xref: /aosp_15_r20/external/libopus/silk/float/burg_modified_FLP.c (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1*a58d3d2aSXin Li /***********************************************************************
2*a58d3d2aSXin Li Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without
4*a58d3d2aSXin Li modification, are permitted provided that the following conditions
5*a58d3d2aSXin Li are met:
6*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright notice,
7*a58d3d2aSXin Li this list of conditions and the following disclaimer.
8*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright
9*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the
10*a58d3d2aSXin Li documentation and/or other materials provided with the distribution.
11*a58d3d2aSXin Li - Neither the name of Internet Society, IETF or IETF Trust, nor the
12*a58d3d2aSXin Li names of specific contributors, may be used to endorse or promote
13*a58d3d2aSXin Li products derived from this software without specific prior written
14*a58d3d2aSXin Li permission.
15*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16*a58d3d2aSXin Li AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17*a58d3d2aSXin Li IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18*a58d3d2aSXin Li ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19*a58d3d2aSXin Li LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20*a58d3d2aSXin Li CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21*a58d3d2aSXin Li SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22*a58d3d2aSXin Li INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23*a58d3d2aSXin Li CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24*a58d3d2aSXin Li ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25*a58d3d2aSXin Li POSSIBILITY OF SUCH DAMAGE.
26*a58d3d2aSXin Li ***********************************************************************/
27*a58d3d2aSXin Li 
28*a58d3d2aSXin Li #ifdef HAVE_CONFIG_H
29*a58d3d2aSXin Li #include "config.h"
30*a58d3d2aSXin Li #endif
31*a58d3d2aSXin Li 
32*a58d3d2aSXin Li #include "SigProc_FLP.h"
33*a58d3d2aSXin Li #include "tuning_parameters.h"
34*a58d3d2aSXin Li #include "define.h"
35*a58d3d2aSXin Li 
36*a58d3d2aSXin Li #define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
37*a58d3d2aSXin Li 
38*a58d3d2aSXin Li /* Compute reflection coefficients from input signal */
silk_burg_modified_FLP(silk_float A[],const silk_float x[],const silk_float minInvGain,const opus_int subfr_length,const opus_int nb_subfr,const opus_int D,int arch)39*a58d3d2aSXin Li silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
40*a58d3d2aSXin Li     silk_float          A[],                /* O    prediction coefficients (length order)                      */
41*a58d3d2aSXin Li     const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
42*a58d3d2aSXin Li     const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
43*a58d3d2aSXin Li     const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
44*a58d3d2aSXin Li     const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
45*a58d3d2aSXin Li     const opus_int      D,                  /* I    order                                                       */
46*a58d3d2aSXin Li     int                 arch
47*a58d3d2aSXin Li )
48*a58d3d2aSXin Li {
49*a58d3d2aSXin Li     opus_int         k, n, s, reached_max_gain;
50*a58d3d2aSXin Li     double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
51*a58d3d2aSXin Li     const silk_float *x_ptr;
52*a58d3d2aSXin Li     double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
53*a58d3d2aSXin Li     double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
