xref: /aosp_15_r20/external/libvpx/examples/vpx_temporal_svc_encoder.c (revision fb1b10ab9aebc7c7068eedab379b749d7e3900be)
1 /*
2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 //  This is an example demonstrating how to implement a multi-layer VPx
12 //  encoding scheme based on temporal scalability for video applications
13 //  that benefit from a scalable bitstream.
14 
15 #include <assert.h>
16 #include <math.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 
21 #include "./vpx_config.h"
22 #include "./y4minput.h"
23 #include "../vpx_ports/vpx_timer.h"
24 #include "vpx/vp8cx.h"
25 #include "vpx/vpx_encoder.h"
26 #include "vpx_ports/bitops.h"
27 
28 #include "../tools_common.h"
29 #include "../video_writer.h"
30 
31 #define ROI_MAP 0
32 
33 #define zero(Dest) memset(&(Dest), 0, sizeof(Dest))
34 
35 static const char *exec_name;
36 
usage_exit(void)37 void usage_exit(void) { exit(EXIT_FAILURE); }
38 
39 // Denoiser states for vp8, for temporal denoising.
40 enum denoiserStateVp8 {
41   kVp8DenoiserOff,
42   kVp8DenoiserOnYOnly,
43   kVp8DenoiserOnYUV,
44   kVp8DenoiserOnYUVAggressive,
45   kVp8DenoiserOnAdaptive
46 };
47 
48 // Denoiser states for vp9, for temporal denoising.
49 enum denoiserStateVp9 {
50   kVp9DenoiserOff,
51   kVp9DenoiserOnYOnly,
52   // For SVC: denoise the top two spatial layers.
53   kVp9DenoiserOnYTwoSpatialLayers
54 };
55 
56 static int mode_to_num_layers[13] = { 1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3 };
57 
58 // For rate control encoding stats.
59 struct RateControlMetrics {
60   // Number of input frames per layer.
61   int layer_input_frames[VPX_TS_MAX_LAYERS];
62   // Total (cumulative) number of encoded frames per layer.
63   int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
64   // Number of encoded non-key frames per layer.
65   int layer_enc_frames[VPX_TS_MAX_LAYERS];
66   // Framerate per layer layer (cumulative).
67   double layer_framerate[VPX_TS_MAX_LAYERS];
68   // Target average frame size per layer (per-frame-bandwidth per layer).
69   double layer_pfb[VPX_TS_MAX_LAYERS];
70   // Actual average frame size per layer.
71   double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
72   // Average rate mismatch per layer (|target - actual| / target).
73   double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
74   // Actual encoding bitrate per layer (cumulative).
75   double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
76   // Average of the short-time encoder actual bitrate.
77   // TODO(marpan): Should we add these short-time stats for each layer?
78   double avg_st_encoding_bitrate;
79   // Variance of the short-time encoder actual bitrate.
80   double variance_st_encoding_bitrate;
81   // Window (number of frames) for computing short-timee encoding bitrate.
82   int window_size;
83   // Number of window measurements.
84   int window_count;
85   int layer_target_bitrate[VPX_MAX_LAYERS];
86 };
87 
88 // Note: these rate control metrics assume only 1 key frame in the
89 // sequence (i.e., first frame only). So for temporal pattern# 7
90 // (which has key frame for every frame on base layer), the metrics
91 // computation will be off/wrong.
92 // TODO(marpan): Update these metrics to account for multiple key frames
93 // in the stream.
set_rate_control_metrics(struct RateControlMetrics * rc,vpx_codec_enc_cfg_t * cfg)94 static void set_rate_control_metrics(struct RateControlMetrics *rc,
95                                      vpx_codec_enc_cfg_t *cfg) {
96   int i = 0;
97   // Set the layer (cumulative) framerate and the target layer (non-cumulative)
98   // per-frame-bandwidth, for the rate control encoding stats below.
99   const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
100   const int ts_number_layers = cfg->ts_number_layers;
101   rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
102   rc->layer_pfb[0] =
103       1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0];
104   for (i = 0; i < ts_number_layers; ++i) {
105     if (i > 0) {
106       rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
107       rc->layer_pfb[i] =
108           1000.0 *
109           (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
110           (rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
111     }
112     rc->layer_input_frames[i] = 0;
113     rc->layer_enc_frames[i] = 0;
114     rc->layer_tot_enc_frames[i] = 0;
115     rc->layer_encoding_bitrate[i] = 0.0;
116     rc->layer_avg_frame_size[i] = 0.0;
117     rc->layer_avg_rate_mismatch[i] = 0.0;
118   }
119   rc->window_count = 0;
120   rc->window_size = 15;
121   rc->avg_st_encoding_bitrate = 0.0;
122   rc->variance_st_encoding_bitrate = 0.0;
123   // Target bandwidth for the whole stream.
124   // Set to layer_target_bitrate for highest layer (total bitrate).
