xref: /aosp_15_r20/external/libopus/silk/float/burg_modified_FLP.c (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "SigProc_FLP.h"
33 #include "tuning_parameters.h"
34 #include "define.h"
35 
36 #define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/
37 
38 /* Compute reflection coefficients from input signal */
silk_burg_modified_FLP(silk_float A[],const silk_float x[],const silk_float minInvGain,const opus_int subfr_length,const opus_int nb_subfr,const opus_int D,int arch)39 silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
40     silk_float          A[],                /* O    prediction coefficients (length order)                      */
41     const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
42     const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
43     const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
44     const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
45     const opus_int      D,                  /* I    order                                                       */
46     int                 arch
47 )
48 {
49     opus_int         k, n, s, reached_max_gain;
50     double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
51     const silk_float *x_ptr;
52     double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
53     double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
54     double           Af[ SILK_MAX_ORDER_LPC ];
55 
56     celt_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
57 
58     /* Compute autocorrelations, added over subframes */
59     C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
60     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
61     for( s = 0; s < nb_subfr; s++ ) {
62         x_ptr = x + s * subfr_length;
63         for( n = 1; n < D + 1; n++ ) {
64             C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n, arch );
65         }
66     }
67     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );
68 
69     /* Initialize */
70     CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
71     invGain = 1.0f;
72     reached_max_gain = 0;
73     for( n = 0; n < D; n++ ) {
74         /* Update first row of correlation matrix (without first element) */
75         /* Update last row of correlation matrix (without last element, stored in reversed order) */
76         /* Update C * Af */
77         /* Update C * flipud(Af) (stored in reversed order) */
78         for( s = 0; s < nb_subfr; s++ ) {
79             x_ptr = x + s * subfr_length;
80             tmp1 = x_ptr[ n ];
81             tmp2 = x_ptr[ subfr_length - n - 1 ];
82             for( k = 0; k < n; k++ ) {
83                 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
84                 C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
85                 Atmp = Af[ k ];
86                 tmp1 += x_ptr[ n - k - 1 ] * Atmp;
87                 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
88             }
89             for( k = 0; k <= n; k++ ) {
90                 CAf[ k ] -= tmp1 * x_ptr[ n - k ];
91                 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
92             }
93         }
94         tmp1 = C_first_row[ n ];
95         tmp2 = C_last_row[ n ];
96         for( k = 0; k < n; k++ ) {
97             Atmp = Af[ k ];
98             tmp1 += C_last_row[  n - k - 1 ] * Atmp;
99             tmp2 += C_first_row[ n - k - 1 ] * Atmp;
100         }
101         CAf[ n + 1 ] = tmp1;
102         CAb[ n + 1 ] = tmp2;
103 
104         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
105         num = CAb[ n + 1 ];
106         nrg_b = CAb[ 0 ];
107         nrg_f = CAf[ 0 ];
108         for( k = 0; k < n; k++ ) {
109             Atmp = Af[ k ];
110             num   += CAb[ n - k ] * Atmp;
111             nrg_b += CAb[ k + 1 ] * Atmp;
112             nrg_f += CAf[ k + 1 ] * Atmp;
113         }
114         silk_assert( nrg_f > 0.0 );
115         silk_assert( nrg_b > 0.0 );
116 
117         /* Calculate the next order reflection (parcor) coefficient */
118         rc = -2.0 * num / ( nrg_f + nrg_b );
119         silk_assert( rc > -1.0 && rc < 1.0 );
120 
121         /* Update inverse prediction gain */
122         tmp1 = invGain * ( 1.0 - rc * rc );
123         if( tmp1 <= minInvGain ) {
124             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
125             rc = sqrt( 1.0 - minInvGain / invGain );
126             if( num > 0 ) {
127                 /* Ensure adjusted reflection coefficients has the original sign */
128                 rc = -rc;
129             }
130             invGain = minInvGain;
131             reached_max_gain = 1;
132         } else {
133             invGain = tmp1;
134         }
135 
136         /* Update the AR coefficients */
137         for( k = 0; k < (n + 1) >> 1; k++ ) {
138             tmp1 = Af[ k ];
139             tmp2 = Af[ n - k - 1 ];
140             Af[ k ]         = tmp1 + rc * tmp2;
141             Af[ n - k - 1 ] = tmp2 + rc * tmp1;
142         }
143         Af[ n ] = rc;
144 
145         if( reached_max_gain ) {
146             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
147             for( k = n + 1; k < D; k++ ) {
148                 Af[ k ] = 0.0;
149             }
150             break;
151         }
152 
153         /* Update C * Af and C * Ab */
154         for( k = 0; k <= n + 1; k++ ) {
155             tmp1 = CAf[ k ];
156             CAf[ k ]          += rc * CAb[ n - k + 1 ];
157             CAb[ n - k + 1  ] += rc * tmp1;
158         }
159     }
160 
161     if( reached_max_gain ) {
162         /* Convert to silk_float */
163         for( k = 0; k < D; k++ ) {
164             A[ k ] = (silk_float)( -Af[ k ] );
165         }
166         /* Subtract energy of preceding samples from C0 */
167         for( s = 0; s < nb_subfr; s++ ) {
168             C0 -= silk_energy_FLP( x + s * subfr_length, D );
169         }
170         /* Approximate residual energy */
171         nrg_f = C0 * invGain;
172     } else {
173         /* Compute residual energy and store coefficients as silk_float */
174         nrg_f = CAf[ 0 ];
175         tmp1 = 1.0;
176         for( k = 0; k < D; k++ ) {
177             Atmp = Af[ k ];
178             nrg_f += CAf[ k + 1 ] * Atmp;
179             tmp1  += Atmp * Atmp;
180             A[ k ] = (silk_float)(-Atmp);
181         }
182         nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
183     }
184 
185     /* Return residual energy */
186     return (silk_float)nrg_f;
187 }
188