTest.h (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
10 #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
11 
12 #include "src/__support/CPP/limits.h" // INT_MAX
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/NormalFloat.h"
15 #include "test/UnitTest/FEnvSafeTest.h"
16 #include "test/UnitTest/FPMatcher.h"
17 #include "test/UnitTest/Test.h"
18 
19 #include "hdr/math_macros.h"
20 #include <stdint.h>
21 
22 using LIBC_NAMESPACE::Sign;
23 
24 template <typename T>
25 class LdExpTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest {
26   using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>;
27   using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat<T>;
28   using StorageType = typename FPBits::StorageType;
29 
30   const T inf = FPBits::inf(Sign::POS).get_val();
31   const T neg_inf = FPBits::inf(Sign::NEG).get_val();
32   const T zero = FPBits::zero(Sign::POS).get_val();
33   const T neg_zero = FPBits::zero(Sign::NEG).get_val();
34   const T nan = FPBits::quiet_nan().get_val();
35 
36   // A normalized mantissa to be used with tests.
37   static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x1234;
38 
39 public:
40   typedef T (*LdExpFunc)(T, int);
41 
testSpecialNumbers(LdExpFunc func)42   void testSpecialNumbers(LdExpFunc func) {
43     int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX};
44     for (int exp : exp_array) {
45       ASSERT_FP_EQ(zero, func(zero, exp));
46       ASSERT_FP_EQ(neg_zero, func(neg_zero, exp));
47       ASSERT_FP_EQ(inf, func(inf, exp));
48       ASSERT_FP_EQ(neg_inf, func(neg_inf, exp));
49       ASSERT_FP_EQ(nan, func(nan, exp));
50     }
51   }
52 
testPowersOfTwo(LdExpFunc func)53   void testPowersOfTwo(LdExpFunc func) {
54     int32_t exp_array[5] = {1, 2, 3, 4, 5};
55     int32_t val_array[6] = {1, 2, 4, 8, 16, 32};
56     for (int32_t exp : exp_array) {
57       for (int32_t val : val_array) {
58         ASSERT_FP_EQ(T(val << exp), func(T(val), exp));
59         ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp));
60       }
61     }
62   }
63 
testOverflow(LdExpFunc func)64   void testOverflow(LdExpFunc func) {
65     NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10,
66                   NormalFloat::ONE + 0xF00BA);
67     for (int32_t exp = 10; exp < 100; ++exp) {
68       ASSERT_FP_EQ(inf, func(T(x), exp));
69       ASSERT_FP_EQ(neg_inf, func(-T(x), exp));
70     }
71   }
72 
testUnderflowToZeroOnNormal(LdExpFunc func)73   void testUnderflowToZeroOnNormal(LdExpFunc func) {
74     // In this test, we pass a normal nubmer to func and expect zero
75     // to be returned due to underflow.
76     int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN;
77     int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
78                            base_exponent + 3, base_exponent + 2,
79                            base_exponent + 1};
80     T x = NormalFloat(Sign::POS, 0, MANTISSA);
81     for (int32_t exp : exp_array) {
82       ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
83     }
84   }
85 
testUnderflowToZeroOnSubnormal(LdExpFunc func)86   void testUnderflowToZeroOnSubnormal(LdExpFunc func) {
87     // In this test, we pass a normal nubmer to func and expect zero
88     // to be returned due to underflow.
89     int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN;
90     int32_t exp_array[] = {base_exponent + 5, base_exponent + 4,
91                            base_exponent + 3, base_exponent + 2,
92                            base_exponent + 1};
93     T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA);
94     for (int32_t exp : exp_array) {
95       ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero);
96     }
97   }
98 
testNormalOperation(LdExpFunc func)99   void testNormalOperation(LdExpFunc func) {
100     T val_array[] = {// Normal numbers
101                      NormalFloat(Sign::POS, 100, MANTISSA),
102                      NormalFloat(Sign::POS, -100, MANTISSA),
103                      NormalFloat(Sign::NEG, 100, MANTISSA),
104                      NormalFloat(Sign::NEG, -100, MANTISSA),
105                      // Subnormal numbers
106                      NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA),
107                      NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)};
108     for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) {
109       for (T x : val_array) {
110         // We compare the result of ldexp with the result
111         // of the native multiplication/division instruction.
112 
113         // We need to use a NormalFloat here (instead of 1 << exp), because
114         // there are 32 bit systems that don't support 128bit long ints but
115         // support long doubles. This test can do 1 << 64, which would fail
116         // in these systems.
117         NormalFloat two_to_exp = NormalFloat(static_cast<T>(1.L));
118         two_to_exp = two_to_exp.mul2(exp);
119 
120         ASSERT_FP_EQ(func(x, exp), x * two_to_exp);
121         ASSERT_FP_EQ(func(x, -exp), x / two_to_exp);
122       }
123     }
124 
125     // Normal which trigger mantissa overflow.
126     T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1,
127                       StorageType(2) * NormalFloat::ONE - StorageType(1));
128     ASSERT_FP_EQ(func(x, -1), x / 2);
129     ASSERT_FP_EQ(func(-x, -1), -x / 2);
130 
131     // Start with a normal number high exponent but pass a very low number for
132     // exp. The result should be a subnormal number.
133     x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE);
134     int exp = -FPBits::MAX_BIASED_EXPONENT - 5;
135     T result = func(x, exp);
136     FPBits result_bits(result);
137     ASSERT_FALSE(result_bits.is_zero());
138     // Verify that the result is indeed subnormal.
139     ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0));
140     // But if the exp is so less that normalization leads to zero, then
141     // the result should be zero.
142     result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5);
143     ASSERT_TRUE(FPBits(result).is_zero());
144 
145     // Start with a subnormal number but pass a very high number for exponent.
146     // The result should not be infinity.
147     x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10);
148     exp = FPBits::MAX_BIASED_EXPONENT + 5;
149     ASSERT_FALSE(FPBits(func(x, exp)).is_inf());
150     // But if the exp is large enough to oversome than the normalization shift,
151     // then it should result in infinity.
152     exp = FPBits::MAX_BIASED_EXPONENT + 15;
153     ASSERT_FP_EQ(func(x, exp), inf);
154   }
155 };
156 
157 #define LIST_LDEXP_TESTS(T, func)                                              \
158   using LlvmLibcLdExpTest = LdExpTestTemplate<T>;                              \
159   TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); }     \
160   TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); }           \
161   TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); }                 \
162   TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) {                         \
163     testUnderflowToZeroOnNormal(&func);                                        \
164   }                                                                            \
165   TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) {                      \
166     testUnderflowToZeroOnSubnormal(&func);                                     \
167   }                                                                            \
168   TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); }
169 
170 #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H
171