xref: /aosp_15_r20/external/libopus/dnn/training_tf2/keraslayerdump.py (revision a58d3d2adb790c104798cd88c8a3aff4fa8b82cc)
1'''Copyright (c) 2017-2018 Mozilla
2
3   Redistribution and use in source and binary forms, with or without
4   modification, are permitted provided that the following conditions
5   are met:
6
7   - Redistributions of source code must retain the above copyright
8   notice, this list of conditions and the following disclaimer.
9
10   - Redistributions in binary form must reproduce the above copyright
11   notice, this list of conditions and the following disclaimer in the
12   documentation and/or other materials provided with the distribution.
13
14   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
18   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25'''
26
27""" helper functions for dumping some Keras layers to C files """
28
29import numpy as np
30
31
32def printVector(f, vector, name, dtype='float', dotp=False, static=True):
33    """ prints vector as one-dimensional C array """
34    if dotp:
35        vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
36        vector = vector.transpose((2, 0, 3, 1))
37    v = np.reshape(vector, (-1))
38    if static:
39        f.write('static const {} {}[{}] = {{\n   '.format(dtype, name, len(v)))
40    else:
41        f.write('const {} {}[{}] = {{\n   '.format(dtype, name, len(v)))
42    for i in range(0, len(v)):
43        f.write('{}'.format(v[i]))
44        if (i!=len(v)-1):
45            f.write(',')
46        else:
47            break;
48        if (i%8==7):
49            f.write("\n   ")
50        else:
51            f.write(" ")
52    f.write('\n};\n\n')
53    return vector
54
55def printSparseVector(f, A, name, have_diag=True):
56    N = A.shape[0]
57    M = A.shape[1]
58    W = np.zeros((0,), dtype='int')
59    W0 = np.zeros((0,))
60    if have_diag:
61        diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
62        A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
63        A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
64        A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
65        printVector(f, diag, name + '_diag')
66    AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
67    idx = np.zeros((0,), dtype='int')
68    for i in range(M//8):
69        pos = idx.shape[0]
70        idx = np.append(idx, -1)
71        nb_nonzero = 0
72        for j in range(N//4):
73            block = A[j*4:(j+1)*4, i*8:(i+1)*8]
74            qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
75            if np.sum(np.abs(block)) > 1e-10:
76                nb_nonzero = nb_nonzero + 1
77                idx = np.append(idx, j*4)
78                vblock = qblock.transpose((1,0)).reshape((-1,))
79                W0 = np.concatenate([W0, block.reshape((-1,))])
80                W = np.concatenate([W, vblock])
81        idx[pos] = nb_nonzero
82    f.write('#ifdef DOT_PROD\n')
83    printVector(f, W, name, dtype='qweight')
84    f.write('#else /*DOT_PROD*/\n')
85    printVector(f, W0, name, dtype='qweight')
86    f.write('#endif /*DOT_PROD*/\n')
87    printVector(f, idx, name + '_idx', dtype='int')
88    return AQ
89
90def dump_sparse_gru(self, f, hf):
91    name = 'sparse_' + self.name
92    print("printing layer " + name + " of type sparse " + self.__class__.__name__)
93    weights = self.get_weights()
94    qweights = printSparseVector(f, weights[1], name + '_recurrent_weights')
95    printVector(f, weights[-1], name + '_bias')
96    subias = weights[-1].copy()
97    subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0)
98    printVector(f, subias, name + '_subias')
99    if hasattr(self, 'activation'):
100        activation = self.activation.__name__.upper()
101    else:
102        activation = 'TANH'
103    if hasattr(self, 'reset_after') and not self.reset_after:
104        reset_after = 0
105    else:
106        reset_after = 1
107    neurons = weights[0].shape[1]//3
108    max_rnn_neurons = neurons
109    f.write('const SparseGRULayer {} = {{\n   {}_bias,\n   {}_subias,\n   {}_recurrent_weights_diag,\n   {}_recurrent_weights,\n   {}_recurrent_weights_idx,\n   {}, ACTIVATION_{}, {}\n}};\n\n'
110            .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
111    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
112    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
113    hf.write('extern const SparseGRULayer {};\n\n'.format(name));
114    return max_rnn_neurons
115
116def dump_gru_layer(self, f, hf, dotp=False, sparse=False):
117    name = self.name
118    print("printing layer " + name + " of type " + self.__class__.__name__)
119    weights = self.get_weights()
120    if sparse:
121        qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False)
122    else:
123        qweight = printVector(f, weights[0], name + '_weights')
124
125    if dotp:
126        f.write('#ifdef DOT_PROD\n')
127        qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
128        printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight')
129        f.write('#else /*DOT_PROD*/\n')
130    else:
131        qweight2 = weights[1]
132
133    printVector(f, weights[1], name + '_recurrent_weights')
134    if dotp:
135        f.write('#endif /*DOT_PROD*/\n')
136
137    printVector(f, weights[-1], name + '_bias')
138    subias = weights[-1].copy()
139    subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
140    subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0)
141    printVector(f, subias, name + '_subias')
142    if hasattr(self, 'activation'):
143        activation = self.activation.__name__.upper()
144    else:
145        activation = 'TANH'
146    if hasattr(self, 'reset_after') and not self.reset_after:
147        reset_after = 0
148    else:
149        reset_after = 1
150    neurons = weights[0].shape[1]//3
151    max_rnn_neurons = neurons
152    f.write('const GRULayer {} = {{\n   {}_bias,\n   {}_subias,\n   {}_weights,\n   {},\n   {}_recurrent_weights,\n   {}, {}, ACTIVATION_{}, {}\n}};\n\n'
153            .format(name, name, name, name, name + "_weights_idx" if sparse else "NULL", name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
154    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
155    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
156    hf.write('extern const GRULayer {};\n\n'.format(name));
157    return max_rnn_neurons
158
159def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
160    printVector(f, weights, name + '_weights')
161    printVector(f, bias, name + '_bias')
162    f.write('const DenseLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, ACTIVATION_{}\n}};\n\n'
163            .format(name, name, name, weights.shape[0], weights.shape[1], activation))
164    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
165    hf.write('extern const DenseLayer {};\n\n'.format(name));
166
167def dump_dense_layer(self, f, hf):
168    name = self.name
169    print("printing layer " + name + " of type " + self.__class__.__name__)
170    weights = self.get_weights()
171    activation = self.activation.__name__.upper()
172    dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
173    return False
174
175def dump_conv1d_layer(self, f, hf):
176    name = self.name
177    print("printing layer " + name + " of type " + self.__class__.__name__)
178    weights = self.get_weights()
179    printVector(f, weights[0], name + '_weights')
180    printVector(f, weights[-1], name + '_bias')
181    activation = self.activation.__name__.upper()
182    max_conv_inputs = weights[0].shape[1]*weights[0].shape[0]
183    f.write('const Conv1DLayer {} = {{\n   {}_bias,\n   {}_weights,\n   {}, {}, {}, ACTIVATION_{}\n}};\n\n'
184            .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
185    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
186    hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
187    hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
188    hf.write('extern const Conv1DLayer {};\n\n'.format(name));
189    return max_conv_inputs
190