xref: /aosp_15_r20/external/libxml2/timsort.h (revision 7c5688314b92172186c154356a6374bf7684c3ca)
1 /*
2  * Taken from https://github.com/swenson/sort
3  * Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15
4  * Removed all code unrelated to Timsort and made minor adjustments for
5  * cross-platform compatibility.
6  */
7 
8 /*
9  * The MIT License (MIT)
10  *
11  * Copyright (c) 2010-2017 Christopher Swenson.
12  * Copyright (c) 2012 Vojtech Fried.
13  * Copyright (c) 2012 Google Inc. All Rights Reserved.
14  *
15  * Permission is hereby granted, free of charge, to any person obtaining a
16  * copy of this software and associated documentation files (the "Software"),
17  * to deal in the Software without restriction, including without limitation
18  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
19  * and/or sell copies of the Software, and to permit persons to whom the
20  * Software is furnished to do so, subject to the following conditions:
21  *
22  * The above copyright notice and this permission notice shall be included in
23  * all copies or substantial portions of the Software.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
26  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
27  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
28  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
29  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
30  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
31  * DEALINGS IN THE SOFTWARE.
32  */
33 
34 #include <stdlib.h>
35 #include <stdio.h>
36 #include <string.h>
37 #ifdef HAVE_STDINT_H
38 #include <stdint.h>
39 #elif defined(_WIN32)
40 typedef unsigned __int64 uint64_t;
41 #endif
42 
43 #ifndef SORT_NAME
44 #error "Must declare SORT_NAME"
45 #endif
46 
47 #ifndef SORT_TYPE
48 #error "Must declare SORT_TYPE"
49 #endif
50 
51 #ifndef SORT_CMP
52 #define SORT_CMP(x, y)  ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1))
53 #endif
54 
55 #ifndef TIM_SORT_STACK_SIZE
56 #define TIM_SORT_STACK_SIZE 128
57 #endif
58 
59 #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;}
60 
61 
62 /* Common, type-agnostic functions and constants that we don't want to declare twice. */
63 #ifndef SORT_COMMON_H
64 #define SORT_COMMON_H
65 
66 #ifndef MAX
67 #define MAX(x,y) (((x) > (y) ? (x) : (y)))
68 #endif
69 
70 #ifndef MIN
71 #define MIN(x,y) (((x) < (y) ? (x) : (y)))
72 #endif
73 
74 static int compute_minrun(const uint64_t);
75 
76 #ifndef CLZ
77 #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3))
78 #define CLZ __builtin_clzll
79 #else
80 
81 static int clzll(uint64_t);
82 
83 /* adapted from Hacker's Delight */
clzll(uint64_t x)84 static int clzll(uint64_t x) {
85   int n;
86 
87   if (x == 0) {
88     return 64;
89   }
90 
91   n = 0;
92 
93   if (x <= 0x00000000FFFFFFFFL) {
94     n = n + 32;
95     x = x << 32;
96   }
97 
98   if (x <= 0x0000FFFFFFFFFFFFL) {
99     n = n + 16;
100     x = x << 16;
101   }
102 
103   if (x <= 0x00FFFFFFFFFFFFFFL) {
104     n = n + 8;
105     x = x << 8;
106   }
107 
108   if (x <= 0x0FFFFFFFFFFFFFFFL) {
109     n = n + 4;
110     x = x << 4;
111   }
112 
113   if (x <= 0x3FFFFFFFFFFFFFFFL) {
114     n = n + 2;
115     x = x << 2;
116   }
117 
118   if (x <= 0x7FFFFFFFFFFFFFFFL) {
119     n = n + 1;
120   }
121 
122   return n;
123 }
124 
125 #define CLZ clzll
126 #endif
127 #endif
128 
compute_minrun(const uint64_t size)129 static __inline int compute_minrun(const uint64_t size) {
130   const int top_bit = 64 - CLZ(size);
131   const int shift = MAX(top_bit, 6) - 6;
132   const int minrun = size >> shift;
133   const uint64_t mask = (1ULL << shift) - 1;
134 
135   if (mask & size) {
136     return minrun + 1;
137   }
138 
139   return minrun;
140 }
141 
142 #endif /* SORT_COMMON_H */
143 
144 #define SORT_CONCAT(x, y) x ## _ ## y
145 #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y)
146 #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x)
147 
148 #define BINARY_INSERTION_FIND          SORT_MAKE_STR(binary_insertion_find)
149 #define BINARY_INSERTION_SORT_START    SORT_MAKE_STR(binary_insertion_sort_start)
150 #define BINARY_INSERTION_SORT          SORT_MAKE_STR(binary_insertion_sort)
151 #define REVERSE_ELEMENTS               SORT_MAKE_STR(reverse_elements)