125   cfg->rc_target_bitrate = rc->layer_target_bitrate[ts_number_layers - 1];
126 }
127 
printout_rate_control_summary(struct RateControlMetrics * rc,vpx_codec_enc_cfg_t * cfg,int frame_cnt)128 static void printout_rate_control_summary(struct RateControlMetrics *rc,
129                                           vpx_codec_enc_cfg_t *cfg,
130                                           int frame_cnt) {
131   unsigned int i = 0;
132   int tot_num_frames = 0;
133   double perc_fluctuation = 0.0;
134   printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
135   printf("Rate control layer stats for %d layer(s):\n\n",
136          cfg->ts_number_layers);
137   for (i = 0; i < cfg->ts_number_layers; ++i) {
138     const int num_dropped =
139         (i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i])
140                 : (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
141     tot_num_frames += rc->layer_input_frames[i];
142     rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
143                                     rc->layer_encoding_bitrate[i] /
144                                     tot_num_frames;
145     rc->layer_avg_frame_size[i] =
146         rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i];
147     rc->layer_avg_rate_mismatch[i] =
148         100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i];
149     printf("For layer#: %d \n", i);
150     printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i],
151            rc->layer_encoding_bitrate[i]);
152     printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
153            rc->layer_avg_frame_size[i]);
154     printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
155     printf(
156         "Number of input frames, encoded (non-key) frames, "
157         "and perc dropped frames: %d %d %f \n",
158         rc->layer_input_frames[i], rc->layer_enc_frames[i],
159         100.0 * num_dropped / rc->layer_input_frames[i]);
160     printf("\n");
161   }
162   rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
163   rc->variance_st_encoding_bitrate =
164       rc->variance_st_encoding_bitrate / rc->window_count -
165       (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
166   perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
167                      rc->avg_st_encoding_bitrate;
168   printf("Short-time stats, for window of %d frames: \n", rc->window_size);
169   printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
170          rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
171          perc_fluctuation);
172   if ((frame_cnt - 1) != tot_num_frames)
173     die("Error: Number of input frames not equal to output! \n");
174 }
175 
176 #if ROI_MAP
set_roi_map(const char * enc_name,vpx_codec_enc_cfg_t * cfg,vpx_roi_map_t * roi)177 static void set_roi_map(const char *enc_name, vpx_codec_enc_cfg_t *cfg,
178                         vpx_roi_map_t *roi) {
179   unsigned int i, j;
180   int block_size = 0;
181   uint8_t is_vp8 = strncmp(enc_name, "vp8", 3) == 0 ? 1 : 0;
182   uint8_t is_vp9 = strncmp(enc_name, "vp9", 3) == 0 ? 1 : 0;
183   if (!is_vp8 && !is_vp9) {
184     die("unsupported codec.");
185   }
186   zero(*roi);
187 
188   block_size = is_vp9 && !is_vp8 ? 8 : 16;
189 
190   // ROI is based on the segments (4 for vp8, 8 for vp9), smallest unit for
191   // segment is 16x16 for vp8, 8x8 for vp9.
192   roi->rows = (cfg->g_h + block_size - 1) / block_size;
193   roi->cols = (cfg->g_w + block_size - 1) / block_size;
194 
195   // Applies delta QP on the segment blocks, varies from -63 to 63.
196   // Setting to negative means lower QP (better quality).
197   // Below we set delta_q to the extreme (-63) to show strong effect.
198   // VP8 uses the first 4 segments. VP9 uses all 8 segments.
199   zero(roi->delta_q);
200   roi->delta_q[1] = -63;
201 
202   // Applies delta loopfilter strength on the segment blocks, varies from -63 to
203   // 63. Setting to positive means stronger loopfilter. VP8 uses the first 4
204   // segments. VP9 uses all 8 segments.
205   zero(roi->delta_lf);
206 
207   if (is_vp8) {
208     // Applies skip encoding threshold on the segment blocks, varies from 0 to
209     // UINT_MAX. Larger value means more skipping of encoding is possible.
210     // This skip threshold only applies on delta frames.
211     zero(roi->static_threshold);
212   }
213 
214   if (is_vp9) {
215     // Apply skip segment. Setting to 1 means this block will be copied from
216     // previous frame.
217     zero(roi->skip);
218   }
219 
220   if (is_vp9) {
221     // Apply ref frame segment.
222     // -1 : Do not apply this segment.
223     //  0 : Froce using intra.
224     //  1 : Force using last.
225     //  2 : Force using golden.
226     //  3 : Force using alfref but not used in non-rd pickmode for 0 lag.
227     memset(roi->ref_frame, -1, sizeof(roi->ref_frame));
228     roi->ref_frame[1] = 1;
229   }
230 
231   // Use 2 states: 1 is center square, 0 is the rest.
232   roi->roi_map =
233       (uint8_t *)calloc(roi->rows * roi->cols, sizeof(*roi->roi_map));
234   for (i = 0; i < roi->rows; ++i) {
235     for (j = 0; j < roi->cols; ++j) {
236       if (i > (roi->rows >> 2) && i < ((roi->rows * 3) >> 2) &&
237           j > (roi->cols >> 2) && j < ((roi->cols * 3) >> 2)) {
238         roi->roi_map[i * roi->cols + j] = 1;
239       }
240     }
241   }
242 }
243 
set_roi_skip_map(vpx_codec_enc_cfg_t * cfg,vpx_roi_map_t * roi,int * skip_map,int * prev_mask_map,int frame_num)244 static void set_roi_skip_map(vpx_codec_enc_cfg_t *cfg, vpx_roi_map_t *roi,
245                              int *skip_map, int *prev_mask_map, int frame_num) {
246   const int block_size = 8;
247   unsigned int i, j;
248   roi->rows = (cfg->g_h + block_size - 1) / block_size;
249   roi->cols = (cfg->g_w + block_size - 1) / block_size;
250   zero(roi->skip);
251   zero(roi->delta_q);
252   zero(roi->delta_lf);
253   memset(roi->ref_frame, -1, sizeof(roi->ref_frame));
254   roi->ref_frame[1] = 1;
255   // Use segment 3 for skip.
