1 //===-- Calculate square root of fixed point numbers. -----*- C++ -*-=========// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H 10 #define LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H 11 12 #include "include/llvm-libc-macros/stdfix-macros.h" 13 #include "src/__support/CPP/bit.h" 14 #include "src/__support/CPP/limits.h" // CHAR_BIT 15 #include "src/__support/CPP/type_traits.h" 16 #include "src/__support/macros/attributes.h" // LIBC_INLINE 17 #include "src/__support/macros/config.h" 18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 19 20 #include "fx_rep.h" 21 22 #ifdef LIBC_COMPILER_HAS_FIXED_POINT 23 24 namespace LIBC_NAMESPACE_DECL { 25 namespace fixed_point { 26 27 namespace internal { 28 29 template <typename T> struct SqrtConfig; 30 31 template <> struct SqrtConfig<unsigned short fract> { 32 using Type = unsigned short fract; 33 static constexpr int EXTRA_STEPS = 0; 34 35 // Linear approximation for the initial values, with errors bounded by: 36 // max(1.5 * 2^-11, eps) 37 // Generated with Sollya: 38 // > for i from 4 to 15 do { 39 // P = fpminimax(sqrt(x), 1, [|8, 8|], [i * 2^-4, (i + 1)*2^-4], 40 // fixed, absolute); 41 // print("{", coeff(P, 1), "uhr,", coeff(P, 0), "uhr},"); 42 // }; 43 static constexpr Type FIRST_APPROX[12][2] = { 44 {0x1.e8p-1uhr, 0x1.0cp-2uhr}, {0x1.bap-1uhr, 0x1.28p-2uhr}, 45 {0x1.94p-1uhr, 0x1.44p-2uhr}, {0x1.74p-1uhr, 0x1.6p-2uhr}, 46 {0x1.6p-1uhr, 0x1.74p-2uhr}, {0x1.4ep-1uhr, 0x1.88p-2uhr}, 47 {0x1.3ep-1uhr, 0x1.9cp-2uhr}, {0x1.32p-1uhr, 0x1.acp-2uhr}, 48 {0x1.22p-1uhr, 0x1.c4p-2uhr}, {0x1.18p-1uhr, 0x1.d4p-2uhr}, 49 {0x1.08p-1uhr, 0x1.fp-2uhr}, {0x1.04p-1uhr, 0x1.f8p-2uhr}, 50 }; 51 }; 52 53 template <> struct SqrtConfig<unsigned fract> { 54 using Type = unsigned fract; 55 static constexpr int EXTRA_STEPS = 1; 56 57 // Linear approximation for the initial values, with errors bounded by: 58 // max(1.5 * 2^-11, eps) 59 // Generated with Sollya: 60 // > for i from 4 to 14 do { 61 // P = fpminimax(sqrt(x), 1, [|16, 16|], [i * 2^-4, (i + 1)*2^-4], 62 // fixed, absolute); 63 // print("{", coeff(P, 1), "ur,", coeff(P, 0), "ur},"); 64 // }; 65 // For the last interval [15/16, 1), we choose the linear function Q such that 66 // Q(1) = 1 and Q(15/16) = P(15/16), 67 // where P is the polynomial generated by Sollya above for [14/16, 15/16]. 68 // This is to prevent overflow in the last interval [15/16, 1). 69 static constexpr Type FIRST_APPROX[12][2] = { 70 {0x1.e378p-1ur, 0x1.0ebp-2ur}, {0x1.b512p-1ur, 0x1.2b94p-2ur}, 71 {0x1.91fp-1ur, 0x1.45dcp-2ur}, {0x1.7622p-1ur, 0x1.5e24p-2ur}, 72 {0x1.5f5ap-1ur, 0x1.74e4p-2ur}, {0x1.4c58p-1ur, 0x1.8a4p-2ur}, 73 {0x1.3c1ep-1ur, 0x1.9e84p-2ur}, {0x1.2e0cp-1ur, 0x1.b1d8p-2ur}, 74 {0x1.21aap-1ur, 0x1.c468p-2ur}, {0x1.16bap-1ur, 0x1.d62cp-2ur}, 75 {0x1.0cfp-1ur, 0x1.e74cp-2ur}, {0x1.039p-1ur, 0x1.f8ep-2ur}, 76 }; 77 }; 78 79 template <> struct SqrtConfig<unsigned long fract> { 80 using Type = unsigned long fract; 81 static constexpr int EXTRA_STEPS = 2; 82 83 // Linear approximation for the initial values, with errors bounded by: 84 // max(1.5 * 2^-11, eps) 85 // Generated with Sollya: 86 // > for i from 4 to 14 do { 87 // P = fpminimax(sqrt(x), 1, [|32, 32|], [i * 2^-4, (i + 1)*2^-4], 88 // fixed, absolute); 89 // print("{", coeff(P, 1), "ulr,", coeff(P, 0), "ulr},"); 90 // }; 91 // For the last interval [15/16, 1), we choose the linear function Q such that 92 // Q(1) = 1 and Q(15/16) = P(15/16), 93 // where P is the polynomial generated by Sollya above for [14/16, 15/16]. 