152 #define COUNT_RUN                      SORT_MAKE_STR(count_run)
153 #define CHECK_INVARIANT                SORT_MAKE_STR(check_invariant)
154 #define TIM_SORT                       SORT_MAKE_STR(tim_sort)
155 #define TIM_SORT_RESIZE                SORT_MAKE_STR(tim_sort_resize)
156 #define TIM_SORT_MERGE                 SORT_MAKE_STR(tim_sort_merge)
157 #define TIM_SORT_COLLAPSE              SORT_MAKE_STR(tim_sort_collapse)
158 
159 #ifndef MAX
160 #define MAX(x,y) (((x) > (y) ? (x) : (y)))
161 #endif
162 #ifndef MIN
163 #define MIN(x,y) (((x) < (y) ? (x) : (y)))
164 #endif
165 
166 typedef struct {
167   size_t start;
168   size_t length;
169 } TIM_SORT_RUN_T;
170 
171 
172 XML_HIDDEN
173 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size);
174 XML_HIDDEN
175 void TIM_SORT(SORT_TYPE *dst, const size_t size);
176 
177 
178 /* Function used to do a binary search for binary insertion sort */
BINARY_INSERTION_FIND(SORT_TYPE * dst,const SORT_TYPE x,const size_t size)179 static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x,
180     const size_t size) {
181   size_t l, c, r;
182   SORT_TYPE cx;
183   l = 0;
184   r = size - 1;
185   c = r >> 1;
186 
187   /* check for out of bounds at the beginning. */
188   if (SORT_CMP(x, dst[0]) < 0) {
189     return 0;
190   } else if (SORT_CMP(x, dst[r]) > 0) {
191     return r;
192   }
193 
194   cx = dst[c];
195 
196   while (1) {
197     const int val = SORT_CMP(x, cx);
198 
199     if (val < 0) {
200       if (c - l <= 1) {
201         return c;
202       }
203 
204       r = c;
205     } else { /* allow = for stability. The binary search favors the right. */
206       if (r - c <= 1) {
207         return c + 1;
208       }
209 
210       l = c;
211     }
212 
213     c = l + ((r - l) >> 1);
214     cx = dst[c];
215   }
216 }
217 
218 /* Binary insertion sort, but knowing that the first "start" entries are sorted.  Used in timsort. */
BINARY_INSERTION_SORT_START(SORT_TYPE * dst,const size_t start,const size_t size)219 static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) {
220   size_t i;
221 
222   for (i = start; i < size; i++) {
223     size_t j;
224     SORT_TYPE x;
225     size_t location;
226 
227     /* If this entry is already correct, just move along */
228     if (SORT_CMP(dst[i - 1], dst[i]) <= 0) {
229       continue;
230     }
231 
232     /* Else we need to find the right place, shift everything over, and squeeze in */
233     x = dst[i];
234     location = BINARY_INSERTION_FIND(dst, x, i);
235 
236     for (j = i - 1; j >= location; j--) {
237       dst[j + 1] = dst[j];
238 
239       if (j == 0) { /* check edge case because j is unsigned */
240         break;
241       }
242     }
243 
244     dst[location] = x;
245   }
246 }
247 
248 /* Binary insertion sort */
BINARY_INSERTION_SORT(SORT_TYPE * dst,const size_t size)249 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) {
250   /* don't bother sorting an array of size <= 1 */
251   if (size <= 1) {
252     return;
253   }
254 
255   BINARY_INSERTION_SORT_START(dst, 1, size);
256 }
257 
258 /* timsort implementation, based on timsort.txt */
259 
REVERSE_ELEMENTS(SORT_TYPE * dst,size_t start,size_t end)260 static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) {
261   while (1) {
262     if (start >= end) {
263       return;
264     }
265 
266     SORT_SWAP(dst[start], dst[end]);
267     start++;
268     end--;
269   }
270 }
271 
COUNT_RUN(SORT_TYPE * dst,const size_t start,const size_t size)272 static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) {
273   size_t curr;
274 
275   if (size - start == 1) {
276     return 1;
277   }
278 
279   if (start >= size - 2) {
280     if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) {
281       SORT_SWAP(dst[size - 2], dst[size - 1]);
282     }
283 
284     return 2;
285   }
286 
287   curr = start + 2;
288 
289   if (SORT_CMP(dst[start], dst[start + 1]) <= 0) {
290     /* increasing run */
291     while (1) {
292       if (curr == size - 1) {
293         break;
294       }
295 
296       if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) {
297         break;
298       }
299 
300       curr++;
301     }
302 
303     return curr - start;
304   } else {
305     /* decreasing run */
306     while (1) {