54*a58d3d2aSXin Li     double           Af[ SILK_MAX_ORDER_LPC ];
55*a58d3d2aSXin Li 
56*a58d3d2aSXin Li     celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
57*a58d3d2aSXin Li 
58*a58d3d2aSXin Li     /* Compute autocorrelations, added over subframes */
59*a58d3d2aSXin Li     C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
60*a58d3d2aSXin Li     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
61*a58d3d2aSXin Li     for( s = 0; s < nb_subfr; s++ ) {
62*a58d3d2aSXin Li         x_ptr = x + s * subfr_length;
63*a58d3d2aSXin Li         for( n = 1; n < D + 1; n++ ) {
64*a58d3d2aSXin Li             C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n, arch );
65*a58d3d2aSXin Li         }
66*a58d3d2aSXin Li     }
67*a58d3d2aSXin Li     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
68*a58d3d2aSXin Li 
69*a58d3d2aSXin Li     /* Initialize */
70*a58d3d2aSXin Li     CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
71*a58d3d2aSXin Li     invGain = 1.0f;
72*a58d3d2aSXin Li     reached_max_gain = 0;
73*a58d3d2aSXin Li     for( n = 0; n < D; n++ ) {
74*a58d3d2aSXin Li         /* Update first row of correlation matrix (without first element) */
75*a58d3d2aSXin Li         /* Update last row of correlation matrix (without last element, stored in reversed order) */
76*a58d3d2aSXin Li         /* Update C * Af */
77*a58d3d2aSXin Li         /* Update C * flipud(Af) (stored in reversed order) */
78*a58d3d2aSXin Li         for( s = 0; s < nb_subfr; s++ ) {
79*a58d3d2aSXin Li             x_ptr = x + s * subfr_length;
80*a58d3d2aSXin Li             tmp1 = x_ptr[ n ];
81*a58d3d2aSXin Li             tmp2 = x_ptr[ subfr_length - n - 1 ];
82*a58d3d2aSXin Li             for( k = 0; k < n; k++ ) {
83*a58d3d2aSXin Li                 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
84*a58d3d2aSXin Li                 C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
85*a58d3d2aSXin Li                 Atmp = Af[ k ];
86*a58d3d2aSXin Li                 tmp1 += x_ptr[ n - k - 1 ] * Atmp;
87*a58d3d2aSXin Li                 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
88*a58d3d2aSXin Li             }
89*a58d3d2aSXin Li             for( k = 0; k <= n; k++ ) {
90*a58d3d2aSXin Li                 CAf[ k ] -= tmp1 * x_ptr[ n - k ];
91*a58d3d2aSXin Li                 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
92*a58d3d2aSXin Li             }
93*a58d3d2aSXin Li         }
94*a58d3d2aSXin Li         tmp1 = C_first_row[ n ];
95*a58d3d2aSXin Li         tmp2 = C_last_row[ n ];
96*a58d3d2aSXin Li         for( k = 0; k < n; k++ ) {
97*a58d3d2aSXin Li             Atmp = Af[ k ];
98*a58d3d2aSXin Li             tmp1 += C_last_row[  n - k - 1 ] * Atmp;
99*a58d3d2aSXin Li             tmp2 += C_first_row[ n - k - 1 ] * Atmp;
100*a58d3d2aSXin Li         }
101*a58d3d2aSXin Li         CAf[ n + 1 ] = tmp1;
102*a58d3d2aSXin Li         CAb[ n + 1 ] = tmp2;
103*a58d3d2aSXin Li 
104*a58d3d2aSXin Li         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
105*a58d3d2aSXin Li         num = CAb[ n + 1 ];
106*a58d3d2aSXin Li         nrg_b = CAb[ 0 ];
107*a58d3d2aSXin Li         nrg_f = CAf[ 0 ];
108*a58d3d2aSXin Li         for( k = 0; k < n; k++ ) {
109*a58d3d2aSXin Li             Atmp = Af[ k ];
110*a58d3d2aSXin Li             num   += CAb[ n - k ] * Atmp;
111*a58d3d2aSXin Li             nrg_b += CAb[ k + 1 ] * Atmp;
112*a58d3d2aSXin Li             nrg_f += CAf[ k + 1 ] * Atmp;
113*a58d3d2aSXin Li         }
114*a58d3d2aSXin Li         silk_assert( nrg_f > 0.0 );
115*a58d3d2aSXin Li         silk_assert( nrg_b > 0.0 );
116*a58d3d2aSXin Li 
