xref: /aosp_15_r20/external/libaom/av1/encoder/x86/pickrst_sse4.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2018, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <smmintrin.h>
14 #include "aom_dsp/x86/mem_sse2.h"
15 #include "aom_dsp/x86/synonyms.h"
16 
17 #include "config/av1_rtcd.h"
18 #include "av1/common/restoration.h"
19 #include "av1/encoder/pickrst.h"
20 
acc_stat_sse41(int32_t * dst,const uint8_t * src,const __m128i * shuffle,const __m128i * kl)21 static inline void acc_stat_sse41(int32_t *dst, const uint8_t *src,
22                                   const __m128i *shuffle, const __m128i *kl) {
23   const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
24   const __m128i d0 = _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(s));
25   const __m128i d1 =
26       _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(_mm_srli_si128(s, 8)));
27   const __m128i dst0 = xx_loadu_128(dst);
28   const __m128i dst1 = xx_loadu_128(dst + 4);
29   const __m128i r0 = _mm_add_epi32(dst0, d0);
30   const __m128i r1 = _mm_add_epi32(dst1, d1);
31   xx_storeu_128(dst, r0);
32   xx_storeu_128(dst + 4, r1);
33 }
34 
acc_stat_win7_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int32_t M_int[WIENER_WIN][WIENER_WIN],int32_t H_int[WIENER_WIN2][WIENER_WIN * 8])35 static inline void acc_stat_win7_one_line_sse4_1(
36     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
37     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
38     int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN],
39     int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
40   const int wiener_win = 7;
41   int j, k, l;
42   // Main loop handles two pixels at a time
43   // We can assume that h_start is even, since it will always be aligned to
44   // a tile edge + some number of restoration units, and both of those will
45   // be 64-pixel aligned.
46   // However, at the edge of the image, h_end may be odd, so we need to handle
47   // that case correctly.
48   assert(h_start % 2 == 0);
49   const int h_end_even = h_end & ~1;
50   const int has_odd_pixel = h_end & 1;
51   for (j = h_start; j < h_end_even; j += 2) {
52     const uint8_t *dgd_ij = dgd + j;
53     const uint8_t X1 = src[j];
54     const uint8_t X2 = src[j + 1];
55     *sumX += X1 + X2;
56     for (k = 0; k < wiener_win; k++) {
57       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
58       for (l = 0; l < wiener_win; l++) {
59         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
60         const uint8_t D1 = dgd_ijk[l];
61         const uint8_t D2 = dgd_ijk[l + 1];
62         sumY[k][l] += D1 + D2;
63         M_int[k][l] += D1 * X1 + D2 * X2;
64 
65         const __m128i kl =
66             _mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
67         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
68         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
69         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
70         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
71         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
72         acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
73         acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
74       }
75     }
76   }
77   // If the width is odd, add in the final pixel
78   if (has_odd_pixel) {
79     const uint8_t *dgd_ij = dgd + j;
80     const uint8_t X1 = src[j];
81     *sumX += X1;
82     for (k = 0; k < wiener_win; k++) {
83       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
84       for (l = 0; l < wiener_win; l++) {
85         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
86         const uint8_t D1 = dgd_ijk[l];
87         sumY[k][l] += D1;
88         M_int[k][l] += D1 * X1;
89 
90         // The `acc_stat_sse41` function wants its input to have interleaved
91         // copies of two pixels, but we only have one. However, the pixels
92         // are (effectively) used as inputs to a multiply-accumulate.
93         // So if we set the extra pixel slot to 0, then it is effectively
94         // ignored.
95         const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
96         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
97         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
98         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
99         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
100         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
101         acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
102         acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
103       }
104     }
105   }
106 }
107 
compute_stats_win7_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)108 static inline void compute_stats_win7_opt_sse4_1(
109     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
110     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
111     int use_downsampled_wiener_stats) {
112   int i, j, k, l, m, n;
113   const int wiener_win = WIENER_WIN;
114   const int pixel_count = (h_end - h_start) * (v_end - v_start);
115   const int wiener_win2 = wiener_win * wiener_win;
116   const int wiener_halfwin = (wiener_win >> 1);
117   const uint8_t avg =
118       find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
119 
120   int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
121   int32_t M_int32_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
122   int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
123   int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
124   int32_t H_int32_row[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
125   int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
126   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
127   int32_t sumX = 0;
128   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
129   int downsample_factor =
130       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
131   int32_t sumX_row = 0;
132   int32_t sumY_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
133 
134   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
135   for (j = v_start; j < v_end; j += 64) {
136     const int vert_end = AOMMIN(64, v_end - j) + j;
137     for (i = j; i < vert_end; i = i + downsample_factor) {
138       if (use_downsampled_wiener_stats &&
139           (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
140         downsample_factor = vert_end - i;
141       }
142       sumX_row = 0;
143       memset(sumY_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
144       memset(M_int32_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
145       memset(H_int32_row, 0, sizeof(int32_t) * WIENER_WIN2 * (WIENER_WIN * 8));
146       acc_stat_win7_one_line_sse4_1(
147           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
148           dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
149       sumX += sumX_row * downsample_factor;
150       // Scale M matrix based on the downsampling factor
151       for (k = 0; k < wiener_win; ++k) {
152         for (l = 0; l < wiener_win; ++l) {
153           sumY[k][l] += (sumY_row[k][l] * downsample_factor);
154           M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
155         }
156       }
157       // Scale H matrix based on the downsampling factor
158       for (k = 0; k < WIENER_WIN2; ++k) {
159         for (l = 0; l < WIENER_WIN * 8; ++l) {
160           H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
161         }
162       }
163     }
164     for (k = 0; k < wiener_win; ++k) {
165       for (l = 0; l < wiener_win; ++l) {
166         M_int64[k][l] += M_int32[k][l];
167         M_int32[k][l] = 0;
168       }
169     }
170     for (k = 0; k < WIENER_WIN2; ++k) {
171       for (l = 0; l < WIENER_WIN * 8; ++l) {
172         H_int64[k][l] += H_int32[k][l];
173         H_int32[k][l] = 0;
174       }
175     }
176   }
177 
178   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
179   for (k = 0; k < wiener_win; k++) {
180     for (l = 0; l < wiener_win; l++) {
181       const int32_t idx0 = l * wiener_win + k;
182       M[idx0] =
183           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
184       int64_t *H_ = H + idx0 * wiener_win2;
185       int64_t *H_int_ = &H_int64[idx0][0];
186       for (m = 0; m < wiener_win; m++) {
187         for (n = 0; n < wiener_win; n++) {
188           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
189                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
190         }
191       }
192     }
193   }
194 }
195 
196 #if CONFIG_AV1_HIGHBITDEPTH
acc_stat_highbd_sse41(int64_t * dst,const uint16_t * dgd,const __m128i * shuffle,const __m128i * dgd_ijkl)197 static inline void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
198                                          const __m128i *shuffle,
199                                          const __m128i *dgd_ijkl) {
200   // Load 256 bits from dgd in two chunks
201   const __m128i s0l = xx_loadu_128(dgd);
202   const __m128i s0h = xx_loadu_128(dgd + 4);
203   // s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
204   // s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
205   // (Slightly strange order so we can apply the same shuffle to both halves)
206 
207   // Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
208   const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
209   const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
210   // s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
211   // s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
212 
213   // Multiply s1 by dgd_ijkl resulting in 8x u32 values
214   // Horizontally add pairs of u32 resulting in 4x u32
215   const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
216   const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
217   // dl = [d c b a] as u32 values
218   // dh = [h g f e] as u32 values
219 
220   // Add these 8x u32 results on to dst in four parts
221   const __m128i dll = _mm_cvtepu32_epi64(dl);
222   const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
223   const __m128i dhl = _mm_cvtepu32_epi64(dh);
224   const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
225   // dll = [b a] as u64 values, etc.