307       if (curr == size - 1) {
308         break;
309       }
310 
311       if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) {
312         break;
313       }
314 
315       curr++;
316     }
317 
318     /* reverse in-place */
319     REVERSE_ELEMENTS(dst, start, curr - 1);
320     return curr - start;
321   }
322 }
323 
CHECK_INVARIANT(TIM_SORT_RUN_T * stack,const int stack_curr)324 static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) {
325   size_t A, B, C;
326 
327   if (stack_curr < 2) {
328     return 1;
329   }
330 
331   if (stack_curr == 2) {
332     const size_t A1 = stack[stack_curr - 2].length;
333     const size_t B1 = stack[stack_curr - 1].length;
334 
335     if (A1 <= B1) {
336       return 0;
337     }
338 
339     return 1;
340   }
341 
342   A = stack[stack_curr - 3].length;
343   B = stack[stack_curr - 2].length;
344   C = stack[stack_curr - 1].length;
345 
346   if ((A <= B + C) || (B <= C)) {
347     return 0;
348   }
349 
350   return 1;
351 }
352 
353 typedef struct {
354   size_t alloc;
355   SORT_TYPE *storage;
356 } TEMP_STORAGE_T;
357 
TIM_SORT_RESIZE(TEMP_STORAGE_T * store,const size_t new_size)358 static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) {
359   if (store->alloc < new_size) {
360     SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE));
361 
362     if (tempstore == NULL) {
363       fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes",
364               (unsigned long)(sizeof(SORT_TYPE) * new_size));
365       exit(1);
366     }
367 
368     store->storage = tempstore;
369     store->alloc = new_size;
370   }
371 }
372 
TIM_SORT_MERGE(SORT_TYPE * dst,const TIM_SORT_RUN_T * stack,const int stack_curr,TEMP_STORAGE_T * store)373 static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr,
374                            TEMP_STORAGE_T *store) {
375   const size_t A = stack[stack_curr - 2].length;
376   const size_t B = stack[stack_curr - 1].length;
377   const size_t curr = stack[stack_curr - 2].start;
378   SORT_TYPE *storage;
379   size_t i, j, k;
380   TIM_SORT_RESIZE(store, MIN(A, B));
381   storage = store->storage;
382 
383   /* left merge */
384   if (A < B) {
385     memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE));
386     i = 0;
387     j = curr + A;
388 
389     for (k = curr; k < curr + A + B; k++) {
390       if ((i < A) && (j < curr + A + B)) {
391         if (SORT_CMP(storage[i], dst[j]) <= 0) {
392           dst[k] = storage[i++];
393         } else {
394           dst[k] = dst[j++];
395         }
396       } else if (i < A) {
397         dst[k] = storage[i++];
398       } else {
399         break;
400       }
401     }
402   } else {
403     /* right merge */
404     memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE));
405     i = B;
406     j = curr + A;
407     k = curr + A + B;
408 
409     while (k > curr) {
410       k--;
411       if ((i > 0) && (j > curr)) {
412         if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) {
413           dst[k] = dst[--j];
414         } else {
415           dst[k] = storage[--i];
416         }
417       } else if (i > 0) {
418         dst[k] = storage[--i];
419       } else {
420         break;
421       }
422     }
423   }
424 }
425 
TIM_SORT_COLLAPSE(SORT_TYPE * dst,TIM_SORT_RUN_T * stack,int stack_curr,TEMP_STORAGE_T * store,const size_t size)426 static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr,
427                              TEMP_STORAGE_T *store, const size_t size) {
428   while (1) {
429     size_t A, B, C, D;
430     int ABC, BCD, CD;
431 
432     /* if the stack only has one thing on it, we are done with the collapse */
433     if (stack_curr <= 1) {
434       break;
435     }
436 
437     /* if this is the last merge, just do it */
438     if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) {
439       TIM_SORT_MERGE(dst, stack, stack_curr, store);
440       stack[0].length += stack[1].length;
441       stack_curr--;
442       break;
443     }
444     /* check if the invariant is off for a stack of 2 elements */
445     else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) {
446       TIM_SORT_MERGE(dst, stack, stack_curr, store);
447       stack[0].length += stack[1].length;
448       stack_curr--;
