xref: /aosp_15_r20/external/llvm-libc/src/__support/fixed_point/sqrt.h (revision 71db0c75aadcf003ffe3238005f61d7618a3fead)
1 //===-- Calculate square root of fixed point numbers. -----*- C++ -*-=========//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H
10 #define LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H
11 
12 #include "include/llvm-libc-macros/stdfix-macros.h"
13 #include "src/__support/CPP/bit.h"
14 #include "src/__support/CPP/limits.h" // CHAR_BIT
15 #include "src/__support/CPP/type_traits.h"
16 #include "src/__support/macros/attributes.h"   // LIBC_INLINE
17 #include "src/__support/macros/config.h"
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19 
20 #include "fx_rep.h"
21 
22 #ifdef LIBC_COMPILER_HAS_FIXED_POINT
23 
24 namespace LIBC_NAMESPACE_DECL {
25 namespace fixed_point {
26 
27 namespace internal {
28 
29 template <typename T> struct SqrtConfig;
30 
31 template <> struct SqrtConfig<unsigned short fract> {
32   using Type = unsigned short fract;
33   static constexpr int EXTRA_STEPS = 0;
34 
35   // Linear approximation for the initial values, with errors bounded by:
36   //   max(1.5 * 2^-11, eps)
37   // Generated with Sollya:
38   // > for i from 4 to 15 do {
39   //     P = fpminimax(sqrt(x), 1, [|8, 8|], [i * 2^-4, (i + 1)*2^-4],
40   //                   fixed, absolute);
41   //     print("{", coeff(P, 1), "uhr,", coeff(P, 0), "uhr},");
42   //   };
43   static constexpr Type FIRST_APPROX[12][2] = {
44       {0x1.e8p-1uhr, 0x1.0cp-2uhr}, {0x1.bap-1uhr, 0x1.28p-2uhr},
45       {0x1.94p-1uhr, 0x1.44p-2uhr}, {0x1.74p-1uhr, 0x1.6p-2uhr},
46       {0x1.6p-1uhr, 0x1.74p-2uhr},  {0x1.4ep-1uhr, 0x1.88p-2uhr},
47       {0x1.3ep-1uhr, 0x1.9cp-2uhr}, {0x1.32p-1uhr, 0x1.acp-2uhr},
48       {0x1.22p-1uhr, 0x1.c4p-2uhr}, {0x1.18p-1uhr, 0x1.d4p-2uhr},
49       {0x1.08p-1uhr, 0x1.fp-2uhr},  {0x1.04p-1uhr, 0x1.f8p-2uhr},
50   };
51 };
52 
53 template <> struct SqrtConfig<unsigned fract> {
54   using Type = unsigned fract;
55   static constexpr int EXTRA_STEPS = 1;
56 
57   // Linear approximation for the initial values, with errors bounded by:
58   //   max(1.5 * 2^-11, eps)
59   // Generated with Sollya:
60   // > for i from 4 to 14 do {
61   //     P = fpminimax(sqrt(x), 1, [|16, 16|], [i * 2^-4, (i + 1)*2^-4],
62   //                   fixed, absolute);
63   //     print("{", coeff(P, 1), "ur,", coeff(P, 0), "ur},");
64   //   };
65   // For the last interval [15/16, 1), we choose the linear function Q such that
66   //   Q(1) = 1 and Q(15/16) = P(15/16),
67   // where P is the polynomial generated by Sollya above for [14/16, 15/16].
68   // This is to prevent overflow in the last interval [15/16, 1).
69   static constexpr Type FIRST_APPROX[12][2] = {
70       {0x1.e378p-1ur, 0x1.0ebp-2ur},  {0x1.b512p-1ur, 0x1.2b94p-2ur},
71       {0x1.91fp-1ur, 0x1.45dcp-2ur},  {0x1.7622p-1ur, 0x1.5e24p-2ur},
72       {0x1.5f5ap-1ur, 0x1.74e4p-2ur}, {0x1.4c58p-1ur, 0x1.8a4p-2ur},
73       {0x1.3c1ep-1ur, 0x1.9e84p-2ur}, {0x1.2e0cp-1ur, 0x1.b1d8p-2ur},
74       {0x1.21aap-1ur, 0x1.c468p-2ur}, {0x1.16bap-1ur, 0x1.d62cp-2ur},
75       {0x1.0cfp-1ur, 0x1.e74cp-2ur},  {0x1.039p-1ur, 0x1.f8ep-2ur},
76   };
77 };
78 
79 template <> struct SqrtConfig<unsigned long fract> {
80   using Type = unsigned long fract;
81   static constexpr int EXTRA_STEPS = 2;
82 
83   // Linear approximation for the initial values, with errors bounded by:
84   //   max(1.5 * 2^-11, eps)
85   // Generated with Sollya:
86   // > for i from 4 to 14 do {
87   //     P = fpminimax(sqrt(x), 1, [|32, 32|], [i * 2^-4, (i + 1)*2^-4],
88   //                   fixed, absolute);
89   //     print("{", coeff(P, 1), "ulr,", coeff(P, 0), "ulr},");
90   //   };
91   // For the last interval [15/16, 1), we choose the linear function Q such that
92   //   Q(1) = 1 and Q(15/16) = P(15/16),
93   // where P is the polynomial generated by Sollya above for [14/16, 15/16].
