xref: /aosp_15_r20/external/llvm-libc/src/math/generic/sinpif.cpp (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Single-precision sinpif function ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/sinpif.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/PolyEval.h"
14 #include "src/__support/FPUtil/multiply_add.h"
15 #include "src/__support/common.h"
16 #include "src/__support/macros/config.h"
17 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
18 
19 namespace LIBC_NAMESPACE_DECL {
20 
21 LLVM_LIBC_FUNCTION(float, sinpif, (float x)) {
22   using FPBits = typename fputil::FPBits<float>;
23   FPBits xbits(x);
24 
25   uint32_t x_u = xbits.uintval();
26   uint32_t x_abs = x_u & 0x7fff'ffffU;
27   double xd = static_cast<double>(x);
28 
29   // Range reduction:
30   // For |x| > 1/32, we perform range reduction as follows:
31   // Find k and y such that:
32   //   x = (k + y) * 1/32
33   //   k is an integer
34   //   |y| < 0.5
35   //
36   // This is done by performing:
37   //   k = round(x * 32)
38   //   y = x * 32 - k
39   //
40   // Once k and y are computed, we then deduce the answer by the sine of sum
41   // formula:
42   //   sin(x * pi) = sin((k + y)*pi/32)
43   //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
44   // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed
45   // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
46   // computed using degree-7 and degree-6 minimax polynomials generated by
47   // Sollya respectively.
48 
49   // |x| <= 1/16
50   if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) {
51 
52     if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) {
53       if (LIBC_UNLIKELY(x_abs == 0U)) {
54         // For signed zeros.
55         return x;
56       }
57 
58       // For very small values we can approximate sinpi(x) with x * pi
59       // An exhaustive test shows that this is accurate for |x| < 9.546391 ×
60       // 10-8
61       double xdpi = xd * 0x1.921fb54442d18p1;
62       return static_cast<float>(xdpi);
63     }
64 
65     // |x| < 1/16.
66     double xsq = xd * xd;
67 
68     // Degree-9 polynomial approximation:
69     //   sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9
70     //          = x (1 + a_3 x^2 + ... + a_9 x^8)
71     //          = x * P(x^2)
72     // generated by Sollya with the following commands:
73     // > display = hexadecimal;
74     // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]);
75     double result = fputil::polyeval(
76         xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1,
77         -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4);
78     return static_cast<float>(xd * result);
79   }
80 
81   // Numbers greater or equal to 2^23 are always integers or NaN
82   if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) {
83 
84     // check for NaN values
85     if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
86       if (x_abs == 0x7f80'0000U) {
87         fputil::set_errno_if_required(EDOM);
88         fputil::raise_except_if_required(FE_INVALID);
89       }
90 
91       return x + FPBits::quiet_nan().get_val();
92     }
93 
94     return FPBits::zero(xbits.sign()).get_val();
95   }
96 
97   // Combine the results with the sine of sum formula:
98   //   sin(x * pi) = sin((k + y)*pi/32)
99   //          = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
100   //          = sin_y * cos_k + (1 + cosm1_y) * sin_k
101   //          = sin_y * cos_k + (cosm1_y * sin_k + sin_k)
102   double sin_k, cos_k, sin_y, cosm1_y;
103   sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y);
104 
105   if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0))
106     return FPBits::zero(xbits.sign()).get_val();
107 
108   return static_cast<float>(fputil::multiply_add(
109       sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k)));
110 }
111 
112 } // namespace LIBC_NAMESPACE_DECL
113