226 
227   const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
228   xx_storeu_128(dst, rll);
229   const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
230   xx_storeu_128(dst + 2, rlh);
231   const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
232   xx_storeu_128(dst + 4, rhl);
233   const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
234   xx_storeu_128(dst + 6, rhh);
235 }
236 
acc_stat_highbd_win7_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN][WIENER_WIN],int64_t M_int[WIENER_WIN][WIENER_WIN],int64_t H_int[WIENER_WIN2][WIENER_WIN * 8])237 static inline void acc_stat_highbd_win7_one_line_sse4_1(
238     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
239     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
240     int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
241     int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
242   int j, k, l;
243   const int wiener_win = WIENER_WIN;
244   // Main loop handles two pixels at a time
245   // We can assume that h_start is even, since it will always be aligned to
246   // a tile edge + some number of restoration units, and both of those will
247   // be 64-pixel aligned.
248   // However, at the edge of the image, h_end may be odd, so we need to handle
249   // that case correctly.
250   assert(h_start % 2 == 0);
251   const int h_end_even = h_end & ~1;
252   const int has_odd_pixel = h_end & 1;
253   for (j = h_start; j < h_end_even; j += 2) {
254     const uint16_t X1 = src[j];
255     const uint16_t X2 = src[j + 1];
256     *sumX += X1 + X2;
257     const uint16_t *dgd_ij = dgd + j;
258     for (k = 0; k < wiener_win; k++) {
259       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
260       for (l = 0; l < wiener_win; l++) {
261         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
262         const uint16_t D1 = dgd_ijk[l];
263         const uint16_t D2 = dgd_ijk[l + 1];
264         sumY[k][l] += D1 + D2;
265         M_int[k][l] += D1 * X1 + D2 * X2;
266 
267         // Load two u16 values from dgd as a single u32
268         // Then broadcast to 4x u32 slots of a 128
269         const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
270         // dgd_ijkl = [y x y x y x y x] as u16
271 
272         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
273                               &dgd_ijkl);
274         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
275                               &dgd_ijkl);
276         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
277                               &dgd_ijkl);
278         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
279                               &dgd_ijkl);
280         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
281                               &dgd_ijkl);
282         acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
283                               &dgd_ijkl);
284         acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
285                               &dgd_ijkl);
286       }
287     }
288   }
289   // If the width is odd, add in the final pixel
290   if (has_odd_pixel) {
291     const uint16_t X1 = src[j];
292     *sumX += X1;
293     const uint16_t *dgd_ij = dgd + j;
294     for (k = 0; k < wiener_win; k++) {
295       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
296       for (l = 0; l < wiener_win; l++) {
297         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
298         const uint16_t D1 = dgd_ijk[l];
299         sumY[k][l] += D1;
300         M_int[k][l] += D1 * X1;
301 
302         // The `acc_stat_highbd_sse41` function wants its input to have
303         // interleaved copies of two pixels, but we only have one. However, the
304         // pixels are (effectively) used as inputs to a multiply-accumulate. So
305         // if we set the extra pixel slot to 0, then it is effectively ignored.
306         const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
307 
308         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
309                               &dgd_ijkl);
310         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
311                               &dgd_ijkl);
312         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
313                               &dgd_ijkl);
314         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
315                               &dgd_ijkl);
316         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
317                               &dgd_ijkl);
318         acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
319                               &dgd_ijkl);
320         acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
321                               &dgd_ijkl);
322       }
323     }
324   }
325 }
326 
compute_stats_highbd_win7_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)327 static inline void compute_stats_highbd_win7_opt_sse4_1(
328     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
329     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
330     int64_t *H, aom_bit_depth_t bit_depth) {
331   int i, j, k, l, m, n;
332   const int wiener_win = WIENER_WIN;
333   const int pixel_count = (h_end - h_start) * (v_end - v_start);
334   const int wiener_win2 = wiener_win * wiener_win;
335   const int wiener_halfwin = (wiener_win >> 1);
336   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
337   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
338   const uint16_t avg =
339       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
340 
341   int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
342   int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
343   int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
344   int32_t sumX = 0;
345   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
346 
347   // Load just half of the 256-bit shuffle control used for the AVX2 version
348   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
349   for (j = v_start; j < v_end; j += 64) {
350     const int vert_end = AOMMIN(64, v_end - j) + j;
351     for (i = j; i < vert_end; i++) {
352       acc_stat_highbd_win7_one_line_sse4_1(
353           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
354           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
355     }
356   }
357 
358   uint8_t bit_depth_divider = 1;
359   if (bit_depth == AOM_BITS_12)
360     bit_depth_divider = 16;
361   else if (bit_depth == AOM_BITS_10)
362     bit_depth_divider = 4;
363 
364   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
365   for (k = 0; k < wiener_win; k++) {
366     for (l = 0; l < wiener_win; l++) {
367       const int32_t idx0 = l * wiener_win + k;
368       M[idx0] = (M_int[k][l] +
369                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
370                 bit_depth_divider;
371       int64_t *H_ = H + idx0 * wiener_win2;
372       int64_t *H_int_ = &H_int[idx0][0];
373       for (m = 0; m < wiener_win; m++) {
374         for (n = 0; n < wiener_win; n++) {
375           H_[m * wiener_win + n] =
376               (H_int_[n * 8 + m] +
377                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
378               bit_depth_divider;
379         }
380       }
381     }
382   }
383 }
384 
acc_stat_highbd_win5_one_line_sse4_1(const uint16_t * dgd,const uint16_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])385 static inline void acc_stat_highbd_win5_one_line_sse4_1(
386     const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
387     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
388     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
389     int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
390     int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
391   int j, k, l;
392   const int wiener_win = WIENER_WIN_CHROMA;
393   // Main loop handles two pixels at a time
394   // We can assume that h_start is even, since it will always be aligned to
395   // a tile edge + some number of restoration units, and both of those will
396   // be 64-pixel aligned.
397   // However, at the edge of the image, h_end may be odd, so we need to handle
398   // that case correctly.