256   roi->skip[3] = 1;
257   roi->roi_map =
258       (uint8_t *)calloc(roi->rows * roi->cols, sizeof(*roi->roi_map));
259   for (i = 0; i < roi->rows; ++i) {
260     for (j = 0; j < roi->cols; ++j) {
261       const int idx = i * roi->cols + j;
262       // Use segment 3 for skip.
263       // prev_mask_map keeps track of blocks that have been stably on segment 3
264       // for the past 10 frames. Only skip when the block is on segment 3 in
265       // both current map and prev_mask_map.
266       if (skip_map[idx] == 1 && prev_mask_map[idx] == 1) roi->roi_map[idx] = 3;
267       // Reset it every 10 frames so it doesn't propagate for too many frames.
268       if (frame_num % 10 == 0)
269         prev_mask_map[idx] = skip_map[idx];
270       else if (prev_mask_map[idx] == 1 && skip_map[idx] == 0)
271         prev_mask_map[idx] = 0;
272     }
273   }
274 }
275 #endif
276 
277 // Temporal scaling parameters:
278 // NOTE: The 3 prediction frames cannot be used interchangeably due to
279 // differences in the way they are handled throughout the code. The
280 // frames should be allocated to layers in the order LAST, GF, ARF.
281 // Other combinations work, but may produce slightly inferior results.
set_temporal_layer_pattern(int layering_mode,vpx_codec_enc_cfg_t * cfg,int * layer_flags,int * flag_periodicity)282 static void set_temporal_layer_pattern(int layering_mode,
283                                        vpx_codec_enc_cfg_t *cfg,
284                                        int *layer_flags,
285                                        int *flag_periodicity) {
286   switch (layering_mode) {
287     case 0: {
288       // 1-layer.
289       int ids[1] = { 0 };
290       cfg->ts_periodicity = 1;
291       *flag_periodicity = 1;
292       cfg->ts_number_layers = 1;
293       cfg->ts_rate_decimator[0] = 1;
294       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
295       // Update L only.
296       layer_flags[0] =
297           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
298       break;
299     }
300     case 1: {
301       // 2-layers, 2-frame period.
302       int ids[2] = { 0, 1 };
303       cfg->ts_periodicity = 2;
304       *flag_periodicity = 2;
305       cfg->ts_number_layers = 2;
306       cfg->ts_rate_decimator[0] = 2;
307       cfg->ts_rate_decimator[1] = 1;
308       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
309 #if 1
310       // 0=L, 1=GF, Intra-layer prediction enabled.
311       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
312                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
313                        VP8_EFLAG_NO_REF_ARF;
314       layer_flags[1] =
315           VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_REF_ARF;
316 #else
317       // 0=L, 1=GF, Intra-layer prediction disabled.
318       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_GF |
319                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF |
320                        VP8_EFLAG_NO_REF_ARF;
321       layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
322                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
323 #endif
324       break;
325     }
326     case 2: {
327       // 2-layers, 3-frame period.
328       int ids[3] = { 0, 1, 1 };
329       cfg->ts_periodicity = 3;
330       *flag_periodicity = 3;
331       cfg->ts_number_layers = 2;
332       cfg->ts_rate_decimator[0] = 3;
333       cfg->ts_rate_decimator[1] = 1;
334       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
335       // 0=L, 1=GF, Intra-layer prediction enabled.
336       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
337                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
338                        VP8_EFLAG_NO_UPD_ARF;
339       layer_flags[1] = layer_flags[2] =
340           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
341           VP8_EFLAG_NO_UPD_LAST;
342       break;
343     }
344     case 3: {
345       // 3-layers, 6-frame period.
346       int ids[6] = { 0, 2, 2, 1, 2, 2 };
347       cfg->ts_periodicity = 6;
348       *flag_periodicity = 6;
349       cfg->ts_number_layers = 3;
350       cfg->ts_rate_decimator[0] = 6;
351       cfg->ts_rate_decimator[1] = 3;
352       cfg->ts_rate_decimator[2] = 1;
353       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
354       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
355       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
356                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
357                        VP8_EFLAG_NO_UPD_ARF;
358       layer_flags[3] =
359           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
360       layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] =
361           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
362       break;
363     }
364     case 4: {
365       // 3-layers, 4-frame period.
366       int ids[4] = { 0, 2, 1, 2 };
367       cfg->ts_periodicity = 4;
368       *flag_periodicity = 4;
369       cfg->ts_number_layers = 3;
370       cfg->ts_rate_decimator[0] = 4;
371       cfg->ts_rate_decimator[1] = 2;
372       cfg->ts_rate_decimator[2] = 1;
373       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
374       // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
375       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
376                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
377                        VP8_EFLAG_NO_UPD_ARF;
378       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
379                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
380       layer_flags[1] = layer_flags[3] =
381           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
382           VP8_EFLAG_NO_UPD_ARF;
383       break;
384     }
385     case 5: {
386       // 3-layers, 4-frame period.
