1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Create a state machine for validating UTF-8. The algorithm in brief:
6 // 1. Convert the complete unicode range of code points, except for the
7 // surrogate code points, to an ordered array of sequences of bytes in
8 // UTF-8.
9 // 2. Convert individual bytes to ranges, starting from the right of each byte
10 // sequence. For each range, ensure the bytes on the left and the ranges
11 // on the right are the identical.
12 // 3. Convert the resulting list of ranges into a state machine, collapsing
13 // identical states.
14 // 4. Convert the state machine to an array of bytes.
15 // 5. Output as a C++ file.
16 //
17 // To use:
18 // $ ninja -C out/Release build_utf8_validator_tables
19 // $ out/Release/build_utf8_validator_tables
20 // --output=base/i18n/utf8_validator_tables.cc
21 // $ git add base/i18n/utf8_validator_tables.cc
22 //
23 // Because the table is not expected to ever change, it is checked into the
24 // repository rather than being regenerated at build time.
25 //
26 // This code uses type uint8_t throughout to represent bytes, to avoid
27 // signed/unsigned char confusion.
28
29 #include <stddef.h>
30 #include <stdint.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34
35 #include <algorithm>
36 #include <map>
37 #include <string>
38 #include <vector>
39
40 #include "base/command_line.h"
41 #include "base/files/file_path.h"
42 #include "base/files/file_util.h"
43 #include "base/logging.h"
44 #include "base/macros.h"
45 #include "base/numerics/safe_conversions.h"
46 #include "base/strings/stringprintf.h"
47 #include "third_party/icu/source/common/unicode/utf8.h"
48
49 namespace {
50
51 const char kHelpText[] =
52 "Usage: build_utf8_validator_tables [ --help ] [ --output=<file> ]\n";
53
54 const char kProlog[] =
55 "// Copyright 2013 The Chromium Authors. All rights reserved.\n"
56 "// Use of this source code is governed by a BSD-style license that can "
57 "be\n"
58 "// found in the LICENSE file.\n"
59 "\n"
60 "// This file is auto-generated by build_utf8_validator_tables.\n"
61 "// DO NOT EDIT.\n"
62 "\n"
63 "#include \"base/i18n/utf8_validator_tables.h\"\n"
64 "\n"
65 "namespace base {\n"
66 "namespace internal {\n"
67 "\n"
68 "const uint8_t kUtf8ValidatorTables[] = {\n";
69
70 const char kEpilog[] =
71 "};\n"
72 "\n"
73 "const size_t kUtf8ValidatorTablesSize = arraysize(kUtf8ValidatorTables);\n"
74 "\n"
75 "} // namespace internal\n"
76 "} // namespace base\n";
77
78 // Ranges are inclusive at both ends--they represent [from, to]
79 class Range {
80 public:
81 // Ranges always start with just one byte.
Range(uint8_t value)82 explicit Range(uint8_t value) : from_(value), to_(value) {}
83
84 // Range objects are copyable and assignable to be used in STL
85 // containers. Since they only contain non-pointer POD types, the default copy
86 // constructor, assignment operator and destructor will work.
87
88 // Add a byte to the range. We intentionally only support adding a byte at the
89 // end, since that is the only operation the code needs.
AddByte(uint8_t to)90 void AddByte(uint8_t to) {
91 CHECK(to == to_ + 1);
92 to_ = to;
93 }
94
from() const95 uint8_t from() const { return from_; }
to() const96 uint8_t to() const { return to_; }
97
operator <(const Range & rhs) const98 bool operator<(const Range& rhs) const {
99 return (from() < rhs.from() || (from() == rhs.from() && to() < rhs.to()));
100 }
101
operator ==(const Range & rhs) const102 bool operator==(const Range& rhs) const {
103 return from() == rhs.from() && to() == rhs.to();
104 }
105
106 private:
107 uint8_t from_;
108 uint8_t to_;
109 };
110
111 // A vector of Ranges is like a simple regular expression--it corresponds to
112 // a set of strings of the same length that have bytes in each position in
113 // the appropriate range.
114 typedef std::vector<Range> StringSet;
115
116 // A UTF-8 "character" is represented by a sequence of bytes.
117 typedef std::vector<uint8_t> Character;
118
119 // In the second stage of the algorithm, we want to convert a large list of
120 // Characters into a small list of StringSets.
121 struct Pair {
122 Character character;
123 StringSet set;
124 };
125
126 typedef std::vector<Pair> PairVector;
127
128 // A class to print a table of numbers in the same style as clang-format.