399   assert(h_start % 2 == 0);
400   const int h_end_even = h_end & ~1;
401   const int has_odd_pixel = h_end & 1;
402   for (j = h_start; j < h_end_even; j += 2) {
403     const uint16_t X1 = src[j];
404     const uint16_t X2 = src[j + 1];
405     *sumX += X1 + X2;
406     const uint16_t *dgd_ij = dgd + j;
407     for (k = 0; k < wiener_win; k++) {
408       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
409       for (l = 0; l < wiener_win; l++) {
410         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
411         const uint16_t D1 = dgd_ijk[l];
412         const uint16_t D2 = dgd_ijk[l + 1];
413         sumY[k][l] += D1 + D2;
414         M_int[k][l] += D1 * X1 + D2 * X2;
415 
416         // Load two u16 values from dgd as a single u32
417         // then broadcast to 4x u32 slots of a 128
418         const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
419         // dgd_ijkl = [y x y x y x y x] as u16
420 
421         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
422                               &dgd_ijkl);
423         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
424                               &dgd_ijkl);
425         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
426                               &dgd_ijkl);
427         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
428                               &dgd_ijkl);
429         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
430                               &dgd_ijkl);
431       }
432     }
433   }
434   // If the width is odd, add in the final pixel
435   if (has_odd_pixel) {
436     const uint16_t X1 = src[j];
437     *sumX += X1;
438     const uint16_t *dgd_ij = dgd + j;
439     for (k = 0; k < wiener_win; k++) {
440       const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
441       for (l = 0; l < wiener_win; l++) {
442         int64_t *H_ = &H_int[(l * wiener_win + k)][0];
443         const uint16_t D1 = dgd_ijk[l];
444         sumY[k][l] += D1;
445         M_int[k][l] += D1 * X1;
446 
447         // The `acc_stat_highbd_sse41` function wants its input to have
448         // interleaved copies of two pixels, but we only have one. However, the
449         // pixels are (effectively) used as inputs to a multiply-accumulate. So
450         // if we set the extra pixel slot to 0, then it is effectively ignored.
451         const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
452 
453         acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
454                               &dgd_ijkl);
455         acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
456                               &dgd_ijkl);
457         acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
458                               &dgd_ijkl);
459         acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
460                               &dgd_ijkl);
461         acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
462                               &dgd_ijkl);
463       }
464     }
465   }
466 }
467 
compute_stats_highbd_win5_opt_sse4_1(const uint8_t * dgd8,const uint8_t * src8,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)468 static inline void compute_stats_highbd_win5_opt_sse4_1(
469     const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
470     int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
471     int64_t *H, aom_bit_depth_t bit_depth) {
472   int i, j, k, l, m, n;
473   const int wiener_win = WIENER_WIN_CHROMA;
474   const int pixel_count = (h_end - h_start) * (v_end - v_start);
475   const int wiener_win2 = wiener_win * wiener_win;
476   const int wiener_halfwin = (wiener_win >> 1);
477   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
478   const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
479   const uint16_t avg =
480       find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
481 
482   int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
483   int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
484   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
485   int32_t sumX = 0;
486   const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
487 
488   // Load just half of the 256-bit shuffle control used for the AVX2 version
489   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
490   for (j = v_start; j < v_end; j += 64) {
491     const int vert_end = AOMMIN(64, v_end - j) + j;
492     for (i = j; i < vert_end; i++) {
493       acc_stat_highbd_win5_one_line_sse4_1(
494           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
495           dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
496     }
497   }
498 
499   uint8_t bit_depth_divider = 1;
500   if (bit_depth == AOM_BITS_12)
501     bit_depth_divider = 16;
502   else if (bit_depth == AOM_BITS_10)
503     bit_depth_divider = 4;
504 
505   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
506   for (k = 0; k < wiener_win; k++) {
507     for (l = 0; l < wiener_win; l++) {
508       const int32_t idx0 = l * wiener_win + k;
509       M[idx0] = (M_int[k][l] +
510                  (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
511                 bit_depth_divider;
512       int64_t *H_ = H + idx0 * wiener_win2;
513       int64_t *H_int_ = &H_int[idx0][0];
514       for (m = 0; m < wiener_win; m++) {
515         for (n = 0; n < wiener_win; n++) {
516           H_[m * wiener_win + n] =
517               (H_int_[n * 8 + m] +
518                (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
519               bit_depth_divider;
520         }
521       }
522     }
523   }
524 }
525 
av1_compute_stats_highbd_sse4_1(int wiener_win,const uint8_t * dgd8,const uint8_t * src8,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,aom_bit_depth_t bit_depth)526 void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint8_t *dgd8,
527                                      const uint8_t *src8, int16_t *dgd_avg,
528                                      int16_t *src_avg, int h_start, int h_end,
529                                      int v_start, int v_end, int dgd_stride,
530                                      int src_stride, int64_t *M, int64_t *H,
531                                      aom_bit_depth_t bit_depth) {
532   if (wiener_win == WIENER_WIN) {
533     (void)dgd_avg;
534     (void)src_avg;
535     compute_stats_highbd_win7_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
536                                          v_end, dgd_stride, src_stride, M, H,
537                                          bit_depth);
538   } else if (wiener_win == WIENER_WIN_CHROMA) {
539     (void)dgd_avg;
540     (void)src_avg;
541     compute_stats_highbd_win5_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
542                                          v_end, dgd_stride, src_stride, M, H,
543                                          bit_depth);
544   } else {
545     av1_compute_stats_highbd_c(wiener_win, dgd8, src8, dgd_avg, src_avg,
546                                h_start, h_end, v_start, v_end, dgd_stride,
547                                src_stride, M, H, bit_depth);
548   }
549 }
550 #endif  // CONFIG_AV1_HIGHBITDEPTH
551 
acc_stat_win5_one_line_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int dgd_stride,const __m128i * shuffle,int32_t * sumX,int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8])552 static inline void acc_stat_win5_one_line_sse4_1(
553     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
554     int dgd_stride, const __m128i *shuffle, int32_t *sumX,
555     int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
556     int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
557     int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
558   const int wiener_win = WIENER_WIN_CHROMA;
559   int j, k, l;
560   // Main loop handles two pixels at a time
561   // We can assume that h_start is even, since it will always be aligned to
562   // a tile edge + some number of restoration units, and both of those will
563   // be 64-pixel aligned.
564   // However, at the edge of the image, h_end may be odd, so we need to handle
565   // that case correctly.
566   assert(h_start % 2 == 0);
567   const int h_end_even = h_end & ~1;
568   const int has_odd_pixel = h_end & 1;
569   for (j = h_start; j < h_end_even; j += 2) {
570     const uint8_t *dgd_ij = dgd + j;
571     const uint8_t X1 = src[j];
572     const uint8_t X2 = src[j + 1];
573     *sumX += X1 + X2;
574     for (k = 0; k < wiener_win; k++) {
575       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
576       for (l = 0; l < wiener_win; l++) {
577         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
578         const uint8_t D1 = dgd_ijk[l];
579         const uint8_t D2 = dgd_ijk[l + 1];
580         sumY[k][l] += D1 + D2;
581         M_int[k][l] += D1 * X1 + D2 * X2;
582 
583         const __m128i kl =
584             _mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
585         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
586         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
587         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
588         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
589         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
590       }
591     }
592   }
593   // If the width is odd, add in the final pixel
594   if (has_odd_pixel) {
595     const uint8_t *dgd_ij = dgd + j;
596     const uint8_t X1 = src[j];
597     *sumX += X1;
598     for (k = 0; k < wiener_win; k++) {
599       const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
600       for (l = 0; l < wiener_win; l++) {
601         int32_t *H_ = &H_int[(l * wiener_win + k)][0];
602         const uint8_t D1 = dgd_ijk[l];
603         sumY[k][l] += D1;
604         M_int[k][l] += D1 * X1;
605 
606         // The `acc_stat_sse41` function wants its input to have interleaved
607         // copies of two pixels, but we only have one. However, the pixels
608         // are (effectively) used as inputs to a multiply-accumulate.