387       int ids[4] = { 0, 2, 1, 2 };
388       cfg->ts_periodicity = 4;
389       *flag_periodicity = 4;
390       cfg->ts_number_layers = 3;
391       cfg->ts_rate_decimator[0] = 4;
392       cfg->ts_rate_decimator[1] = 2;
393       cfg->ts_rate_decimator[2] = 1;
394       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
395       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
396       // in layer 2.
397       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
398                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
399                        VP8_EFLAG_NO_UPD_ARF;
400       layer_flags[2] =
401           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
402       layer_flags[1] = layer_flags[3] =
403           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
404           VP8_EFLAG_NO_UPD_ARF;
405       break;
406     }
407     case 6: {
408       // 3-layers, 4-frame period.
409       int ids[4] = { 0, 2, 1, 2 };
410       cfg->ts_periodicity = 4;
411       *flag_periodicity = 4;
412       cfg->ts_number_layers = 3;
413       cfg->ts_rate_decimator[0] = 4;
414       cfg->ts_rate_decimator[1] = 2;
415       cfg->ts_rate_decimator[2] = 1;
416       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
417       // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
418       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
419                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
420                        VP8_EFLAG_NO_UPD_ARF;
421       layer_flags[2] =
422           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
423       layer_flags[1] = layer_flags[3] =
424           VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
425       break;
426     }
427     case 7: {
428       // NOTE: Probably of academic interest only.
429       // 5-layers, 16-frame period.
430       int ids[16] = { 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4 };
431       cfg->ts_periodicity = 16;
432       *flag_periodicity = 16;
433       cfg->ts_number_layers = 5;
434       cfg->ts_rate_decimator[0] = 16;
435       cfg->ts_rate_decimator[1] = 8;
436       cfg->ts_rate_decimator[2] = 4;
437       cfg->ts_rate_decimator[3] = 2;
438       cfg->ts_rate_decimator[4] = 1;
439       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
440       layer_flags[0] = VPX_EFLAG_FORCE_KF;
441       layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] =
442           layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] =
443               VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
444               VP8_EFLAG_NO_UPD_ARF;
445       layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] =
446           VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
447       layer_flags[4] = layer_flags[12] =
448           VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
449       layer_flags[8] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
450       break;
451     }
452     case 8: {
453       // 2-layers, with sync point at first frame of layer 1.
454       int ids[2] = { 0, 1 };
455       cfg->ts_periodicity = 2;
456       *flag_periodicity = 8;
457       cfg->ts_number_layers = 2;
458       cfg->ts_rate_decimator[0] = 2;
459       cfg->ts_rate_decimator[1] = 1;
460       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
461       // 0=L, 1=GF.
462       // ARF is used as predictor for all frames, and is only updated on
463       // key frame. Sync point every 8 frames.
464 
465       // Layer 0: predict from L and ARF, update L and G.
466       layer_flags[0] =
467           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;
468       // Layer 1: sync point: predict from L and ARF, and update G.
469       layer_flags[1] =
470           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
471       // Layer 0, predict from L and ARF, update L.
472       layer_flags[2] =
473           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
474       // Layer 1: predict from L, G and ARF, and update G.
475       layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
476                        VP8_EFLAG_NO_UPD_ENTROPY;
477       // Layer 0.
478       layer_flags[4] = layer_flags[2];
479       // Layer 1.
480       layer_flags[5] = layer_flags[3];
481       // Layer 0.
482       layer_flags[6] = layer_flags[4];
483       // Layer 1.
484       layer_flags[7] = layer_flags[5];
485       break;
486     }
487     case 9: {
488       // 3-layers: Sync points for layer 1 and 2 every 8 frames.
489       int ids[4] = { 0, 2, 1, 2 };
490       cfg->ts_periodicity = 4;
491       *flag_periodicity = 8;
492       cfg->ts_number_layers = 3;
493       cfg->ts_rate_decimator[0] = 4;
494       cfg->ts_rate_decimator[1] = 2;
495       cfg->ts_rate_decimator[2] = 1;
496       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
497       // 0=L, 1=GF, 2=ARF.
498       layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_REF_GF |
499                        VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF |
500                        VP8_EFLAG_NO_UPD_ARF;
501       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
502                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
503       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
504                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
505       layer_flags[3] = layer_flags[5] =
506           VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
507       layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
508                        VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
509       layer_flags[6] =
510           VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
511       layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
512                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
513       break;
514     }
515     case 10: {
516       // 3-layers structure where ARF is used as predictor for all frames,
517       // and is only updated on key frame.
518       // Sync points for layer 1 and 2 every 8 frames.
519 
520       int ids[4] = { 0, 2, 1, 2 };
521       cfg->ts_periodicity = 4;
522       *flag_periodicity = 8;
523       cfg->ts_number_layers = 3;
524       cfg->ts_rate_decimator[0] = 4;
525       cfg->ts_rate_decimator[1] = 2;
526       cfg->ts_rate_decimator[2] = 1;
527       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
528       // 0=L, 1=GF, 2=ARF.
529       // Layer 0: predict from L and ARF; update L and G.
530       layer_flags[0] =
531           VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
532       // Layer 2: sync point: predict from L and ARF; update none.
533       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
534                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
535                        VP8_EFLAG_NO_UPD_ENTROPY;
536       // Layer 1: sync point: predict from L and ARF; update G.