129 class TablePrinter {
130 public:
TablePrinter(FILE * stream)131 explicit TablePrinter(FILE* stream)
132 : stream_(stream), values_on_this_line_(0), current_offset_(0) {}
133
PrintValue(uint8_t value)134 void PrintValue(uint8_t value) {
135 if (values_on_this_line_ == 0) {
136 fputs(" ", stream_);
137 } else if (values_on_this_line_ == kMaxValuesPerLine) {
138 fprintf(stream_, " // 0x%02x\n ", current_offset_);
139 values_on_this_line_ = 0;
140 }
141 fprintf(stream_, " 0x%02x,", static_cast<int>(value));
142 ++values_on_this_line_;
143 ++current_offset_;
144 }
145
NewLine()146 void NewLine() {
147 while (values_on_this_line_ < kMaxValuesPerLine) {
148 fputs(" ", stream_);
149 ++values_on_this_line_;
150 }
151 fprintf(stream_, " // 0x%02x\n", current_offset_);
152 values_on_this_line_ = 0;
153 }
154
155 private:
156 // stdio stream. Not owned.
157 FILE* stream_;
158
159 // Number of values so far printed on this line.
160 int values_on_this_line_;
161
162 // Total values printed so far.
163 int current_offset_;
164
165 static const int kMaxValuesPerLine = 8;
166
167 DISALLOW_COPY_AND_ASSIGN(TablePrinter);
168 };
169
170 // Start by filling a PairVector with characters. The resulting vector goes from
171 // "\x00" to "\xf4\x8f\xbf\xbf".
InitializeCharacters()172 PairVector InitializeCharacters() {
173 PairVector vector;
174 for (int i = 0; i <= 0x10FFFF; ++i) {
175 if (i >= 0xD800 && i < 0xE000) {
176 // Surrogate codepoints are not permitted. Non-character code points are
177 // explicitly permitted.
178 continue;
179 }
180 uint8_t bytes[4];
181 unsigned int offset = 0;
182 UBool is_error = false;
183 U8_APPEND(bytes, offset, arraysize(bytes), i, is_error);
184 DCHECK(!is_error);
185 DCHECK_GT(offset, 0u);
186 DCHECK_LE(offset, arraysize(bytes));
187 Pair pair = {Character(bytes, bytes + offset), StringSet()};
188 vector.push_back(pair);
189 }
190 return vector;
191 }
192
193 // Construct a new Pair from |character| and the concatenation of |new_range|
194 // and |existing_set|, and append it to |pairs|.
ConstructPairAndAppend(const Character & character,const Range & new_range,const StringSet & existing_set,PairVector * pairs)195 void ConstructPairAndAppend(const Character& character,
196 const Range& new_range,
197 const StringSet& existing_set,
198 PairVector* pairs) {
199 Pair new_pair = {character, StringSet(1, new_range)};
200 new_pair.set.insert(
201 new_pair.set.end(), existing_set.begin(), existing_set.end());
202 pairs->push_back(new_pair);
203 }
204
205 // Each pass over the PairVector strips one byte off the right-hand-side of the
206 // characters and adds a range to the set on the right. For example, the first
207 // pass converts the range from "\xe0\xa0\x80" to "\xe0\xa0\xbf" to ("\xe0\xa0",
208 // [\x80-\xbf]), then the second pass converts the range from ("\xe0\xa0",
209 // [\x80-\xbf]) to ("\xe0\xbf", [\x80-\xbf]) to ("\xe0",
210 // [\xa0-\xbf][\x80-\xbf]).
MoveRightMostCharToSet(PairVector * pairs)211 void MoveRightMostCharToSet(PairVector* pairs) {
212 PairVector new_pairs;
213 PairVector::const_iterator it = pairs->begin();
214 while (it != pairs->end() && it->character.empty()) {
215 new_pairs.push_back(*it);
216 ++it;
217 }
218 CHECK(it != pairs->end());
219 Character unconverted_bytes(it->character.begin(), it->character.end() - 1);
220 Range new_range(it->character.back());
221 StringSet converted = it->set;
222 ++it;
223 while (it != pairs->end()) {
224 const Pair& current_pair = *it++;
225 if (current_pair.character.size() == unconverted_bytes.size() + 1 &&
226 std::equal(unconverted_bytes.begin(),
227 unconverted_bytes.end(),
228 current_pair.character.begin()) &&
229 converted == current_pair.set) {
230 // The particular set of UTF-8 codepoints we are validating guarantees
231 // that each byte range will be contiguous. This would not necessarily be
232 // true for an arbitrary set of UTF-8 codepoints.
233 DCHECK_EQ(new_range.to() + 1, current_pair.character.back());
234 new_range.AddByte(current_pair.character.back());
235 continue;
236 }
237 ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
238 unconverted_bytes = Character(current_pair.character.begin(),
239 current_pair.character.end() - 1);
240 new_range = Range(current_pair.character.back());
241 converted = current_pair.set;
242 }
243 ConstructPairAndAppend(unconverted_bytes, new_range, converted, &new_pairs);
244 new_pairs.swap(*pairs);
245 }
246
MoveAllCharsToSets(PairVector * pairs)247 void MoveAllCharsToSets(PairVector* pairs) {
248 // Since each pass of the function moves one character, and UTF-8 sequences
249 // are at most 4 characters long, this simply runs the algorithm four times.