609         // So if we set the extra pixel slot to 0, then it is effectively
610         // ignored.
611         const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
612         acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
613         acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
614         acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
615         acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
616         acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
617       }
618     }
619   }
620 }
621 
compute_stats_win5_opt_sse4_1(const uint8_t * dgd,const uint8_t * src,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)622 static inline void compute_stats_win5_opt_sse4_1(
623     const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
624     int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
625     int use_downsampled_wiener_stats) {
626   int i, j, k, l, m, n;
627   const int wiener_win = WIENER_WIN_CHROMA;
628   const int pixel_count = (h_end - h_start) * (v_end - v_start);
629   const int wiener_win2 = wiener_win * wiener_win;
630   const int wiener_halfwin = (wiener_win >> 1);
631   const uint8_t avg =
632       find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
633 
634   int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
635   int32_t M_int32_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
636   int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
637   int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
638   int32_t H_int32_row[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
639   int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
640   int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
641   int32_t sumX = 0;
642   const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
643   int downsample_factor =
644       use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
645   int32_t sumX_row = 0;
646   int32_t sumY_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
647 
648   const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
649   for (j = v_start; j < v_end; j += 64) {
650     const int vert_end = AOMMIN(64, v_end - j) + j;
651     for (i = j; i < vert_end; i = i + downsample_factor) {
652       if (use_downsampled_wiener_stats &&
653           (vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
654         downsample_factor = vert_end - i;
655       }
656       sumX_row = 0;
657       memset(sumY_row, 0,
658              sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
659       memset(M_int32_row, 0,
660              sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
661       memset(H_int32_row, 0,
662              sizeof(int32_t) * WIENER_WIN2_CHROMA * (WIENER_WIN_CHROMA * 8));
663       acc_stat_win5_one_line_sse4_1(
664           dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
665           dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
666       sumX += sumX_row * downsample_factor;
667       // Scale M matrix based on the downsampling factor
668       for (k = 0; k < wiener_win; ++k) {
669         for (l = 0; l < wiener_win; ++l) {
670           sumY[k][l] += (sumY_row[k][l] * downsample_factor);
671           M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
672         }
673       }
674       // Scale H matrix based on the downsampling factor
675       for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
676         for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
677           H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
678         }
679       }
680     }
681     for (k = 0; k < wiener_win; ++k) {
682       for (l = 0; l < wiener_win; ++l) {
683         M_int64[k][l] += M_int32[k][l];
684         M_int32[k][l] = 0;
685       }
686     }
687     for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
688       for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
689         H_int64[k][l] += H_int32[k][l];
690         H_int32[k][l] = 0;
691       }
692     }
693   }
694 
695   const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
696   for (k = 0; k < wiener_win; k++) {
697     for (l = 0; l < wiener_win; l++) {
698       const int32_t idx0 = l * wiener_win + k;
699       M[idx0] =
700           M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
701       int64_t *H_ = H + idx0 * wiener_win2;
702       int64_t *H_int_ = &H_int64[idx0][0];
703       for (m = 0; m < wiener_win; m++) {
704         for (n = 0; n < wiener_win; n++) {
705           H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
706                                    (int64_t)avg * (sumY[k][l] + sumY[n][m]);
707         }
708       }
709     }
710   }
711 }
av1_compute_stats_sse4_1(int wiener_win,const uint8_t * dgd,const uint8_t * src,int16_t * dgd_avg,int16_t * src_avg,int h_start,int h_end,int v_start,int v_end,int dgd_stride,int src_stride,int64_t * M,int64_t * H,int use_downsampled_wiener_stats)712 void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
713                               const uint8_t *src, int16_t *dgd_avg,
714                               int16_t *src_avg, int h_start, int h_end,
715                               int v_start, int v_end, int dgd_stride,
716                               int src_stride, int64_t *M, int64_t *H,
717                               int use_downsampled_wiener_stats) {
718   if (wiener_win == WIENER_WIN) {
719     compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
720                                   dgd_stride, src_stride, M, H,
721                                   use_downsampled_wiener_stats);
722   } else if (wiener_win == WIENER_WIN_CHROMA) {
723     compute_stats_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
724                                   dgd_stride, src_stride, M, H,
725                                   use_downsampled_wiener_stats);
726   } else {
727     av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
728                         v_start, v_end, dgd_stride, src_stride, M, H,
729                         use_downsampled_wiener_stats);
730   }
731 }
732 
pair_set_epi16(int a,int b)733 static inline __m128i pair_set_epi16(int a, int b) {
734   return _mm_set1_epi32(
735       (int32_t)(((uint16_t)(a)) | (((uint32_t)(uint16_t)(b)) << 16)));
736 }
737 
av1_lowbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)738 int64_t av1_lowbd_pixel_proj_error_sse4_1(
739     const uint8_t *src8, int width, int height, int src_stride,
740     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
741     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
742   int i, j, k;
743   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
744   const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
745   __m128i sum64 = _mm_setzero_si128();
746   const uint8_t *src = src8;
747   const uint8_t *dat = dat8;
748   int64_t err = 0;
749   if (params->r[0] > 0 && params->r[1] > 0) {
750     __m128i xq_coeff = pair_set_epi16(xq[0], xq[1]);
751     for (i = 0; i < height; ++i) {
752       __m128i sum32 = _mm_setzero_si128();
753       for (j = 0; j <= width - 8; j += 8) {
754         const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
755         const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
756         const __m128i flt0_16b =
757             _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4));
758         const __m128i flt1_16b =
759             _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4));
760         const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
761         const __m128i flt0_0_sub_u = _mm_sub_epi16(flt0_16b, u0);
762         const __m128i flt1_0_sub_u = _mm_sub_epi16(flt1_16b, u0);
763         const __m128i v0 = _mm_madd_epi16(
764             xq_coeff, _mm_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
765         const __m128i v1 = _mm_madd_epi16(
766             xq_coeff, _mm_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
767         const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
768         const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
769         const __m128i e0 =
770             _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
771         const __m128i err0 = _mm_madd_epi16(e0, e0);
772         sum32 = _mm_add_epi32(sum32, err0);
773       }
774       for (k = j; k < width; ++k) {
775         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
776         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
777         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
778         err += ((int64_t)e * e);
779       }
780       dat += dat_stride;
781       src += src_stride;
782       flt0 += flt0_stride;
783       flt1 += flt1_stride;
784       const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
785       const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
786       sum64 = _mm_add_epi64(sum64, sum64_0);
787       sum64 = _mm_add_epi64(sum64, sum64_1);
788     }
789   } else if (params->r[0] > 0 || params->r[1] > 0) {
790     const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
791     const __m128i xq_coeff =