537       layer_flags[2] =
538           VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
539       // Layer 2: predict from L, G, ARF; update none.
540       layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
541                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
542       // Layer 0: predict from L and ARF; update L.
543       layer_flags[4] =
544           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
545       // Layer 2: predict from L, G, ARF; update none.
546       layer_flags[5] = layer_flags[3];
547       // Layer 1: predict from L, G, ARF; update G.
548       layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
549       // Layer 2: predict from L, G, ARF; update none.
550       layer_flags[7] = layer_flags[3];
551       break;
552     }
553     case 11: {
554       // 3-layers structure with one reference frame.
555       // This works same as temporal_layering_mode 3.
556       // This was added to compare with vp9_spatial_svc_encoder.
557 
558       // 3-layers, 4-frame period.
559       int ids[4] = { 0, 2, 1, 2 };
560       cfg->ts_periodicity = 4;
561       *flag_periodicity = 4;
562       cfg->ts_number_layers = 3;
563       cfg->ts_rate_decimator[0] = 4;
564       cfg->ts_rate_decimator[1] = 2;
565       cfg->ts_rate_decimator[2] = 1;
566       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
567       // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
568       layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
569                        VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
570       layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
571                        VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
572       layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
573                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
574       layer_flags[3] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_ARF |
575                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
576       break;
577     }
578     case 12:
579     default: {
580       // 3-layers structure as in case 10, but no sync/refresh points for
581       // layer 1 and 2.
582       int ids[4] = { 0, 2, 1, 2 };
583       cfg->ts_periodicity = 4;
584       *flag_periodicity = 8;
585       cfg->ts_number_layers = 3;
586       cfg->ts_rate_decimator[0] = 4;
587       cfg->ts_rate_decimator[1] = 2;
588       cfg->ts_rate_decimator[2] = 1;
589       memcpy(cfg->ts_layer_id, ids, sizeof(ids));
590       // 0=L, 1=GF, 2=ARF.
591       // Layer 0: predict from L and ARF; update L.
592       layer_flags[0] =
593           VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
594       layer_flags[4] = layer_flags[0];
595       // Layer 1: predict from L, G, ARF; update G.
596       layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
597       layer_flags[6] = layer_flags[2];
598       // Layer 2: predict from L, G, ARF; update none.
599       layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
600                        VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
601       layer_flags[3] = layer_flags[1];
602       layer_flags[5] = layer_flags[1];
603       layer_flags[7] = layer_flags[1];
604       break;
605     }
606   }
607 }
608 
609 #if ROI_MAP
read_mask(FILE * mask_file,int * seg_map)610 static void read_mask(FILE *mask_file, int *seg_map) {
611   int mask_rows, mask_cols, i, j;
612   int *map_start = seg_map;
613   fscanf(mask_file, "%d %d\n", &mask_cols, &mask_rows);
614   for (i = 0; i < mask_rows; i++) {
615     for (j = 0; j < mask_cols; j++) {
616       fscanf(mask_file, "%d ", &seg_map[j]);
617       // reverse the bit
618       seg_map[j] = 1 - seg_map[j];
619     }
620     seg_map += mask_cols;
621   }
622   seg_map = map_start;
623 }
624 #endif
625 
main(int argc,char ** argv)626 int main(int argc, char **argv) {
627   VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = { NULL };
628   vpx_codec_ctx_t codec;
629   vpx_codec_enc_cfg_t cfg;
630   int frame_cnt = 0;
631   vpx_image_t raw;
632   vpx_codec_err_t res;
633   unsigned int width;
634   unsigned int height;
635   uint32_t error_resilient = 0;
636   int speed;
637   int frame_avail;
638   int got_data;
639   int flags = 0;
640   unsigned int i;
641   int pts = 0;             // PTS starts at 0.
642   int frame_duration = 1;  // 1 timebase tick per frame.
643   int layering_mode = 0;
644   int layer_flags[VPX_TS_MAX_PERIODICITY] = { 0 };
645   int flag_periodicity = 1;
646 #if ROI_MAP
647   vpx_roi_map_t roi;
648 #endif
649   vpx_svc_layer_id_t layer_id;
650   const VpxInterface *encoder = NULL;
651   struct VpxInputContext input_ctx;
652   struct RateControlMetrics rc;
653   int64_t cx_time = 0;
654   const int min_args_base = 13;
655 #if CONFIG_VP9_HIGHBITDEPTH
656   vpx_bit_depth_t bit_depth = VPX_BITS_8;
657   int input_bit_depth = 8;
658   const int min_args = min_args_base + 1;
659 #else
660   const int min_args = min_args_base;
661 #endif  // CONFIG_VP9_HIGHBITDEPTH
662   double sum_bitrate = 0.0;
663   double sum_bitrate2 = 0.0;
664   double framerate = 30.0;
665 #if ROI_MAP
666   FILE *mask_file = NULL;
667   int block_size = 8;
668   int mask_rows = 0;
669   int mask_cols = 0;
670   int *mask_map;
671   int *prev_mask_map;
672 #endif
673   zero(rc.layer_target_bitrate);
674   memset(&layer_id, 0, sizeof(vpx_svc_layer_id_t));
675   memset(&input_ctx, 0, sizeof(input_ctx));
676   /* Setup default input stream settings */
677   input_ctx.framerate.numerator = 30;
678   input_ctx.framerate.denominator = 1;
679   input_ctx.only_i420 = 1;
680   input_ctx.bit_depth = 0;
681 
682   exec_name = argv[0];
683   // Check usage and arguments.