117*a58d3d2aSXin Li         /* Calculate the next order reflection (parcor) coefficient */
118*a58d3d2aSXin Li         rc = -2.0 * num / ( nrg_f + nrg_b );
119*a58d3d2aSXin Li         silk_assert( rc > -1.0 && rc < 1.0 );
120*a58d3d2aSXin Li 
121*a58d3d2aSXin Li         /* Update inverse prediction gain */
122*a58d3d2aSXin Li         tmp1 = invGain * ( 1.0 - rc * rc );
123*a58d3d2aSXin Li         if( tmp1 <= minInvGain ) {
124*a58d3d2aSXin Li             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
125*a58d3d2aSXin Li             rc = sqrt( 1.0 - minInvGain / invGain );
126*a58d3d2aSXin Li             if( num > 0 ) {
127*a58d3d2aSXin Li                 /* Ensure adjusted reflection coefficients has the original sign */
128*a58d3d2aSXin Li                 rc = -rc;
129*a58d3d2aSXin Li             }
130*a58d3d2aSXin Li             invGain = minInvGain;
131*a58d3d2aSXin Li             reached_max_gain = 1;
132*a58d3d2aSXin Li         } else {
133*a58d3d2aSXin Li             invGain = tmp1;
134*a58d3d2aSXin Li         }
135*a58d3d2aSXin Li 
136*a58d3d2aSXin Li         /* Update the AR coefficients */
137*a58d3d2aSXin Li         for( k = 0; k < (n + 1) >> 1; k++ ) {
138*a58d3d2aSXin Li             tmp1 = Af[ k ];
139*a58d3d2aSXin Li             tmp2 = Af[ n - k - 1 ];
140*a58d3d2aSXin Li             Af[ k ]         = tmp1 + rc * tmp2;
141*a58d3d2aSXin Li             Af[ n - k - 1 ] = tmp2 + rc * tmp1;
142*a58d3d2aSXin Li         }
143*a58d3d2aSXin Li         Af[ n ] = rc;
144*a58d3d2aSXin Li 
145*a58d3d2aSXin Li         if( reached_max_gain ) {
146*a58d3d2aSXin Li             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
147*a58d3d2aSXin Li             for( k = n + 1; k < D; k++ ) {
148*a58d3d2aSXin Li                 Af[ k ] = 0.0;
149*a58d3d2aSXin Li             }
150*a58d3d2aSXin Li             break;
151*a58d3d2aSXin Li         }
152*a58d3d2aSXin Li 
153*a58d3d2aSXin Li         /* Update C * Af and C * Ab */
154*a58d3d2aSXin Li         for( k = 0; k <= n + 1; k++ ) {
155*a58d3d2aSXin Li             tmp1 = CAf[ k ];
156*a58d3d2aSXin Li             CAf[ k ]          += rc * CAb[ n - k + 1 ];
157*a58d3d2aSXin Li             CAb[ n - k + 1  ] += rc * tmp1;
158*a58d3d2aSXin Li         }
159*a58d3d2aSXin Li     }
160*a58d3d2aSXin Li 
161*a58d3d2aSXin Li     if( reached_max_gain ) {
162*a58d3d2aSXin Li         /* Convert to silk_float */
163*a58d3d2aSXin Li         for( k = 0; k < D; k++ ) {
164*a58d3d2aSXin Li             A[ k ] = (silk_float)( -Af[ k ] );
165*a58d3d2aSXin Li         }
166*a58d3d2aSXin Li         /* Subtract energy of preceding samples from C0 */
167*a58d3d2aSXin Li         for( s = 0; s < nb_subfr; s++ ) {
168*a58d3d2aSXin Li             C0 -= silk_energy_FLP( x + s * subfr_length, D );
169*a58d3d2aSXin Li         }
170*a58d3d2aSXin Li         /* Approximate residual energy */
171*a58d3d2aSXin Li         nrg_f = C0 * invGain;
172*a58d3d2aSXin Li     } else {
173*a58d3d2aSXin Li         /* Compute residual energy and store coefficients as silk_float */
174*a58d3d2aSXin Li         nrg_f = CAf[ 0 ];
175*a58d3d2aSXin Li         tmp1 = 1.0;
176*a58d3d2aSXin Li         for( k = 0; k < D; k++ ) {
177*a58d3d2aSXin Li             Atmp = Af[ k ];
178*a58d3d2aSXin Li             nrg_f += CAf[ k + 1 ] * Atmp;
179*a58d3d2aSXin Li             tmp1  += Atmp * Atmp;
180*a58d3d2aSXin Li             A[ k ] = (silk_float)(-Atmp);
181*a58d3d2aSXin Li         }
182*a58d3d2aSXin Li         nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
183*a58d3d2aSXin Li     }
184*a58d3d2aSXin Li 
185*a58d3d2aSXin Li     /* Return residual energy */
186*a58d3d2aSXin Li     return (silk_float)nrg_f;
187*a58d3d2aSXin Li }
188