792         pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
793     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
794     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
795     for (i = 0; i < height; ++i) {
796       __m128i sum32 = _mm_setzero_si128();
797       for (j = 0; j <= width - 8; j += 8) {
798         const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
799         const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
800         const __m128i flt_16b =
801             _mm_packs_epi32(xx_loadu_128(flt + j), xx_loadu_128(flt + j + 4));
802         const __m128i v0 =
803             _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt_16b, d0));
804         const __m128i v1 =
805             _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt_16b, d0));
806         const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
807         const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
808         const __m128i e0 =
809             _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
810         const __m128i err0 = _mm_madd_epi16(e0, e0);
811         sum32 = _mm_add_epi32(sum32, err0);
812       }
813       for (k = j; k < width; ++k) {
814         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
815         int32_t v = xq_active * (flt[k] - u);
816         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
817         err += ((int64_t)e * e);
818       }
819       dat += dat_stride;
820       src += src_stride;
821       flt += flt_stride;
822       const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
823       const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
824       sum64 = _mm_add_epi64(sum64, sum64_0);
825       sum64 = _mm_add_epi64(sum64, sum64_1);
826     }
827   } else {
828     __m128i sum32 = _mm_setzero_si128();
829     for (i = 0; i < height; ++i) {
830       for (j = 0; j <= width - 16; j += 16) {
831         const __m128i d = xx_loadu_128(dat + j);
832         const __m128i s = xx_loadu_128(src + j);
833         const __m128i d0 = _mm_cvtepu8_epi16(d);
834         const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
835         const __m128i s0 = _mm_cvtepu8_epi16(s);
836         const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
837         const __m128i diff0 = _mm_sub_epi16(d0, s0);
838         const __m128i diff1 = _mm_sub_epi16(d1, s1);
839         const __m128i err0 = _mm_madd_epi16(diff0, diff0);
840         const __m128i err1 = _mm_madd_epi16(diff1, diff1);
841         sum32 = _mm_add_epi32(sum32, err0);
842         sum32 = _mm_add_epi32(sum32, err1);
843       }
844       for (k = j; k < width; ++k) {
845         const int32_t e = (int32_t)(dat[k]) - src[k];
846         err += ((int64_t)e * e);
847       }
848       dat += dat_stride;
849       src += src_stride;
850     }
851     const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
852     const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
853     sum64 = _mm_add_epi64(sum64_0, sum64_1);
854   }
855   int64_t sum[2];
856   xx_storeu_128(sum, sum64);
857   err += sum[0] + sum[1];
858   return err;
859 }
860 
861 // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
862 // C and H need to be computed.
calc_proj_params_r0_r1_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])863 static inline void calc_proj_params_r0_r1_sse4_1(
864     const uint8_t *src8, int width, int height, int src_stride,
865     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
866     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
867   const int size = width * height;
868   const uint8_t *src = src8;
869   const uint8_t *dat = dat8;
870   __m128i h00, h01, h11, c0, c1;
871   const __m128i zero = _mm_setzero_si128();
872   h01 = h11 = c0 = c1 = h00 = zero;
873 
874   for (int i = 0; i < height; ++i) {
875     for (int j = 0; j < width; j += 4) {
876       const __m128i u_load = _mm_cvtepu8_epi32(
877           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
878       const __m128i s_load = _mm_cvtepu8_epi32(
879           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
880       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
881       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
882       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
883       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
884       s = _mm_sub_epi32(s, d);
885       f1 = _mm_sub_epi32(f1, d);
886       f2 = _mm_sub_epi32(f2, d);
887 
888       const __m128i h00_even = _mm_mul_epi32(f1, f1);
889       const __m128i h00_odd =
890           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
891       h00 = _mm_add_epi64(h00, h00_even);
892       h00 = _mm_add_epi64(h00, h00_odd);
893 
894       const __m128i h01_even = _mm_mul_epi32(f1, f2);
895       const __m128i h01_odd =
896           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
897       h01 = _mm_add_epi64(h01, h01_even);
898       h01 = _mm_add_epi64(h01, h01_odd);
899 
900       const __m128i h11_even = _mm_mul_epi32(f2, f2);
901       const __m128i h11_odd =
902           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
903       h11 = _mm_add_epi64(h11, h11_even);
904       h11 = _mm_add_epi64(h11, h11_odd);
905 
906       const __m128i c0_even = _mm_mul_epi32(f1, s);
907       const __m128i c0_odd =
908           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
909       c0 = _mm_add_epi64(c0, c0_even);
910       c0 = _mm_add_epi64(c0, c0_odd);
911 
912       const __m128i c1_even = _mm_mul_epi32(f2, s);
913       const __m128i c1_odd =
914           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
915       c1 = _mm_add_epi64(c1, c1_even);
916       c1 = _mm_add_epi64(c1, c1_odd);
917     }
918   }
919 
920   __m128i c_low = _mm_unpacklo_epi64(c0, c1);
921   const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
922   c_low = _mm_add_epi64(c_low, c_high);
923 
924   __m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
925   const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
926   h0x_low = _mm_add_epi64(h0x_low, h0x_high);
927 
928   // Using the symmetric properties of H,  calculations of H[1][0] are not
929   // needed.
930   __m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
931   const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
932   h1x_low = _mm_add_epi64(h1x_low, h1x_high);
933 
934   xx_storeu_128(C, c_low);
935   xx_storeu_128(H[0], h0x_low);
936   xx_storeu_128(H[1], h1x_low);
937 
938   H[0][0] /= size;
939   H[0][1] /= size;
940   H[1][1] /= size;
941 
942   // Since H is a symmetric matrix
943   H[1][0] = H[0][1];
944   C[0] /= size;
945   C[1] /= size;
946 }
947 
948 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
949 // non-zero and need to be computed.
calc_proj_params_r0_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])950 static inline void calc_proj_params_r0_sse4_1(const uint8_t *src8, int width,
951                                               int height, int src_stride,
952                                               const uint8_t *dat8,
953                                               int dat_stride, int32_t *flt0,
954                                               int flt0_stride, int64_t H[2][2],
955                                               int64_t C[2]) {
956   const int size = width * height;
957   const uint8_t *src = src8;
958   const uint8_t *dat = dat8;
959   __m128i h00, c0;
960   const __m128i zero = _mm_setzero_si128();
961   c0 = h00 = zero;
962 
963   for (int i = 0; i < height; ++i) {
964     for (int j = 0; j < width; j += 4) {
965       const __m128i u_load = _mm_cvtepu8_epi32(
966           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
967       const __m128i s_load = _mm_cvtepu8_epi32(
968           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
969       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
970       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
971       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
972       s = _mm_sub_epi32(s, d);
973       f1 = _mm_sub_epi32(f1, d);
974 
975       const __m128i h00_even = _mm_mul_epi32(f1, f1);
976       const __m128i h00_odd =
977           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
978       h00 = _mm_add_epi64(h00, h00_even);
979       h00 = _mm_add_epi64(h00, h00_odd);
980 
981       const __m128i c0_even = _mm_mul_epi32(f1, s);
982       const __m128i c0_odd =
983           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
984       c0 = _mm_add_epi64(c0, c0_even);
985       c0 = _mm_add_epi64(c0, c0_odd);
986     }
987   }
988   const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
989 
990   const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
991 
992   const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
993   const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
994 
995   xx_storeu_128(C, c);
996   xx_storeu_128(H[0], h0x);
997 
998   H[0][0] /= size;
999   C[0] /= size;
1000 }
1001 
1002 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1003 // non-zero and need to be computed.
