1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "ui/gfx/geometry/cubic_bezier.h"
6
7 #include <memory>
8
9 #include "testing/gtest/include/gtest/gtest.h"
10
11 namespace gfx {
12 namespace {
13
TEST(CubicBezierTest,Basic)14 TEST(CubicBezierTest, Basic) {
15 CubicBezier function(0.25, 0.0, 0.75, 1.0);
16
17 double epsilon = 0.00015;
18
19 EXPECT_NEAR(function.Solve(0), 0, epsilon);
20 EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon);
21 EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon);
22 EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon);
23 EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon);
24 EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon);
25 EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon);
26 EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon);
27 EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon);
28 EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon);
29 EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon);
30 EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon);
31 EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon);
32 EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon);
33 EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon);
34 EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon);
35 EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon);
36 EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon);
37 EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon);
38 EXPECT_NEAR(function.Solve(1), 1, epsilon);
39
40 CubicBezier basic_use(0.5, 1.0, 0.5, 1.0);
41 EXPECT_EQ(0.875, basic_use.Solve(0.5));
42
43 CubicBezier overshoot(0.5, 2.0, 0.5, 2.0);
44 EXPECT_EQ(1.625, overshoot.Solve(0.5));
45
46 CubicBezier undershoot(0.5, -1.0, 0.5, -1.0);
47 EXPECT_EQ(-0.625, undershoot.Solve(0.5));
48 }
49
50 // Tests that solving the bezier works with knots with y not in (0, 1).
TEST(CubicBezierTest,UnclampedYValues)51 TEST(CubicBezierTest, UnclampedYValues) {
52 CubicBezier function(0.5, -1.0, 0.5, 2.0);
53
54 double epsilon = 0.00015;
55
56 EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon);
57 EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon);
58 EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon);
59 EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon);
60 EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon);
61 EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon);
62 EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon);
63 EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon);
64 EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon);
65 EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon);
66 EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon);
67 EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon);
68 EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon);
69 EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon);
70 EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon);
71 EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon);
72 EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon);
73 EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon);
74 EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon);
75 EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon);
76 EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon);
77 }
78
TEST(CubicBezierTest,Range)79 TEST(CubicBezierTest, Range) {
80 double epsilon = 0.00015;
81
82 // Derivative is a constant.
83 std::unique_ptr<CubicBezier> function(
84 new CubicBezier(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)));
85 EXPECT_EQ(0, function->range_min());
86 EXPECT_EQ(1, function->range_max());
87
88 // Derivative is linear.
89 function.reset(new CubicBezier(0.25, -0.5, 0.75, (-1.0 / 6.0)));
90 EXPECT_NEAR(function->range_min(), -0.225, epsilon);
91 EXPECT_EQ(1, function->range_max());
92
93 // Derivative has no real roots.
94 function.reset(new CubicBezier(0.25, 0.25, 0.75, 0.5));
95 EXPECT_EQ(0, function->range_min());
96 EXPECT_EQ(1, function->range_max());
97
98 // Derivative has exactly one real root.
99 function.reset(new CubicBezier(0.0, 1.0, 1.0, 0.0));
100 EXPECT_EQ(0, function->range_min());
101 EXPECT_EQ(1, function->range_max());
102
103 // Derivative has one root < 0 and one root > 1.
104 function.reset(new CubicBezier(0.25, 0.1, 0.75, 0.9));
105 EXPECT_EQ(0, function->range_min());
106 EXPECT_EQ(1, function->range_max());
107
108 // Derivative has two roots in [0,1].
109 function.reset(new CubicBezier(0.25, 2.5, 0.75, 0.5));
110 EXPECT_EQ(0, function->range_min());
111 EXPECT_NEAR(function->range_max(), 1.28818, epsilon);
112 function.reset(new CubicBezier(0.25, 0.5, 0.75, -1.5));
113 EXPECT_NEAR(function->range_min(), -0.28818, epsilon);
114 EXPECT_EQ(1, function->range_max());
115
116 // Derivative has one root < 0 and one root in [0,1].
117 function.reset(new CubicBezier(0.25, 0.1, 0.75, 1.5));
118 EXPECT_EQ(0, function->range_min());
119 EXPECT_NEAR(function->range_max(), 1.10755, epsilon);
120
121 // Derivative has one root in [0,1] and one root > 1.
122 function.reset(new CubicBezier(0.25, -0.5, 0.75, 0.9));
123 EXPECT_NEAR(function->range_min(), -0.10755, epsilon);
124 EXPECT_EQ(1, function->range_max());
125
126 // Derivative has two roots < 0.
127 function.reset(new CubicBezier(0.25, 0.3, 0.75, 0.633));
128 EXPECT_EQ(0, function->range_min());
129 EXPECT_EQ(1, function->range_max());
130
131 // Derivative has two roots > 1.
