1 // Copyright 2019 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/dsp/intra_edge.h"
16 #include "src/utils/cpu.h"
17
18 #if LIBGAV1_TARGETING_SSE4_1
19
20 #include <xmmintrin.h>
21
22 #include <cassert>
23 #include <cstddef>
24 #include <cstdint>
25 #include <cstring>
26
27 #include "src/dsp/constants.h"
28 #include "src/dsp/dsp.h"
29 #include "src/dsp/x86/common_sse4.h"
30 #include "src/utils/common.h"
31
32 namespace libgav1 {
33 namespace dsp {
34 namespace {
35
36 constexpr int kKernelTaps = 5;
37 constexpr int kKernels[3][kKernelTaps] = {
38 {0, 4, 8, 4, 0}, {0, 5, 6, 5, 0}, {2, 4, 4, 4, 2}};
39 constexpr int kMaxEdgeBufferSize = 129;
40
41 // This function applies the kernel [0, 4, 8, 4, 0] to 12 values.
42 // Assumes |edge| has 16 packed byte values. Produces 12 filter outputs to
43 // write as overlapping sets of 8-bytes.
ComputeKernel1Store12(uint8_t * LIBGAV1_RESTRICT dest,const uint8_t * LIBGAV1_RESTRICT source)44 inline void ComputeKernel1Store12(uint8_t* LIBGAV1_RESTRICT dest,
45 const uint8_t* LIBGAV1_RESTRICT source) {
46 const __m128i edge_lo = LoadUnaligned16(source);
47 const __m128i edge_hi = _mm_srli_si128(edge_lo, 6);
48 // Samples matched with the '4' tap, expanded to 16-bit.
49 const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo);
50 const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi);
51 // Samples matched with the '8' tap, expanded to 16-bit.
52 const __m128i centers_lo = _mm_srli_si128(outers_lo, 2);
53 const __m128i centers_hi = _mm_srli_si128(outers_hi, 2);
54
55 // Apply the taps by shifting.
56 const __m128i outers4_lo = _mm_slli_epi16(outers_lo, 2);
57 const __m128i outers4_hi = _mm_slli_epi16(outers_hi, 2);
58 const __m128i centers8_lo = _mm_slli_epi16(centers_lo, 3);
59 const __m128i centers8_hi = _mm_slli_epi16(centers_hi, 3);
60 // Move latter 4x values down to add with first 4x values for each output.
61 const __m128i partial_sums_lo =
62 _mm_add_epi16(outers4_lo, _mm_srli_si128(outers4_lo, 4));
63 const __m128i partial_sums_hi =
64 _mm_add_epi16(outers4_hi, _mm_srli_si128(outers4_hi, 4));
65 // Move 6x values down to add for the final kernel sum for each output.
66 const __m128i sums_lo = RightShiftWithRounding_U16(
67 _mm_add_epi16(partial_sums_lo, centers8_lo), 4);
68 const __m128i sums_hi = RightShiftWithRounding_U16(
69 _mm_add_epi16(partial_sums_hi, centers8_hi), 4);
70
71 const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo);
72 const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi);
73 const __m128i result =
74 _mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10);
75 StoreUnaligned16(dest, result);
76 }
77
78 // This function applies the kernel [0, 5, 6, 5, 0] to 12 values.
79 // Assumes |edge| has 8 packed byte values, and that the 2 invalid values will
80 // be overwritten or safely discarded.
ComputeKernel2Store12(uint8_t * LIBGAV1_RESTRICT dest,const uint8_t * LIBGAV1_RESTRICT source)81 inline void ComputeKernel2Store12(uint8_t* LIBGAV1_RESTRICT dest,
82 const uint8_t* LIBGAV1_RESTRICT source) {
83 const __m128i edge_lo = LoadUnaligned16(source);
84 const __m128i edge_hi = _mm_srli_si128(edge_lo, 6);
85 const __m128i outers_lo = _mm_cvtepu8_epi16(edge_lo);
86 const __m128i centers_lo = _mm_srli_si128(outers_lo, 2);
87 const __m128i outers_hi = _mm_cvtepu8_epi16(edge_hi);
88 const __m128i centers_hi = _mm_srli_si128(outers_hi, 2);
89 // Samples matched with the '5' tap, expanded to 16-bit. Add x + 4x.
90 const __m128i outers5_lo =
91 _mm_add_epi16(outers_lo, _mm_slli_epi16(outers_lo, 2));
92 const __m128i outers5_hi =
93 _mm_add_epi16(outers_hi, _mm_slli_epi16(outers_hi, 2));
94 // Samples matched with the '6' tap, expanded to 16-bit. Add 2x + 4x.
95 const __m128i centers6_lo = _mm_add_epi16(_mm_slli_epi16(centers_lo, 1),
96 _mm_slli_epi16(centers_lo, 2));
97 const __m128i centers6_hi = _mm_add_epi16(_mm_slli_epi16(centers_hi, 1),
98 _mm_slli_epi16(centers_hi, 2));
99 // Move latter 5x values down to add with first 5x values for each output.