calc_proj_params_r1_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1004 static inline void calc_proj_params_r1_sse4_1(const uint8_t *src8, int width,
1005                                               int height, int src_stride,
1006                                               const uint8_t *dat8,
1007                                               int dat_stride, int32_t *flt1,
1008                                               int flt1_stride, int64_t H[2][2],
1009                                               int64_t C[2]) {
1010   const int size = width * height;
1011   const uint8_t *src = src8;
1012   const uint8_t *dat = dat8;
1013   __m128i h11, c1;
1014   const __m128i zero = _mm_setzero_si128();
1015   c1 = h11 = zero;
1016 
1017   for (int i = 0; i < height; ++i) {
1018     for (int j = 0; j < width; j += 4) {
1019       const __m128i u_load = _mm_cvtepu8_epi32(
1020           _mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
1021       const __m128i s_load = _mm_cvtepu8_epi32(
1022           _mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
1023       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1024       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1025       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1026       s = _mm_sub_epi32(s, d);
1027       f2 = _mm_sub_epi32(f2, d);
1028 
1029       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1030       const __m128i h11_odd =
1031           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1032       h11 = _mm_add_epi64(h11, h11_even);
1033       h11 = _mm_add_epi64(h11, h11_odd);
1034 
1035       const __m128i c1_even = _mm_mul_epi32(f2, s);
1036       const __m128i c1_odd =
1037           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1038       c1 = _mm_add_epi64(c1, c1_even);
1039       c1 = _mm_add_epi64(c1, c1_odd);
1040     }
1041   }
1042 
1043   const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
1044 
1045   const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
1046 
1047   const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
1048   const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
1049 
1050   xx_storeu_128(C, c);
1051   xx_storeu_128(H[1], h1x);
1052 
1053   H[1][1] /= size;
1054   C[1] /= size;
1055 }
1056 
1057 // SSE4.1 variant of av1_calc_proj_params_c.
av1_calc_proj_params_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1058 void av1_calc_proj_params_sse4_1(const uint8_t *src8, int width, int height,
1059                                  int src_stride, const uint8_t *dat8,
1060                                  int dat_stride, int32_t *flt0, int flt0_stride,
1061                                  int32_t *flt1, int flt1_stride,
1062                                  int64_t H[2][2], int64_t C[2],
1063                                  const sgr_params_type *params) {
1064   if ((params->r[0] > 0) && (params->r[1] > 0)) {
1065     calc_proj_params_r0_r1_sse4_1(src8, width, height, src_stride, dat8,
1066                                   dat_stride, flt0, flt0_stride, flt1,
1067                                   flt1_stride, H, C);
1068   } else if (params->r[0] > 0) {
1069     calc_proj_params_r0_sse4_1(src8, width, height, src_stride, dat8,
1070                                dat_stride, flt0, flt0_stride, H, C);
1071   } else if (params->r[1] > 0) {
1072     calc_proj_params_r1_sse4_1(src8, width, height, src_stride, dat8,
1073                                dat_stride, flt1, flt1_stride, H, C);
1074   }
1075 }
1076 
1077 #if CONFIG_AV1_HIGHBITDEPTH
calc_proj_params_r0_r1_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1078 static inline void calc_proj_params_r0_r1_high_bd_sse4_1(
1079     const uint8_t *src8, int width, int height, int src_stride,
1080     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1081     int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
1082   const int size = width * height;
1083   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1084   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1085   __m128i h00, h01, h11, c0, c1;
1086   const __m128i zero = _mm_setzero_si128();
1087   h01 = h11 = c0 = c1 = h00 = zero;
1088 
1089   for (int i = 0; i < height; ++i) {
1090     for (int j = 0; j < width; j += 4) {
1091       const __m128i u_load = _mm_cvtepu16_epi32(
1092           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1093       const __m128i s_load = _mm_cvtepu16_epi32(
1094           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1095       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
1096       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1097       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1098       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1099       s = _mm_sub_epi32(s, d);
1100       f1 = _mm_sub_epi32(f1, d);
1101       f2 = _mm_sub_epi32(f2, d);
1102 
1103       const __m128i h00_even = _mm_mul_epi32(f1, f1);
1104       const __m128i h00_odd =
1105           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
1106       h00 = _mm_add_epi64(h00, h00_even);
1107       h00 = _mm_add_epi64(h00, h00_odd);
1108 
1109       const __m128i h01_even = _mm_mul_epi32(f1, f2);
1110       const __m128i h01_odd =
1111           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
1112       h01 = _mm_add_epi64(h01, h01_even);
1113       h01 = _mm_add_epi64(h01, h01_odd);
1114 
1115       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1116       const __m128i h11_odd =
1117           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1118       h11 = _mm_add_epi64(h11, h11_even);
1119       h11 = _mm_add_epi64(h11, h11_odd);
1120 
1121       const __m128i c0_even = _mm_mul_epi32(f1, s);
1122       const __m128i c0_odd =
1123           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
1124       c0 = _mm_add_epi64(c0, c0_even);
1125       c0 = _mm_add_epi64(c0, c0_odd);
1126 
1127       const __m128i c1_even = _mm_mul_epi32(f2, s);
1128       const __m128i c1_odd =
1129           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1130       c1 = _mm_add_epi64(c1, c1_even);
1131       c1 = _mm_add_epi64(c1, c1_odd);
1132     }
1133   }
1134 
1135   __m128i c_low = _mm_unpacklo_epi64(c0, c1);
1136   const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
1137   c_low = _mm_add_epi64(c_low, c_high);
1138 
1139   __m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
1140   const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
1141   h0x_low = _mm_add_epi64(h0x_low, h0x_high);
1142 
1143   // Using the symmetric properties of H,  calculations of H[1][0] are not
1144   // needed.
