//===-- Single-precision sinpif function ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/sinpif.h" #include "sincosf_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, sinpif, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_abs = x_u & 0x7fff'ffffU; double xd = static_cast(x); // Range reduction: // For |x| > 1/32, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * 1/32 // k is an integer // |y| < 0.5 // // This is done by performing: // k = round(x * 32) // y = x * 32 - k // // Once k and y are computed, we then deduce the answer by the sine of sum // formula: // sin(x * pi) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are // computed using degree-7 and degree-6 minimax polynomials generated by // Sollya respectively. // |x| <= 1/16 if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U)) { if (LIBC_UNLIKELY(x_abs < 0x33CD'01D7U)) { if (LIBC_UNLIKELY(x_abs == 0U)) { // For signed zeros. return x; } // For very small values we can approximate sinpi(x) with x * pi // An exhaustive test shows that this is accurate for |x| < 9.546391 × // 10-8 double xdpi = xd * 0x1.921fb54442d18p1; return static_cast(xdpi); } // |x| < 1/16. double xsq = xd * xd; // Degree-9 polynomial approximation: // sinpi(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 // = x (1 + a_3 x^2 + ... + a_9 x^8) // = x * P(x^2) // generated by Sollya with the following commands: // > display = hexadecimal; // > Q = fpminimax(sin(pi * x)/x, [|0, 2, 4, 6, 8|], [|D...|], [0, 1/16]); double result = fputil::polyeval( xsq, 0x1.921fb54442d18p1, -0x1.4abbce625bbf2p2, 0x1.466bc675e116ap1, -0x1.32d2c0b62d41cp-1, 0x1.501ec4497cb7dp-4); return static_cast(xd * result); } // Numbers greater or equal to 2^23 are always integers or NaN if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { // check for NaN values if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { if (x_abs == 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } return FPBits::zero(xbits.sign()).get_val(); } // Combine the results with the sine of sum formula: // sin(x * pi) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // = sin_y * cos_k + (1 + cosm1_y) * sin_k // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) double sin_k, cos_k, sin_y, cosm1_y; sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); if (LIBC_UNLIKELY(sin_y == 0 && sin_k == 0)) return FPBits::zero(xbits.sign()).get_val(); return static_cast(fputil::multiply_add( sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); } } // namespace LIBC_NAMESPACE_DECL