684   if (argc < min_args) {
685 #if CONFIG_VP9_HIGHBITDEPTH
686     die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
687         "<rate_num> <rate_den> <speed> <frame_drop_threshold> "
688         "<error_resilient> <threads> <mode> "
689         "<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n",
690         argv[0]);
691 #else
692     die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
693         "<rate_num> <rate_den> <speed> <frame_drop_threshold> "
694         "<error_resilient> <threads> <mode> "
695         "<Rate_0> ... <Rate_nlayers-1> \n",
696         argv[0]);
697 #endif  // CONFIG_VP9_HIGHBITDEPTH
698   }
699 
700   encoder = get_vpx_encoder_by_name(argv[3]);
701   if (!encoder) die("Unsupported codec.");
702 
703   printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface()));
704 
705   width = (unsigned int)strtoul(argv[4], NULL, 0);
706   height = (unsigned int)strtoul(argv[5], NULL, 0);
707   if (width < 16 || width % 2 || height < 16 || height % 2) {
708     die("Invalid resolution: %d x %d", width, height);
709   }
710 
711   layering_mode = (int)strtol(argv[12], NULL, 0);
712   if (layering_mode < 0 || layering_mode > 13) {
713     die("Invalid layering mode (0..12) %s", argv[12]);
714   }
715 
716 #if ROI_MAP
717   if (argc != min_args + mode_to_num_layers[layering_mode] + 1) {
718     die("Invalid number of arguments");
719   }
720 #else
721   if (argc != min_args + mode_to_num_layers[layering_mode]) {
722     die("Invalid number of arguments");
723   }
724 #endif
725 
726   input_ctx.filename = argv[1];
727   open_input_file(&input_ctx);
728 
729 #if CONFIG_VP9_HIGHBITDEPTH
730   switch (strtol(argv[argc - 1], NULL, 0)) {
731     case 8:
732       bit_depth = VPX_BITS_8;
733       input_bit_depth = 8;
734       break;
735     case 10:
736       bit_depth = VPX_BITS_10;
737       input_bit_depth = 10;
738       break;
739     case 12:
740       bit_depth = VPX_BITS_12;
741       input_bit_depth = 12;
742       break;
743     default: die("Invalid bit depth (8, 10, 12) %s", argv[argc - 1]);
744   }
745 
746   // Y4M reader has its own allocation.
747   if (input_ctx.file_type != FILE_TYPE_Y4M) {
748     if (!vpx_img_alloc(
749             &raw,
750             bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016,
751             width, height, 32)) {
752       die("Failed to allocate image (%dx%d)", width, height);
753     }
754   }
755 #else
756   // Y4M reader has its own allocation.
757   if (input_ctx.file_type != FILE_TYPE_Y4M) {
758     if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
759       die("Failed to allocate image (%dx%d)", width, height);
760     }
761   }
762 #endif  // CONFIG_VP9_HIGHBITDEPTH
763 
764   // Populate encoder configuration.
765   res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
766   if (res) {
767     printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
768     return EXIT_FAILURE;
769   }
770 
771   // Update the default configuration with our settings.
772   cfg.g_w = width;
773   cfg.g_h = height;
774 
775 #if CONFIG_VP9_HIGHBITDEPTH
776   if (bit_depth != VPX_BITS_8) {
777     cfg.g_bit_depth = bit_depth;
778     cfg.g_input_bit_depth = input_bit_depth;
779     cfg.g_profile = 2;
780   }
781 #endif  // CONFIG_VP9_HIGHBITDEPTH
782 
783   // Timebase format e.g. 30fps: numerator=1, demoninator = 30.
784   cfg.g_timebase.num = (int)strtol(argv[6], NULL, 0);
785   cfg.g_timebase.den = (int)strtol(argv[7], NULL, 0);
786 
787   speed = (int)strtol(argv[8], NULL, 0);
788   if (speed < 0) {
789     die("Invalid speed setting: must be positive");
790   }
791   if (strncmp(encoder->name, "vp9", 3) == 0 && speed > 9) {
792     warn("Mapping speed %d to speed 9.\n", speed);
793   }
794 
795   for (i = min_args_base;
796        (int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
797     rc.layer_target_bitrate[i - 13] = (int)strtol(argv[i], NULL, 0);
798     if (strncmp(encoder->name, "vp8", 3) == 0)
799       cfg.ts_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
800     else if (strncmp(encoder->name, "vp9", 3) == 0)
801       cfg.layer_target_bitrate[i - 13] = rc.layer_target_bitrate[i - 13];
802   }
803 
804   // Real time parameters.
805   cfg.rc_dropframe_thresh = (unsigned int)strtoul(argv[9], NULL, 0);
806   cfg.rc_end_usage = VPX_CBR;
807   cfg.rc_min_quantizer = 2;
808   cfg.rc_max_quantizer = 56;
809   if (strncmp(encoder->name, "vp9", 3) == 0) cfg.rc_max_quantizer = 52;
810   cfg.rc_undershoot_pct = 50;
811   cfg.rc_overshoot_pct = 50;
812   cfg.rc_buf_initial_sz = 600;
813   cfg.rc_buf_optimal_sz = 600;
814   cfg.rc_buf_sz = 1000;
815 
816   // Disable dynamic resizing by default.