132 function.reset(new CubicBezier(0.25, 0.367, 0.75, 0.7));
133 EXPECT_EQ(0.f, function->range_min());
134 EXPECT_EQ(1.f, function->range_max());
135 }
136
TEST(CubicBezierTest,Slope)137 TEST(CubicBezierTest, Slope) {
138 CubicBezier function(0.25, 0.0, 0.75, 1.0);
139
140 double epsilon = 0.00015;
141
142 EXPECT_NEAR(function.Slope(-0.1), 0, epsilon);
143 EXPECT_NEAR(function.Slope(0), 0, epsilon);
144 EXPECT_NEAR(function.Slope(0.05), 0.42170, epsilon);
145 EXPECT_NEAR(function.Slope(0.1), 0.69778, epsilon);
146 EXPECT_NEAR(function.Slope(0.15), 0.89121, epsilon);
147 EXPECT_NEAR(function.Slope(0.2), 1.03184, epsilon);
148 EXPECT_NEAR(function.Slope(0.25), 1.13576, epsilon);
149 EXPECT_NEAR(function.Slope(0.3), 1.21239, epsilon);
150 EXPECT_NEAR(function.Slope(0.35), 1.26751, epsilon);
151 EXPECT_NEAR(function.Slope(0.4), 1.30474, epsilon);
152 EXPECT_NEAR(function.Slope(0.45), 1.32628, epsilon);
153 EXPECT_NEAR(function.Slope(0.5), 1.33333, epsilon);
154 EXPECT_NEAR(function.Slope(0.55), 1.32628, epsilon);
155 EXPECT_NEAR(function.Slope(0.6), 1.30474, epsilon);
156 EXPECT_NEAR(function.Slope(0.65), 1.26751, epsilon);
157 EXPECT_NEAR(function.Slope(0.7), 1.21239, epsilon);
158 EXPECT_NEAR(function.Slope(0.75), 1.13576, epsilon);
159 EXPECT_NEAR(function.Slope(0.8), 1.03184, epsilon);
160 EXPECT_NEAR(function.Slope(0.85), 0.89121, epsilon);
161 EXPECT_NEAR(function.Slope(0.9), 0.69778, epsilon);
162 EXPECT_NEAR(function.Slope(0.95), 0.42170, epsilon);
163 EXPECT_NEAR(function.Slope(1), 0, epsilon);
164 EXPECT_NEAR(function.Slope(1.1), 0, epsilon);
165 }
166
TEST(CubicBezierTest,InputOutOfRange)167 TEST(CubicBezierTest, InputOutOfRange) {
168 CubicBezier simple(0.5, 1.0, 0.5, 1.0);
169 EXPECT_EQ(-2.0, simple.Solve(-1.0));
170 EXPECT_EQ(1.0, simple.Solve(2.0));
171
172 CubicBezier at_edge_of_range(0.5, 1.0, 0.5, 1.0);
173 EXPECT_EQ(0.0, at_edge_of_range.Solve(0.0));
174 EXPECT_EQ(1.0, at_edge_of_range.Solve(1.0));
175
176 CubicBezier large_epsilon(0.5, 1.0, 0.5, 1.0);
177 EXPECT_EQ(-2.0, large_epsilon.SolveWithEpsilon(-1.0, 1.0));
178 EXPECT_EQ(1.0, large_epsilon.SolveWithEpsilon(2.0, 1.0));
179
180 CubicBezier coincident_endpoints(0.0, 0.0, 1.0, 1.0);
181 EXPECT_EQ(-1.0, coincident_endpoints.Solve(-1.0));
182 EXPECT_EQ(2.0, coincident_endpoints.Solve(2.0));
183
184 CubicBezier vertical_gradient(0.0, 1.0, 1.0, 0.0);
185 EXPECT_EQ(0.0, vertical_gradient.Solve(-1.0));
186 EXPECT_EQ(1.0, vertical_gradient.Solve(2.0));
187
188 CubicBezier distinct_endpoints(0.1, 0.2, 0.8, 0.8);
189 EXPECT_EQ(-2.0, distinct_endpoints.Solve(-1.0));
190 EXPECT_EQ(2.0, distinct_endpoints.Solve(2.0));
191
192 CubicBezier coincident_endpoint(0.0, 0.0, 0.8, 0.8);
193 EXPECT_EQ(-1.0, coincident_endpoint.Solve(-1.0));
194 EXPECT_EQ(2.0, coincident_endpoint.Solve(2.0));
195
196 CubicBezier three_coincident_points(0.0, 0.0, 0.0, 0.0);
197 EXPECT_EQ(0, three_coincident_points.Solve(-1.0));
198 EXPECT_EQ(2.0, three_coincident_points.Solve(2.0));
199 }
200
TEST(CubicBezierTest,GetPoints)201 TEST(CubicBezierTest, GetPoints) {
202 double epsilon = 0.00015;
203
204 CubicBezier cubic1(0.1, 0.2, 0.8, 0.9);
205 EXPECT_NEAR(0.1, cubic1.GetX1(), epsilon);
206 EXPECT_NEAR(0.2, cubic1.GetY1(), epsilon);
207 EXPECT_NEAR(0.8, cubic1.GetX2(), epsilon);
208 EXPECT_NEAR(0.9, cubic1.GetY2(), epsilon);
209
210 CubicBezier cubic_zero(0, 0, 0, 0);
211 EXPECT_NEAR(0, cubic_zero.GetX1(), epsilon);
212 EXPECT_NEAR(0, cubic_zero.GetY1(), epsilon);
213 EXPECT_NEAR(0, cubic_zero.GetX2(), epsilon);
214 EXPECT_NEAR(0, cubic_zero.GetY2(), epsilon);
215
216 CubicBezier cubic_one(1, 1, 1, 1);
217 EXPECT_NEAR(1, cubic_one.GetX1(), epsilon);
218 EXPECT_NEAR(1, cubic_one.GetY1(), epsilon);
219 EXPECT_NEAR(1, cubic_one.GetX2(), epsilon);
220 EXPECT_NEAR(1, cubic_one.GetY2(), epsilon);
221
222 CubicBezier cubic_oor(-0.5, -1.5, 1.5, -1.6);
223 EXPECT_NEAR(-0.5, cubic_oor.GetX1(), epsilon);
224 EXPECT_NEAR(-1.5, cubic_oor.GetY1(), epsilon);
225 EXPECT_NEAR(1.5, cubic_oor.GetX2(), epsilon);
226 EXPECT_NEAR(-1.6, cubic_oor.GetY2(), epsilon);
227 }
228
229 } // namespace
230 } // namespace gfx
231