1145   __m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
1146   const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
1147   h1x_low = _mm_add_epi64(h1x_low, h1x_high);
1148 
1149   xx_storeu_128(C, c_low);
1150   xx_storeu_128(H[0], h0x_low);
1151   xx_storeu_128(H[1], h1x_low);
1152 
1153   H[0][0] /= size;
1154   H[0][1] /= size;
1155   H[1][1] /= size;
1156 
1157   // Since H is a symmetric matrix
1158   H[1][0] = H[0][1];
1159   C[0] /= size;
1160   C[1] /= size;
1161 }
1162 
1163 // When only params->r[0] > 0. In this case only H[0][0] and C[0] are
1164 // non-zero and need to be computed.
calc_proj_params_r0_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int64_t H[2][2],int64_t C[2])1165 static inline void calc_proj_params_r0_high_bd_sse4_1(
1166     const uint8_t *src8, int width, int height, int src_stride,
1167     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1168     int64_t H[2][2], int64_t C[2]) {
1169   const int size = width * height;
1170   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1171   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1172   __m128i h00, c0;
1173   const __m128i zero = _mm_setzero_si128();
1174   c0 = h00 = zero;
1175 
1176   for (int i = 0; i < height; ++i) {
1177     for (int j = 0; j < width; j += 4) {
1178       const __m128i u_load = _mm_cvtepu16_epi32(
1179           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1180       const __m128i s_load = _mm_cvtepu16_epi32(
1181           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1182       __m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
1183       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1184       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1185       s = _mm_sub_epi32(s, d);
1186       f1 = _mm_sub_epi32(f1, d);
1187 
1188       const __m128i h00_even = _mm_mul_epi32(f1, f1);
1189       const __m128i h00_odd =
1190           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
1191       h00 = _mm_add_epi64(h00, h00_even);
1192       h00 = _mm_add_epi64(h00, h00_odd);
1193 
1194       const __m128i c0_even = _mm_mul_epi32(f1, s);
1195       const __m128i c0_odd =
1196           _mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
1197       c0 = _mm_add_epi64(c0, c0_even);
1198       c0 = _mm_add_epi64(c0, c0_odd);
1199     }
1200   }
1201   const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
1202 
1203   const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
1204 
1205   const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
1206   const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
1207 
1208   xx_storeu_128(C, c);
1209   xx_storeu_128(H[0], h0x);
1210 
1211   H[0][0] /= size;
1212   C[0] /= size;
1213 }
1214 
1215 // When only params->r[1] > 0. In this case only H[1][1] and C[1] are
1216 // non-zero and need to be computed.
calc_proj_params_r1_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2])1217 static inline void calc_proj_params_r1_high_bd_sse4_1(
1218     const uint8_t *src8, int width, int height, int src_stride,
1219     const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
1220     int64_t H[2][2], int64_t C[2]) {
1221   const int size = width * height;
1222   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1223   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1224   __m128i h11, c1;
1225   const __m128i zero = _mm_setzero_si128();
1226   c1 = h11 = zero;
1227 
1228   for (int i = 0; i < height; ++i) {
1229     for (int j = 0; j < width; j += 4) {
1230       const __m128i u_load = _mm_cvtepu16_epi32(
1231           _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
1232       const __m128i s_load = _mm_cvtepu16_epi32(
1233           _mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
1234       __m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
1235       __m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
1236       __m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
1237       s = _mm_sub_epi32(s, d);
1238       f2 = _mm_sub_epi32(f2, d);
1239 
1240       const __m128i h11_even = _mm_mul_epi32(f2, f2);
1241       const __m128i h11_odd =
1242           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
1243       h11 = _mm_add_epi64(h11, h11_even);
1244       h11 = _mm_add_epi64(h11, h11_odd);
1245 
1246       const __m128i c1_even = _mm_mul_epi32(f2, s);
1247       const __m128i c1_odd =
1248           _mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
1249       c1 = _mm_add_epi64(c1, c1_even);
1250       c1 = _mm_add_epi64(c1, c1_odd);
1251     }
1252   }
1253 
1254   const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
1255 
1256   const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
1257 
1258   const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
1259   const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
1260 
1261   xx_storeu_128(C, c);
1262   xx_storeu_128(H[1], h1x);
1263 
1264   H[1][1] /= size;
1265   C[1] /= size;
1266 }
1267 
1268 // SSE4.1 variant of av1_calc_proj_params_high_bd_c.
av1_calc_proj_params_high_bd_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int64_t H[2][2],int64_t C[2],const sgr_params_type * params)1269 void av1_calc_proj_params_high_bd_sse4_1(const uint8_t *src8, int width,
1270                                          int height, int src_stride,
1271                                          const uint8_t *dat8, int dat_stride,
1272                                          int32_t *flt0, int flt0_stride,
1273                                          int32_t *flt1, int flt1_stride,
1274                                          int64_t H[2][2], int64_t C[2],
1275                                          const sgr_params_type *params) {
1276   if ((params->r[0] > 0) && (params->r[1] > 0)) {
1277     calc_proj_params_r0_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1278                                           dat_stride, flt0, flt0_stride, flt1,
1279                                           flt1_stride, H, C);
1280   } else if (params->r[0] > 0) {
1281     calc_proj_params_r0_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1282                                        dat_stride, flt0, flt0_stride, H, C);
1283   } else if (params->r[1] > 0) {
1284     calc_proj_params_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
1285                                        dat_stride, flt1, flt1_stride, H, C);
1286   }
1287 }
1288 
av1_highbd_pixel_proj_error_sse4_1(const uint8_t * src8,int width,int height,int src_stride,const uint8_t * dat8,int dat_stride,int32_t * flt0,int flt0_stride,int32_t * flt1,int flt1_stride,int xq[2],const sgr_params_type * params)1289 int64_t av1_highbd_pixel_proj_error_sse4_1(
1290     const uint8_t *src8, int width, int height, int src_stride,
1291     const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
1292     int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
1293   int i, j, k;
1294   const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
1295   const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
1296   __m128i sum64 = _mm_setzero_si128();
1297   const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
1298   const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
1299   int64_t err = 0;
1300   if (params->r[0] > 0 && params->r[1] > 0) {  // Both filters are enabled
1301     const __m128i xq0 = _mm_set1_epi32(xq[0]);
1302     const __m128i xq1 = _mm_set1_epi32(xq[1]);
1303 
1304     for (i = 0; i < height; ++i) {
1305       __m128i sum32 = _mm_setzero_si128();
1306       for (j = 0; j <= width - 8; j += 8) {
1307         // Load 8x pixels from source image
1308         const __m128i s0 = xx_loadu_128(src + j);
1309         // s0 = [7 6 5 4 3 2 1 0] as i16 (indices of src[])
1310 
1311         // Load 8x pixels from corrupted image
1312         const __m128i d0 = xx_loadu_128(dat + j);