817   cfg.rc_resize_allowed = 0;
818 
819   // Use 1 thread as default.
820   cfg.g_threads = (unsigned int)strtoul(argv[11], NULL, 0);
821 
822   error_resilient = (uint32_t)strtoul(argv[10], NULL, 0);
823   if (error_resilient != 0 && error_resilient != 1) {
824     die("Invalid value for error resilient (0, 1): %d.", error_resilient);
825   }
826   // Enable error resilient mode.
827   cfg.g_error_resilient = error_resilient;
828   cfg.g_lag_in_frames = 0;
829   cfg.kf_mode = VPX_KF_AUTO;
830 
831   // Disable automatic keyframe placement.
832   cfg.kf_min_dist = cfg.kf_max_dist = 3000;
833 
834   cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
835 
836   set_temporal_layer_pattern(layering_mode, &cfg, layer_flags,
837                              &flag_periodicity);
838 
839   set_rate_control_metrics(&rc, &cfg);
840 
841   if (input_ctx.file_type == FILE_TYPE_Y4M) {
842     if (input_ctx.width != cfg.g_w || input_ctx.height != cfg.g_h) {
843       die("Incorrect width or height: %d x %d", cfg.g_w, cfg.g_h);
844     }
845     if (input_ctx.framerate.numerator != cfg.g_timebase.den ||
846         input_ctx.framerate.denominator != cfg.g_timebase.num) {
847       die("Incorrect framerate: numerator %d denominator %d",
848           cfg.g_timebase.num, cfg.g_timebase.den);
849     }
850   }
851 
852   framerate = cfg.g_timebase.den / cfg.g_timebase.num;
853   // Open an output file for each stream.
854   for (i = 0; i < cfg.ts_number_layers; ++i) {
855     char file_name[PATH_MAX];
856     VpxVideoInfo info;
857     info.codec_fourcc = encoder->fourcc;
858     info.frame_width = cfg.g_w;
859     info.frame_height = cfg.g_h;
860     info.time_base.numerator = cfg.g_timebase.num;
861     info.time_base.denominator = cfg.g_timebase.den;
862 
863     snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
864     outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
865     if (!outfile[i]) die("Failed to open %s for writing", file_name);
866 
867     assert(outfile[i] != NULL);
868   }
869   // No spatial layers in this encoder.
870   cfg.ss_number_layers = 1;
871 
872 // Initialize codec.
873 #if CONFIG_VP9_HIGHBITDEPTH
874   if (vpx_codec_enc_init(
875           &codec, encoder->codec_interface(), &cfg,
876           bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH))
877 #else
878   if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
879 #endif  // CONFIG_VP9_HIGHBITDEPTH
880     die("Failed to initialize encoder");
881 
882 #if ROI_MAP
883   mask_rows = (cfg.g_h + block_size - 1) / block_size;
884   mask_cols = (cfg.g_w + block_size - 1) / block_size;
885   mask_map = (int *)calloc(mask_rows * mask_cols, sizeof(*mask_map));
886   prev_mask_map = (int *)calloc(mask_rows * mask_cols, sizeof(*mask_map));
887 #endif
888 
889   if (strncmp(encoder->name, "vp8", 3) == 0) {
890     vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed);
891     vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kVp8DenoiserOff);
892     vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
893     vpx_codec_control(&codec, VP8E_SET_GF_CBR_BOOST_PCT, 0);
894 #if ROI_MAP
895     set_roi_map(encoder->name, &cfg, &roi);
896     if (vpx_codec_control(&codec, VP8E_SET_ROI_MAP, &roi))
897       die_codec(&codec, "Failed to set ROI map");
898 #endif
899   } else if (strncmp(encoder->name, "vp9", 3) == 0) {
900     vpx_svc_extra_cfg_t svc_params;
901     memset(&svc_params, 0, sizeof(svc_params));
902     vpx_codec_control(&codec, VP9E_SET_POSTENCODE_DROP, 0);
903     vpx_codec_control(&codec, VP9E_SET_DISABLE_OVERSHOOT_MAXQ_CBR, 0);
904     vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed);
905     vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
906     vpx_codec_control(&codec, VP9E_SET_GF_CBR_BOOST_PCT, 0);
907     vpx_codec_control(&codec, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
908     vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0);
909     vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, kVp9DenoiserOff);
910     vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
911     vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0);
912     vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, get_msb(cfg.g_threads));
913     vpx_codec_control(&codec, VP9E_SET_DISABLE_LOOPFILTER, 0);
914 
915     if (cfg.g_threads > 1)
916       vpx_codec_control(&codec, VP9E_SET_ROW_MT, 1);
917     else
918       vpx_codec_control(&codec, VP9E_SET_ROW_MT, 0);
919     if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1 : 0))
920       die_codec(&codec, "Failed to set SVC");
921     for (i = 0; i < cfg.ts_number_layers; ++i) {
922       svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
923       svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
924     }
925     svc_params.scaling_factor_num[0] = cfg.g_h;
926     svc_params.scaling_factor_den[0] = cfg.g_h;
927     vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params);
928   }
929   if (strncmp(encoder->name, "vp8", 3) == 0) {
930     vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0);
931   }
932   vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
933   // This controls the maximum target size of the key frame.