250 for (int i = 0; i < 4; ++i) {
251 MoveRightMostCharToSet(pairs);
252 }
253 #if DCHECK_IS_ON()
254 for (PairVector::const_iterator it = pairs->begin(); it != pairs->end();
255 ++it) {
256 DCHECK(it->character.empty());
257 }
258 #endif
259 }
260
261 // Logs the generated string sets in regular-expression style, ie. [\x00-\x7f],
262 // [\xc2-\xdf][\x80-\xbf], etc. This can be a useful sanity-check that the
263 // algorithm is working. Use the command-line option
264 // --vmodule=build_utf8_validator_tables=1 to see this output.
LogStringSets(const PairVector & pairs)265 void LogStringSets(const PairVector& pairs) {
266 for (PairVector::const_iterator pair_it = pairs.begin();
267 pair_it != pairs.end();
268 ++pair_it) {
269 std::string set_as_string;
270 for (StringSet::const_iterator set_it = pair_it->set.begin();
271 set_it != pair_it->set.end();
272 ++set_it) {
273 set_as_string += base::StringPrintf("[\\x%02x-\\x%02x]",
274 static_cast<int>(set_it->from()),
275 static_cast<int>(set_it->to()));
276 }
277 VLOG(1) << set_as_string;
278 }
279 }
280
281 // A single state in the state machine is represented by a sorted vector of
282 // start bytes and target states. All input bytes in the range between the start
283 // byte and the next entry in the vector (or 0xFF) result in a transition to the
284 // target state.
285 struct StateRange {
286 uint8_t from;
287 uint8_t target_state;
288 };
289
290 typedef std::vector<StateRange> State;
291
292 // Generates a state where all bytes go to state 1 (invalid). This is also used
293 // as an initialiser for other states (since bytes from outside the desired
294 // range are invalid).
GenerateInvalidState()295 State GenerateInvalidState() {
296 const StateRange range = {0, 1};
297 return State(1, range);
298 }
299
300 // A map from a state (ie. a set of strings which will match from this state) to
301 // a number (which is an index into the array of states).
302 typedef std::map<StringSet, uint8_t> StateMap;
303
304 // Create a new state corresponding to |set|, add it |states| and |state_map|
305 // and return the index it was given in |states|.
MakeState(const StringSet & set,std::vector<State> * states,StateMap * state_map)306 uint8_t MakeState(const StringSet& set,
307 std::vector<State>* states,
308 StateMap* state_map) {
309 DCHECK(!set.empty());
310 const Range& range = set.front();
311 const StringSet rest(set.begin() + 1, set.end());
312 const StateMap::const_iterator where = state_map->find(rest);
313 const uint8_t target_state = where == state_map->end()
314 ? MakeState(rest, states, state_map)
315 : where->second;
316 DCHECK_LT(0, range.from());
317 DCHECK_LT(range.to(), 0xFF);
318 const StateRange new_state_initializer[] = {
319 {0, 1},
320 {range.from(), target_state},
321 {static_cast<uint8_t>(range.to() + 1), 1}};
322 states->push_back(
323 State(new_state_initializer,
324 new_state_initializer + arraysize(new_state_initializer)));
325 const uint8_t new_state_number =
326 base::checked_cast<uint8_t>(states->size() - 1);
327 CHECK(state_map->insert(std::make_pair(set, new_state_number)).second);
328 return new_state_number;
329 }
330
GenerateStates(const PairVector & pairs)331 std::vector<State> GenerateStates(const PairVector& pairs) {
332 // States 0 and 1 are the initial/valid state and invalid state, respectively.