94 // This is to prevent overflow in the last interval [15/16, 1). 95 static constexpr Type FIRST_APPROX[12][2] = { 96 {0x1.e3779b98p-1ulr, 0x1.0eaff788p-2ulr}, 97 {0x1.b5167872p-1ulr, 0x1.2b908ad4p-2ulr}, 98 {0x1.91f195cap-1ulr, 0x1.45da800cp-2ulr}, 99 {0x1.761ebcb4p-1ulr, 0x1.5e27004cp-2ulr}, 100 {0x1.5f619986p-1ulr, 0x1.74db933cp-2ulr}, 101 {0x1.4c583adep-1ulr, 0x1.8a3fbfccp-2ulr}, 102 {0x1.3c1a591cp-1ulr, 0x1.9e88373cp-2ulr}, 103 {0x1.2e08545ap-1ulr, 0x1.b1dd2534p-2ulr}, 104 {0x1.21b05c0ap-1ulr, 0x1.c45e023p-2ulr}, 105 {0x1.16becd02p-1ulr, 0x1.d624031p-2ulr}, 106 {0x1.0cf49fep-1ulr, 0x1.e743b844p-2ulr}, 107 {0x1.038cdfcp-1ulr, 0x1.f8e6408p-2ulr}, 108 }; 109 }; 110 111 template <> 112 struct SqrtConfig<unsigned short accum> : SqrtConfig<unsigned fract> {}; 113 114 template <> 115 struct SqrtConfig<unsigned accum> : SqrtConfig<unsigned long fract> {}; 116 117 // Integer square root 118 template <> struct SqrtConfig<unsigned short> { 119 using OutType = unsigned short accum; 120 using FracType = unsigned fract; 121 // For fast-but-less-accurate version 122 using FastFracType = unsigned short fract; 123 using HalfType = unsigned char; 124 }; 125 126 template <> struct SqrtConfig<unsigned int> { 127 using OutType = unsigned accum; 128 using FracType = unsigned long fract; 129 // For fast-but-less-accurate version 130 using FastFracType = unsigned fract; 131 using HalfType = unsigned short; 132 }; 133 134 // TODO: unsigned long accum type is 64-bit, and will need 64-bit fract type. 135 // Probably we will use DyadicFloat<64> for intermediate computations instead. 136 137 } // namespace internal 138 139 // Core computation for sqrt with normalized inputs (0.25 <= x < 1). 140 template <typename Config> 141 LIBC_INLINE constexpr typename Config::Type 142 sqrt_core(typename Config::Type x_frac) { 143 using FracType = typename Config::Type; 144 using FXRep = FXRep<FracType>; 145 using StorageType = typename FXRep::StorageType; 146 // Exact case: 147 if (x_frac == FXRep::ONE_FOURTH()) 148 return FXRep::ONE_HALF(); 149 150 // Use use Newton method to approximate sqrt(a): 151 // x_{n + 1} = 1/2 (x_n + a / x_n) 152 // For the initial values, we choose x_0 153 154 // Use the leading 4 bits to do look up for sqrt(x). 155 // After normalization, 0.25 <= x_frac < 1, so the leading 4 bits of x_frac 156 // are between 0b0100 and 0b1111. Hence the lookup table only needs 12 157 // entries, and we can get the index by subtracting the leading 4 bits of 158 // x_frac by 4 = 0b0100. 159 StorageType x_bit = cpp::bit_cast<StorageType>(x_frac); 160 int index = (static_cast<int>(x_bit >> (FXRep::TOTAL_LEN - 4))) - 4; 161 FracType a = Config::FIRST_APPROX[index][0]; 162 FracType b = Config::FIRST_APPROX[index][1]; 163 164 // Initial approximation step. 165 // Estimated error bounds: | r - sqrt(x_frac) | < max(1.5 * 2^-11, eps). 166 FracType r = a * x_frac + b; 167 168 // Further Newton-method iterations for square-root: 169 // x_{n + 1} = 0.5 * (x_n + a / x_n) 170 // We distribute and do the multiplication by 0.5 first to avoid overflow. 171 // TODO: Investigate the performance and accuracy of using division-free 172 // iterations from: 173 // Blanchard, J. D. and Chamberland, M., "Newton's Method Without Division", 174 // The American Mathematical Monthly (2023). 