94   // This is to prevent overflow in the last interval [15/16, 1).
95   static constexpr Type FIRST_APPROX[12][2] = {
96       {0x1.e3779b98p-1ulr, 0x1.0eaff788p-2ulr},
97       {0x1.b5167872p-1ulr, 0x1.2b908ad4p-2ulr},
98       {0x1.91f195cap-1ulr, 0x1.45da800cp-2ulr},
99       {0x1.761ebcb4p-1ulr, 0x1.5e27004cp-2ulr},
100       {0x1.5f619986p-1ulr, 0x1.74db933cp-2ulr},
101       {0x1.4c583adep-1ulr, 0x1.8a3fbfccp-2ulr},
102       {0x1.3c1a591cp-1ulr, 0x1.9e88373cp-2ulr},
103       {0x1.2e08545ap-1ulr, 0x1.b1dd2534p-2ulr},
104       {0x1.21b05c0ap-1ulr, 0x1.c45e023p-2ulr},
105       {0x1.16becd02p-1ulr, 0x1.d624031p-2ulr},
106       {0x1.0cf49fep-1ulr, 0x1.e743b844p-2ulr},
107       {0x1.038cdfcp-1ulr, 0x1.f8e6408p-2ulr},
108   };
109 };
110 
111 template <>
112 struct SqrtConfig<unsigned short accum> : SqrtConfig<unsigned fract> {};
113 
114 template <>
115 struct SqrtConfig<unsigned accum> : SqrtConfig<unsigned long fract> {};
116 
117 // Integer square root
118 template <> struct SqrtConfig<unsigned short> {
119   using OutType = unsigned short accum;
120   using FracType = unsigned fract;
121   // For fast-but-less-accurate version
122   using FastFracType = unsigned short fract;
123   using HalfType = unsigned char;
124 };
125 
126 template <> struct SqrtConfig<unsigned int> {
127   using OutType = unsigned accum;
128   using FracType = unsigned long fract;
129   // For fast-but-less-accurate version
130   using FastFracType = unsigned fract;
131   using HalfType = unsigned short;
132 };
133 
134 // TODO: unsigned long accum type is 64-bit, and will need 64-bit fract type.
135 // Probably we will use DyadicFloat<64> for intermediate computations instead.
136 
137 } // namespace internal
138 
139 // Core computation for sqrt with normalized inputs (0.25 <= x < 1).
140 template <typename Config>
141 LIBC_INLINE constexpr typename Config::Type
142 sqrt_core(typename Config::Type x_frac) {
143   using FracType = typename Config::Type;
144   using FXRep = FXRep<FracType>;
145   using StorageType = typename FXRep::StorageType;
146   // Exact case:
147   if (x_frac == FXRep::ONE_FOURTH())
148     return FXRep::ONE_HALF();
149 
150   // Use use Newton method to approximate sqrt(a):
151   //   x_{n + 1} = 1/2 (x_n + a / x_n)
152   // For the initial values, we choose x_0
153 
154   // Use the leading 4 bits to do look up for sqrt(x).
155   // After normalization, 0.25 <= x_frac < 1, so the leading 4 bits of x_frac
156   // are between 0b0100 and 0b1111.  Hence the lookup table only needs 12
157   // entries, and we can get the index by subtracting the leading 4 bits of
158   // x_frac by 4 = 0b0100.
159   StorageType x_bit = cpp::bit_cast<StorageType>(x_frac);
160   int index = (static_cast<int>(x_bit >> (FXRep::TOTAL_LEN - 4))) - 4;
161   FracType a = Config::FIRST_APPROX[index][0];
162   FracType b = Config::FIRST_APPROX[index][1];
163 
164   // Initial approximation step.
165   // Estimated error bounds: | r - sqrt(x_frac) | < max(1.5 * 2^-11, eps).
166   FracType r = a * x_frac + b;
167 
168   // Further Newton-method iterations for square-root:
169   //   x_{n + 1} = 0.5 * (x_n + a / x_n)
170   // We distribute and do the multiplication by 0.5 first to avoid overflow.