449       break;
450     } else if (stack_curr == 2) {
451       break;
452     }
453 
454     B = stack[stack_curr - 3].length;
455     C = stack[stack_curr - 2].length;
456     D = stack[stack_curr - 1].length;
457 
458     if (stack_curr >= 4) {
459       A = stack[stack_curr - 4].length;
460       ABC = (A <= B + C);
461     } else {
462       ABC = 0;
463     }
464 
465     BCD = (B <= C + D) || ABC;
466     CD = (C <= D);
467 
468     /* Both invariants are good */
469     if (!BCD && !CD) {
470       break;
471     }
472 
473     /* left merge */
474     if (BCD && !CD) {
475       TIM_SORT_MERGE(dst, stack, stack_curr - 1, store);
476       stack[stack_curr - 3].length += stack[stack_curr - 2].length;
477       stack[stack_curr - 2] = stack[stack_curr - 1];
478       stack_curr--;
479     } else {
480       /* right merge */
481       TIM_SORT_MERGE(dst, stack, stack_curr, store);
482       stack[stack_curr - 2].length += stack[stack_curr - 1].length;
483       stack_curr--;
484     }
485   }
486 
487   return stack_curr;
488 }
489 
PUSH_NEXT(SORT_TYPE * dst,const size_t size,TEMP_STORAGE_T * store,const size_t minrun,TIM_SORT_RUN_T * run_stack,size_t * stack_curr,size_t * curr)490 static __inline int PUSH_NEXT(SORT_TYPE *dst,
491                               const size_t size,
492                               TEMP_STORAGE_T *store,
493                               const size_t minrun,
494                               TIM_SORT_RUN_T *run_stack,
495                               size_t *stack_curr,
496                               size_t *curr) {
497   size_t len = COUNT_RUN(dst, *curr, size);
498   size_t run = minrun;
499 
500   if (run > size - *curr) {
501     run = size - *curr;
502   }
503 
504   if (run > len) {
505     BINARY_INSERTION_SORT_START(&dst[*curr], len, run);
506     len = run;
507   }
508 
509   run_stack[*stack_curr].start = *curr;
510   run_stack[*stack_curr].length = len;
511   (*stack_curr)++;
512   *curr += len;
513 
514   if (*curr == size) {
515     /* finish up */
516     while (*stack_curr > 1) {
517       TIM_SORT_MERGE(dst, run_stack, *stack_curr, store);
518       run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length;
519       (*stack_curr)--;
520     }
521 
522     if (store->storage != NULL) {
523       free(store->storage);
524       store->storage = NULL;
525     }
526 
527     return 0;
528   }
529 
530   return 1;
531 }
532 
TIM_SORT(SORT_TYPE * dst,const size_t size)533 void TIM_SORT(SORT_TYPE *dst, const size_t size) {
534   size_t minrun;
535   TEMP_STORAGE_T _store, *store;
536   TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE];
537   size_t stack_curr = 0;
538   size_t curr = 0;
539 
540   /* don't bother sorting an array of size 1 */
541   if (size <= 1) {
542     return;
543   }
544 
545   if (size < 64) {
546     BINARY_INSERTION_SORT(dst, size);
547     return;
548   }
549 
550   /* compute the minimum run length */
551   minrun = compute_minrun(size);
552   /* temporary storage for merges */
553   store = &_store;
554   store->alloc = 0;
555   store->storage = NULL;
556 
557   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
558     return;
559   }
560 
561   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
562     return;
563   }
564 
565   if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
566     return;
567   }
568 
569   while (1) {
570     if (!CHECK_INVARIANT(run_stack, stack_curr)) {
571       stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size);
572       continue;
573     }
574 
575     if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) {
576       return;
577     }
578   }
579 }
580 
581 #undef SORT_CONCAT
582 #undef SORT_MAKE_STR1
583 #undef SORT_MAKE_STR
584 #undef SORT_NAME
585 #undef SORT_TYPE
586 #undef SORT_CMP
587 #undef TEMP_STORAGE_T
588 #undef TIM_SORT_RUN_T
589 #undef PUSH_NEXT
590 #undef SORT_SWAP
591 #undef SORT_CONCAT
592 #undef SORT_MAKE_STR1
593 #undef SORT_MAKE_STR
594 #undef BINARY_INSERTION_FIND
595 #undef BINARY_INSERTION_SORT_START
596 #undef BINARY_INSERTION_SORT
597 #undef REVERSE_ELEMENTS
598 #undef COUNT_RUN
599 #undef TIM_SORT
600 #undef TIM_SORT_RESIZE
601 #undef TIM_SORT_COLLAPSE
602 #undef TIM_SORT_RUN_T
603 #undef TEMP_STORAGE_T
604