175 // https://chamberland.math.grinnell.edu/papers/newton.pdf 176 for (int i = 0; i < Config::EXTRA_STEPS; ++i) 177 r = (r >> 1) + (x_frac >> 1) / r; 178 179 return r; 180 } 181 182 template <typename T> 183 LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_fixed_point_v<T>, T> sqrt(T x) { 184 using BitType = typename FXRep<T>::StorageType; 185 BitType x_bit = cpp::bit_cast<BitType>(x); 186 187 if (LIBC_UNLIKELY(x_bit == 0)) 188 return FXRep<T>::ZERO(); 189 190 int leading_zeros = cpp::countl_zero(x_bit); 191 constexpr int STORAGE_LENGTH = sizeof(BitType) * CHAR_BIT; 192 constexpr int EXP_ADJUSTMENT = STORAGE_LENGTH - FXRep<T>::FRACTION_LEN - 1; 193 // x_exp is the real exponent of the leading bit of x. 194 int x_exp = EXP_ADJUSTMENT - leading_zeros; 195 int shift = EXP_ADJUSTMENT - 1 - (x_exp & (~1)); 196 // Normalize. 197 x_bit <<= shift; 198 using FracType = typename internal::SqrtConfig<T>::Type; 199 FracType x_frac = cpp::bit_cast<FracType>(x_bit); 200 201 // Compute sqrt(x_frac) using Newton-method. 202 FracType r = sqrt_core<internal::SqrtConfig<T>>(x_frac); 203 204 // Re-scaling 205 r >>= EXP_ADJUSTMENT - (x_exp >> 1); 206 207 // Return result. 208 return cpp::bit_cast<T>(r); 209 } 210 211 // Integer square root - Accurate version: 212 // Absolute errors < 2^(-fraction length). 213 template <typename T> 214 LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType isqrt(T x) { 215 using OutType = typename internal::SqrtConfig<T>::OutType; 216 using FracType = typename internal::SqrtConfig<T>::FracType; 217 218 if (x == 0) 219 return FXRep<OutType>::ZERO(); 220 221 // Normalize the leading bits to the first two bits. 222 // Shift and then Bit cast x to x_frac gives us: 223 // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; 224 int leading_zeros = cpp::countl_zero(x); 225 int shift = ((leading_zeros >> 1) << 1); 226 x <<= shift; 227 // Convert to frac type and compute square root. 228 FracType x_frac = cpp::bit_cast<FracType>(x); 229 FracType r = sqrt_core<internal::SqrtConfig<FracType>>(x_frac); 230 // To rescale back to the OutType (Accum) 231 r >>= (shift >> 1); 232 233 return cpp::bit_cast<OutType>(r); 234 } 235 236 // Integer square root - Fast but less accurate version: 237 // Relative errors < 2^(-fraction length). 238 template <typename T> 239 LIBC_INLINE constexpr typename internal::SqrtConfig<T>::OutType 240 isqrt_fast(T x) { 241 using OutType = typename internal::SqrtConfig<T>::OutType; 242 using FracType = typename internal::SqrtConfig<T>::FastFracType; 243 using StorageType = typename FXRep<FracType>::StorageType; 244 245 if (x == 0) 246 return FXRep<OutType>::ZERO(); 247 248 // Normalize the leading bits to the first two bits. 249 // Shift and then Bit cast x to x_frac gives us: 250 // x = 2^(FRACTION_LEN + 1 - shift) * x_frac; 251 int leading_zeros = cpp::countl_zero(x); 252 int shift = (leading_zeros & (~1)); 253 x <<= shift; 254 // Convert to frac type and compute square root. 255 FracType x_frac = cpp::bit_cast<FracType>( 256 static_cast<StorageType>(x >> FXRep<FracType>::FRACTION_LEN)); 257 OutType r = 258 static_cast<OutType>(sqrt_core<internal::SqrtConfig<FracType>>(x_frac)); 259 // To rescale back to the OutType (Accum) 260 r <<= (FXRep<OutType>::INTEGRAL_LEN - (shift >> 1)); 261 return cpp::bit_cast<OutType>(r); 262 } 263 264 } // namespace fixed_point 265 } // namespace LIBC_NAMESPACE_DECL 266 267 #endif // LIBC_COMPILER_HAS_FIXED_POINT 268 269 #endif // LLVM_LIBC_SRC___SUPPORT_FIXEDPOINT_SQRT_H 270