333 std::vector<State> states(2, GenerateInvalidState());
334 StateMap state_map;
335 state_map.insert(std::make_pair(StringSet(), 0));
336 for (PairVector::const_iterator it = pairs.begin(); it != pairs.end(); ++it) {
337 DCHECK(it->character.empty());
338 DCHECK(!it->set.empty());
339 const Range& range = it->set.front();
340 const StringSet rest(it->set.begin() + 1, it->set.end());
341 const StateMap::const_iterator where = state_map.find(rest);
342 const uint8_t target_state = where == state_map.end()
343 ? MakeState(rest, &states, &state_map)
344 : where->second;
345 if (states[0].back().from == range.from()) {
346 DCHECK_EQ(1, states[0].back().target_state);
347 states[0].back().target_state = target_state;
348 DCHECK_LT(range.to(), 0xFF);
349 const StateRange new_range = {static_cast<uint8_t>(range.to() + 1), 1};
350 states[0].push_back(new_range);
351 } else {
352 DCHECK_LT(range.to(), 0xFF);
353 const StateRange new_range_initializer[] = {
354 {range.from(), target_state},
355 {static_cast<uint8_t>(range.to() + 1), 1}};
356 states[0]
357 .insert(states[0].end(),
358 new_range_initializer,
359 new_range_initializer + arraysize(new_range_initializer));
360 }
361 }
362 return states;
363 }
364
365 // Output the generated states as a C++ table. Two tricks are used to compact
366 // the table: each state in the table starts with a shift value which indicates
367 // how many bits we can discard from the right-hand-side of the byte before
368 // doing the table lookup. Secondly, only the state-transitions for bytes
369 // with the top-bit set are included in the table; bytes without the top-bit set
370 // are just ASCII and are handled directly by the code.
PrintStates(const std::vector<State> & states,FILE * stream)371 void PrintStates(const std::vector<State>& states, FILE* stream) {
372 // First calculate the start-offset of each state. This allows the state
373 // machine to jump directly to the correct offset, avoiding an extra
374 // indirection. State 0 starts at offset 0.
375 std::vector<uint8_t> state_offset(1, 0);
376 std::vector<uint8_t> shifts;
377 uint8_t pos = 0;
378
379 for (std::vector<State>::const_iterator state_it = states.begin();
380 state_it != states.end();
381 ++state_it) {
382 // We want to set |shift| to the (0-based) index of the least-significant
383 // set bit in any of the ranges for this state, since this tells us how many
384 // bits we can discard and still determine what range a byte lies in. Sadly
385 // it appears that ffs() is not portable, so we do it clumsily.
386 uint8_t shift = 7;
387 for (State::const_iterator range_it = state_it->begin();
388 range_it != state_it->end();
389 ++range_it) {
390 while (shift > 0 && range_it->from % (1 << shift) != 0) {
391 --shift;
392 }
393 }
394 shifts.push_back(shift);
395 pos += 1 + (1 << (7 - shift));
396 state_offset.push_back(pos);
397 }
398
399 DCHECK_EQ(129, state_offset[1]);
400
401 fputs(kProlog, stream);
402 TablePrinter table_printer(stream);
403
404 for (uint8_t state_index = 0; state_index < states.size(); ++state_index) {
405 const uint8_t shift = shifts[state_index];
406 uint8_t next_range = 0;
407 uint8_t target_state = 1;
408 fprintf(stream,
409 " // State %d, offset 0x%02x\n",
410 static_cast<int>(state_index),
411 static_cast<int>(state_offset[state_index]));
412 table_printer.PrintValue(shift);
413 for (int i = 0; i < 0x100; i += (1 << shift)) {
414 if (next_range < states[state_index].size() &&
415 states[state_index][next_range].from == i) {
416 target_state = states[state_index][next_range].target_state;
417 ++next_range;
418 }
419 if (i >= 0x80) {
420 table_printer.PrintValue(state_offset[target_state]);
421 }
422 }
423 table_printer.NewLine();
424 }
425
426 fputs(kEpilog, stream);
427 }
428
429 } // namespace
430
main(int argc,char * argv[])431 int main(int argc, char* argv[]) {
432 base::CommandLine::Init(argc, argv);
433 logging::LoggingSettings settings;
434 settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
435 logging::InitLogging(settings);
436 if (base::CommandLine::ForCurrentProcess()->HasSwitch("help")) {
437 fwrite(kHelpText, 1, arraysize(kHelpText), stdout);
438 exit(EXIT_SUCCESS);
439 }
440 base::FilePath filename =
441 base::CommandLine::ForCurrentProcess()->GetSwitchValuePath("output");
442
443 FILE* output = stdout;
444 if (!filename.empty()) {
445 output = base::OpenFile(filename, "wb");
446 if (!output)
447 PLOG(FATAL) << "Couldn't open '" << filename.AsUTF8Unsafe()
448 << "' for writing";
449 }
450
451 // Step 1: Enumerate the characters
452 PairVector pairs = InitializeCharacters();
453 // Step 2: Convert to sets.
454 MoveAllCharsToSets(&pairs);
455 if (VLOG_IS_ON(1)) {
456 LogStringSets(pairs);
457 }
458 // Step 3: Generate states.
459 std::vector<State> states = GenerateStates(pairs);
460 // Step 4/5: Print output
461 PrintStates(states, output);
462
463 if (!filename.empty()) {
464 if (!base::CloseFile(output))
465 PLOG(FATAL) << "Couldn't finish writing '" << filename.AsUTF8Unsafe()
466 << "'";
467 }
468
469 return EXIT_SUCCESS;
470 }
471