100 const __m128i partial_sums_lo =
101 _mm_add_epi16(outers5_lo, _mm_srli_si128(outers5_lo, 4));
102 // Move 6x values down to add for the final kernel sum for each output.
103 const __m128i sums_lo = RightShiftWithRounding_U16(
104 _mm_add_epi16(centers6_lo, partial_sums_lo), 4);
105 // Shift latter 5x values to add with first 5x values for each output.
106 const __m128i partial_sums_hi =
107 _mm_add_epi16(outers5_hi, _mm_srli_si128(outers5_hi, 4));
108 // Move 6x values down to add for the final kernel sum for each output.
109 const __m128i sums_hi = RightShiftWithRounding_U16(
110 _mm_add_epi16(centers6_hi, partial_sums_hi), 4);
111 // First 6 values are valid outputs.
112 const __m128i result_lo = _mm_packus_epi16(sums_lo, sums_lo);
113 const __m128i result_hi = _mm_packus_epi16(sums_hi, sums_hi);
114 const __m128i result =
115 _mm_alignr_epi8(result_hi, _mm_slli_si128(result_lo, 10), 10);
116 StoreUnaligned16(dest, result);
117 }
118
119 // This function applies the kernel [2, 4, 4, 4, 2] to 8 values.
ComputeKernel3Store8(uint8_t * LIBGAV1_RESTRICT dest,const uint8_t * LIBGAV1_RESTRICT source)120 inline void ComputeKernel3Store8(uint8_t* LIBGAV1_RESTRICT dest,
121 const uint8_t* LIBGAV1_RESTRICT source) {
122 const __m128i edge_lo = LoadUnaligned16(source);
123 const __m128i edge_hi = _mm_srli_si128(edge_lo, 4);
124 // Finish |edge_lo| life cycle quickly.
125 // Multiply for 2x.
126 const __m128i source2_lo = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_lo), 1);
127 // Multiply 2x by 2 and align.
128 const __m128i source4_lo = _mm_srli_si128(_mm_slli_epi16(source2_lo, 1), 2);
129 // Finish |source2| life cycle quickly.
130 // Move latter 2x values down to add with first 2x values for each output.
131 __m128i sum = _mm_add_epi16(source2_lo, _mm_srli_si128(source2_lo, 8));
132 // First 4x values already aligned to add with running total.
133 sum = _mm_add_epi16(sum, source4_lo);
134 // Move second 4x values down to add with running total.
135 sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 2));
136 // Move third 4x values down to add with running total.
137 sum = _mm_add_epi16(sum, _mm_srli_si128(source4_lo, 4));
138 // Multiply for 2x.
139 const __m128i source2_hi = _mm_slli_epi16(_mm_cvtepu8_epi16(edge_hi), 1);
140 // Multiply 2x by 2 and align.
141 const __m128i source4_hi = _mm_srli_si128(_mm_slli_epi16(source2_hi, 1), 2);
142 // Move latter 2x values down to add with first 2x values for each output.
143 __m128i sum_hi = _mm_add_epi16(source2_hi, _mm_srli_si128(source2_hi, 8));
144 // First 4x values already aligned to add with running total.
145 sum_hi = _mm_add_epi16(sum_hi, source4_hi);
146 // Move second 4x values down to add with running total.
147 sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 2));
148 // Move third 4x values down to add with running total.
149 sum_hi = _mm_add_epi16(sum_hi, _mm_srli_si128(source4_hi, 4));
150
151 // Because we have only 8 values here, it is safe to align before packing down
152 // to 8-bit without losing data.
153 sum = _mm_alignr_epi8(sum_hi, _mm_slli_si128(sum, 8), 8);
154 sum = RightShiftWithRounding_U16(sum, 4);
155 StoreLo8(dest, _mm_packus_epi16(sum, sum));
156 }
157
IntraEdgeFilter_SSE4_1(void * buffer,int size,int strength)158 void IntraEdgeFilter_SSE4_1(void* buffer, int size, int strength) {
159 uint8_t edge[kMaxEdgeBufferSize + 4];
160 memcpy(edge, buffer, size);
161 auto* dst_buffer = static_cast<uint8_t*>(buffer);
162
163 // Only process |size| - 1 elements. Nothing to do in this case.
164 if (size == 1) return;
165
166 int i = 0;
167 switch (strength) {
168 case 1:
169 // To avoid overwriting, we stop short from the total write size plus the
170 // initial offset. In this case 12 valid values are written in two blocks
171 // of 8 bytes each.
172 for (; i < size - 17; i += 12) {
173 ComputeKernel1Store12(dst_buffer + i + 1, edge + i);
174 }
175 break;
176 case 2:
177 // See the comment for case 1.
178 for (; i < size - 17; i += 12) {
179 ComputeKernel2Store12(dst_buffer + i + 1, edge + i);
180 }
181 break;
182 default:
183 assert(strength == 3);
184 // The first filter input is repeated for taps of value 2 and 4.
185 dst_buffer[1] = RightShiftWithRounding(
186 (6 * edge[0] + 4 * edge[1] + 4 * edge[2] + 2 * edge[3]), 4);
187 // In this case, one block of 8 bytes is written in each iteration, with
188 // an offset of 2.