171   // TODO: Investigate the performance and accuracy of using division-free
172   // iterations from:
173   //   Blanchard, J. D. and Chamberland, M., "Newton's Method Without Division",
174   //   The American Mathematical Monthly (2023).
175   //   https://chamberland.math.grinnell.edu/papers/newton.pdf
176   for (int i = 0; i < Config::EXTRA_STEPS; ++i)
177     r = (r >> 1) + (x_frac >> 1) / r;
178 
179   return r;
180 }
181 
182 template <typename T>
183 LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_fixed_point_v<T>, T> sqrt(T x) {
184   using BitType = typename FXRep<T>::StorageType;
185   BitType x_bit = cpp::bit_cast<BitType>(x);
186 
187   if (LIBC_UNLIKELY(x_bit == 0))
188     return FXRep<T>::ZERO();
189 
190   int leading_zeros = cpp::countl_zero(x_bit);
191   constexpr int STORAGE_LENGTH = sizeof(BitType) * CHAR_BIT;
192   constexpr int EXP_ADJUSTMENT = STORAGE_LENGTH - FXRep<T>::FRACTION_LEN - 1;
193   // x_exp is the real exponent of the leading bit of x.
194   int x_exp = EXP_ADJUSTMENT - leading_zeros;
195   int shift = EXP_ADJUSTMENT - 1 - (x_exp & (~1));
196   // Normalize.
197   x_bit <<= shift;
198   using FracType = typename internal::SqrtConfig<T>::Type;
199   FracType x_frac = cpp::bit_cast<FracType>(x_bit);
200 
201   // Compute sqrt(x_frac) using Newton-method.
202   FracType r = sqrt_core<internal::SqrtConfig<T>>(x_frac);
203 
204   // Re-scaling
205   r >>= EXP_ADJUSTMENT - (x_exp >> 1);
206 
207   // Return result.
208   return cpp::bit_cast<T>(r);
209 }
210 
211 // Integer square root - Accurate version:
212 // Absolute errors < 2^(-fraction length).
213 template <typename T>
214 LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType isqrt(T x) {
215   using OutType = typename internal::SqrtConfig<T>::OutType;
216   using FracType = typename internal::SqrtConfig<T>::FracType;
217 
218   if (x == 0)
219     return FXRep<OutType>::ZERO();
220 
221   // Normalize the leading bits to the first two bits.
222   // Shift and then Bit cast x to x_frac gives us:
223   //   x = 2^(FRACTION_LEN + 1 - shift) * x_frac;
224   int leading_zeros = cpp::countl_zero(x);
225   int shift = ((leading_zeros >> 1) << 1);
226   x <<= shift;
227   // Convert to frac type and compute square root.
228   FracType x_frac = cpp::bit_cast<FracType>(x);
229   FracType r = sqrt_core<internal::SqrtConfig<FracType>>(x_frac);
230   // To rescale back to the OutType (Accum)
231   r >>= (shift >> 1);
232 
233   return cpp::bit_cast<OutType>(r);
234 }
235 
236 // Integer square root - Fast but less accurate version:
237 // Relative errors < 2^(-fraction length).
238 template <typename T>
239 LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType
240 isqrt_fast(T x) {
241   using OutType = typename internal::SqrtConfig<T>::OutType;
242   using FracType = typename internal::SqrtConfig<T>::FastFracType;
243   using StorageType = typename FXRep<FracType>::StorageType;
244 
245   if (x == 0)
246     return FXRep<OutType>::ZERO();
247 
248   // Normalize the leading bits to the first two bits.
249   // Shift and then Bit cast x to x_frac gives us:
250   //   x = 2^(FRACTION_LEN + 1 - shift) * x_frac;
251   int leading_zeros = cpp::countl_zero(x);
252   int shift = (leading_zeros & (~1));
253   x <<= shift;
254   // Convert to frac type and compute square root.
255   FracType x_frac = cpp::bit_cast<FracType>(
256       static_cast<StorageType>(x >> FXRep<FracType>::FRACTION_LEN));
257   OutType r =
258       static_cast<OutType>(sqrt_core<internal::SqrtConfig<FracType>>(x_frac));
259   // To rescale back to the OutType (Accum)
260   r <<= (FXRep<OutType>::INTEGRAL_LEN - (shift >> 1));
261   return cpp::bit_cast<OutType>(r);
262 }
263 
264 } // namespace fixed_point
265 } // namespace LIBC_NAMESPACE_DECL
266 
267 #endif // LIBC_COMPILER_HAS_FIXED_POINT
268 
269 #endif // LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H
270