934   // For generating smaller key frames, use a smaller max_intra_size_pct
935   // value, like 100 or 200.
936   {
937     const int max_intra_size_pct = 1000;
938     vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT,
939                       max_intra_size_pct);
940   }
941 
942   frame_avail = 1;
943   while (frame_avail || got_data) {
944     struct vpx_usec_timer timer;
945     vpx_codec_iter_t iter = NULL;
946     const vpx_codec_cx_pkt_t *pkt;
947 #if ROI_MAP
948     char mask_file_name[255];
949 #endif
950     // Update the temporal layer_id. No spatial layers in this test.
951     layer_id.spatial_layer_id = 0;
952     layer_id.temporal_layer_id =
953         cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
954     layer_id.temporal_layer_id_per_spatial[0] = layer_id.temporal_layer_id;
955     if (strncmp(encoder->name, "vp9", 3) == 0) {
956       vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
957     } else if (strncmp(encoder->name, "vp8", 3) == 0) {
958       vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID,
959                         layer_id.temporal_layer_id);
960     }
961     flags = layer_flags[frame_cnt % flag_periodicity];
962     if (layering_mode == 0) flags = 0;
963 #if ROI_MAP
964     snprintf(mask_file_name, sizeof(mask_file_name), "%s%05d.txt",
965              argv[argc - 1], frame_cnt);
966     mask_file = fopen(mask_file_name, "r");
967     if (mask_file != NULL) {
968       read_mask(mask_file, mask_map);
969       fclose(mask_file);
970       // set_roi_map(encoder->name, &cfg, &roi);
971       set_roi_skip_map(&cfg, &roi, mask_map, prev_mask_map, frame_cnt);
972       if (vpx_codec_control(&codec, VP9E_SET_ROI_MAP, &roi))
973         die_codec(&codec, "Failed to set ROI map");
974     }
975 #endif
976     frame_avail = read_frame(&input_ctx, &raw);
977     if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id];
978     vpx_usec_timer_start(&timer);
979     if (vpx_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags,
980                          VPX_DL_REALTIME)) {
981       die_codec(&codec, "Failed to encode frame");
982     }
983     vpx_usec_timer_mark(&timer);
984     cx_time += vpx_usec_timer_elapsed(&timer);
985     // Reset KF flag.
986     if (layering_mode != 7) {
987       layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
988     }
989     got_data = 0;
990     while ((pkt = vpx_codec_get_cx_data(&codec, &iter))) {
991       got_data = 1;
992       switch (pkt->kind) {
993         case VPX_CODEC_CX_FRAME_PKT:
994           for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
995                i < cfg.ts_number_layers; ++i) {
996             vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
997                                          pkt->data.frame.sz, pts);
998             ++rc.layer_tot_enc_frames[i];
999             rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
1000             // Keep count of rate control stats per layer (for non-key frames).
1001             if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
1002                 !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
1003               rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
1004               rc.layer_avg_rate_mismatch[i] +=
1005                   fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
1006                   rc.layer_pfb[i];
1007               ++rc.layer_enc_frames[i];
1008             }
1009           }
1010           // Update for short-time encoding bitrate states, for moving window
1011           // of size rc->window, shifted by rc->window / 2.
1012           // Ignore first window segment, due to key frame.
1013           if (rc.window_size == 0) rc.window_size = 15;
1014           if (frame_cnt > rc.window_size) {
1015             sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1016             if (frame_cnt % rc.window_size == 0) {
1017               rc.window_count += 1;
1018               rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
1019               rc.variance_st_encoding_bitrate +=
1020                   (sum_bitrate / rc.window_size) *
1021                   (sum_bitrate / rc.window_size);
1022               sum_bitrate = 0.0;
1023             }
1024           }
1025           // Second shifted window.
1026           if (frame_cnt > rc.window_size + rc.window_size / 2) {
1027             sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
1028             if (frame_cnt > 2 * rc.window_size &&
1029                 frame_cnt % rc.window_size == 0) {
1030               rc.window_count += 1;
1031               rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
1032               rc.variance_st_encoding_bitrate +=
1033                   (sum_bitrate2 / rc.window_size) *
1034                   (sum_bitrate2 / rc.window_size);
1035               sum_bitrate2 = 0.0;
1036             }
1037           }
1038           break;
1039         default: break;
1040       }
1041     }
1042     ++frame_cnt;
1043     pts += frame_duration;
1044   }
1045 #if ROI_MAP
1046   free(mask_map);
1047   free(prev_mask_map);
1048 #endif
1049   close_input_file(&input_ctx);
1050   printout_rate_control_summary(&rc, &cfg, frame_cnt);
1051   printf("\n");
1052   printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
1053          frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1054          1000000 * (double)frame_cnt / (double)cx_time);
1055 
1056   if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
1057 
1058   // Try to rewrite the output file headers with the actual frame count.
1059   for (i = 0; i < cfg.ts_number_layers; ++i) vpx_video_writer_close(outfile[i]);
1060 
1061   if (input_ctx.file_type != FILE_TYPE_Y4M) {
1062     vpx_img_free(&raw);
1063   }
1064 
1065 #if ROI_MAP
1066   free(roi.roi_map);
1067 #endif
1068   return EXIT_SUCCESS;
1069 }
1070