189 for (; i < size - 10; i += 8) {
190 ComputeKernel3Store8(dst_buffer + i + 2, edge + i);
191 }
192 }
193 const int kernel_index = strength - 1;
194 for (int final_index = Clip3(i, 1, size - 2); final_index < size;
195 ++final_index) {
196 int sum = 0;
197 for (int j = 0; j < kKernelTaps; ++j) {
198 const int k = Clip3(final_index + j - 2, 0, size - 1);
199 sum += kKernels[kernel_index][j] * edge[k];
200 }
201 dst_buffer[final_index] = RightShiftWithRounding(sum, 4);
202 }
203 }
204
205 constexpr int kMaxUpsampleSize = 16;
206
207 // Applies the upsampling kernel [-1, 9, 9, -1] to alternating pixels, and
208 // interleaves the results with the original values. This implementation assumes
209 // that it is safe to write the maximum number of upsampled pixels (32) to the
210 // edge buffer, even when |size| is small.
IntraEdgeUpsampler_SSE4_1(void * buffer,int size)211 void IntraEdgeUpsampler_SSE4_1(void* buffer, int size) {
212 assert(size % 4 == 0 && size <= kMaxUpsampleSize);
213 auto* const pixel_buffer = static_cast<uint8_t*>(buffer);
214 uint8_t temp[kMaxUpsampleSize + 8];
215 temp[0] = temp[1] = pixel_buffer[-1];
216 memcpy(temp + 2, pixel_buffer, sizeof(temp[0]) * size);
217 temp[size + 2] = pixel_buffer[size - 1];
218
219 pixel_buffer[-2] = temp[0];
220 const __m128i data = LoadUnaligned16(temp);
221 const __m128i src_lo = _mm_cvtepu8_epi16(data);
222 const __m128i src_hi = _mm_unpackhi_epi8(data, _mm_setzero_si128());
223 const __m128i src9_hi = _mm_add_epi16(src_hi, _mm_slli_epi16(src_hi, 3));
224 const __m128i src9_lo = _mm_add_epi16(src_lo, _mm_slli_epi16(src_lo, 3));
225 __m128i sum_lo = _mm_sub_epi16(_mm_alignr_epi8(src9_hi, src9_lo, 2), src_lo);
226 sum_lo = _mm_add_epi16(sum_lo, _mm_alignr_epi8(src9_hi, src9_lo, 4));
227 sum_lo = _mm_sub_epi16(sum_lo, _mm_alignr_epi8(src_hi, src_lo, 6));
228 sum_lo = RightShiftWithRounding_S16(sum_lo, 4);
229 const __m128i result_lo = _mm_unpacklo_epi8(_mm_packus_epi16(sum_lo, sum_lo),
230 _mm_srli_si128(data, 2));
231 StoreUnaligned16(pixel_buffer - 1, result_lo);
232 if (size > 8) {
233 const __m128i src_hi_extra = _mm_cvtepu8_epi16(LoadLo8(temp + 16));
234 const __m128i src9_hi_extra =
235 _mm_add_epi16(src_hi_extra, _mm_slli_epi16(src_hi_extra, 3));
236 __m128i sum_hi =
237 _mm_sub_epi16(_mm_alignr_epi8(src9_hi_extra, src9_hi, 2), src_hi);
238 sum_hi = _mm_add_epi16(sum_hi, _mm_alignr_epi8(src9_hi_extra, src9_hi, 4));
239 sum_hi = _mm_sub_epi16(sum_hi, _mm_alignr_epi8(src_hi_extra, src_hi, 6));
240 sum_hi = RightShiftWithRounding_S16(sum_hi, 4);
241 const __m128i result_hi =
242 _mm_unpacklo_epi8(_mm_packus_epi16(sum_hi, sum_hi), LoadLo8(temp + 10));
243 StoreUnaligned16(pixel_buffer + 15, result_hi);
244 }
245 }
246
Init8bpp()247 void Init8bpp() {
248 Dsp* const dsp = dsp_internal::GetWritableDspTable(kBitdepth8);
249 assert(dsp != nullptr);
250 #if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeFilter)
251 dsp->intra_edge_filter = IntraEdgeFilter_SSE4_1;
252 #endif
253 #if DSP_ENABLED_8BPP_SSE4_1(IntraEdgeUpsampler)
254 dsp->intra_edge_upsampler = IntraEdgeUpsampler_SSE4_1;
255 #endif
256 }
257
258 } // namespace
259
IntraEdgeInit_SSE4_1()260 void IntraEdgeInit_SSE4_1() { Init8bpp(); }
261
262 } // namespace dsp
263 } // namespace libgav1
264
265 #else // !LIBGAV1_TARGETING_SSE4_1
266 namespace libgav1 {
267 namespace dsp {
268
IntraEdgeInit_SSE4_1()269 void IntraEdgeInit_SSE4_1() {}
270
271 } // namespace dsp
272 } // namespace libgav1
273 #endif // LIBGAV1_TARGETING_SSE4_1
274