1313         // d0 = [7 6 5 4 3 2 1 0] as i16 (indices of dat[])
1314 
1315         // Shift each pixel value up by SGRPROJ_RST_BITS
1316         const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
1317 
1318         // Split u0 into two halves and pad each from u16 to i32
1319         const __m128i u0l = _mm_cvtepu16_epi32(u0);
1320         const __m128i u0h = _mm_cvtepu16_epi32(_mm_srli_si128(u0, 8));
1321         // u0h = [7 6 5 4] as i32, u0l = [3 2 1 0] as i32, all dat[] indices
1322 
1323         // Load 8 pixels from first and second filtered images
1324         const __m128i flt0l = xx_loadu_128(flt0 + j);
1325         const __m128i flt0h = xx_loadu_128(flt0 + j + 4);
1326         const __m128i flt1l = xx_loadu_128(flt1 + j);
1327         const __m128i flt1h = xx_loadu_128(flt1 + j + 4);
1328         // flt0 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt0+j)
1329         // flt1 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt1+j)
1330 
1331         // Subtract shifted corrupt image from each filtered image
1332         // This gives our two basis vectors for the projection
1333         const __m128i flt0l_subu = _mm_sub_epi32(flt0l, u0l);
1334         const __m128i flt0h_subu = _mm_sub_epi32(flt0h, u0h);
1335         const __m128i flt1l_subu = _mm_sub_epi32(flt1l, u0l);
1336         const __m128i flt1h_subu = _mm_sub_epi32(flt1h, u0h);
1337         // flt?h_subu = [ f[7]-u[7] f[6]-u[6] f[5]-u[5] f[4]-u[4] ] as i32
1338         // flt?l_subu = [ f[3]-u[3] f[2]-u[2] f[1]-u[1] f[0]-u[0] ] as i32
1339 
1340         // Multiply each basis vector by the corresponding coefficient
1341         const __m128i v0l = _mm_mullo_epi32(flt0l_subu, xq0);
1342         const __m128i v0h = _mm_mullo_epi32(flt0h_subu, xq0);
1343         const __m128i v1l = _mm_mullo_epi32(flt1l_subu, xq1);
1344         const __m128i v1h = _mm_mullo_epi32(flt1h_subu, xq1);
1345 
1346         // Add together the contribution from each scaled basis vector
1347         const __m128i vl = _mm_add_epi32(v0l, v1l);
1348         const __m128i vh = _mm_add_epi32(v0h, v1h);
1349 
1350         // Right-shift v with appropriate rounding
1351         const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
1352         const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
1353 
1354         // Saturate each i32 value to i16 and combine lower and upper halves
1355         const __m128i vr = _mm_packs_epi32(vrl, vrh);
1356 
1357         // Add twin-subspace-sgr-filter to corrupt image then subtract source
1358         const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
1359 
1360         // Calculate squared error and add adjacent values
1361         const __m128i err0 = _mm_madd_epi16(e0, e0);
1362 
1363         sum32 = _mm_add_epi32(sum32, err0);
1364       }
1365 
1366       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1367       sum64 = _mm_add_epi64(sum64, sum32l);
1368       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1369       sum64 = _mm_add_epi64(sum64, sum32h);
1370 
1371       // Process remaining pixels in this row (modulo 8)
1372       for (k = j; k < width; ++k) {
1373         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1374         int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
1375         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1376         err += ((int64_t)e * e);
1377       }
1378       dat += dat_stride;
1379       src += src_stride;
1380       flt0 += flt0_stride;
1381       flt1 += flt1_stride;
1382     }
1383   } else if (params->r[0] > 0 || params->r[1] > 0) {  // Only one filter enabled
1384     const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
1385     const __m128i xq_active = _mm_set1_epi32(xq_on);
1386     const __m128i xq_inactive =
1387         _mm_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
1388     const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
1389     const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
1390     for (i = 0; i < height; ++i) {
1391       __m128i sum32 = _mm_setzero_si128();
1392       for (j = 0; j <= width - 8; j += 8) {
1393         // Load 8x pixels from source image
1394         const __m128i s0 = xx_loadu_128(src + j);
1395         // s0 = [7 6 5 4 3 2 1 0] as u16 (indices of src[])
1396 
1397         // Load 8x pixels from corrupted image and pad each u16 to i32
1398         const __m128i d0 = xx_loadu_128(dat + j);
1399         const __m128i d0h = _mm_cvtepu16_epi32(_mm_srli_si128(d0, 8));
1400         const __m128i d0l = _mm_cvtepu16_epi32(d0);
1401         // d0h, d0l = [7 6 5 4], [3 2 1 0] as u32 (indices of dat[])
1402 
1403         // Load 8 pixels from the filtered image
1404         const __m128i flth = xx_loadu_128(flt + j + 4);
1405         const __m128i fltl = xx_loadu_128(flt + j);
1406         // flth, fltl = [7 6 5 4], [3 2 1 0] as i32 (indices of flt+j)
1407 
1408         const __m128i flth_xq = _mm_mullo_epi32(flth, xq_active);
1409         const __m128i fltl_xq = _mm_mullo_epi32(fltl, xq_active);
1410         const __m128i d0h_xq = _mm_mullo_epi32(d0h, xq_inactive);
1411         const __m128i d0l_xq = _mm_mullo_epi32(d0l, xq_inactive);
1412 
1413         const __m128i vh = _mm_add_epi32(flth_xq, d0h_xq);
1414         const __m128i vl = _mm_add_epi32(fltl_xq, d0l_xq);
1415         // vh = [ xq0(f[7]-d[7]) xq0(f[6]-d[6]) xq0(f[5]-d[5]) xq0(f[4]-d[4]) ]
1416         // vl = [ xq0(f[3]-d[3]) xq0(f[2]-d[2]) xq0(f[1]-d[1]) xq0(f[0]-d[0]) ]
1417 
1418         // Shift this down with appropriate rounding
1419         const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
1420         const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
1421 
1422         // Saturate vr0 and vr1 from i32 to i16 then pack together
1423         const __m128i vr = _mm_packs_epi32(vrl, vrh);
1424 
1425         // Subtract twin-subspace-sgr filtered from source image to get error
1426         const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
1427 
1428         // Calculate squared error and add adjacent values
1429         const __m128i err0 = _mm_madd_epi16(e0, e0);
1430 
1431         sum32 = _mm_add_epi32(sum32, err0);
1432       }
1433 
1434       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1435       sum64 = _mm_add_epi64(sum64, sum32l);
1436       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1437       sum64 = _mm_add_epi64(sum64, sum32h);
1438 
1439       // Process remaining pixels in this row (modulo 8)
1440       for (k = j; k < width; ++k) {
1441         const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
1442         int32_t v = xq_on * (flt[k] - u);
1443         const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
1444         err += ((int64_t)e * e);
1445       }
1446       dat += dat_stride;
1447       src += src_stride;
1448       flt += flt_stride;
1449     }
1450   } else {  // Neither filter is enabled
1451     for (i = 0; i < height; ++i) {
1452       __m128i sum32 = _mm_setzero_si128();
1453       for (j = 0; j <= width - 16; j += 16) {
1454         // Load 2x8 u16 from source image
1455         const __m128i s0 = xx_loadu_128(src + j);
1456         const __m128i s1 = xx_loadu_128(src + j + 8);
1457         // Load 2x8 u16 from corrupted image
1458         const __m128i d0 = xx_loadu_128(dat + j);
1459         const __m128i d1 = xx_loadu_128(dat + j + 8);
1460 
1461         // Subtract corrupted image from source image
1462         const __m128i diff0 = _mm_sub_epi16(d0, s0);
1463         const __m128i diff1 = _mm_sub_epi16(d1, s1);
1464 
1465         // Square error and add adjacent values
1466         const __m128i err0 = _mm_madd_epi16(diff0, diff0);
1467         const __m128i err1 = _mm_madd_epi16(diff1, diff1);
1468 
1469         sum32 = _mm_add_epi32(sum32, err0);
1470         sum32 = _mm_add_epi32(sum32, err1);
1471       }
1472 
1473       const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
1474       sum64 = _mm_add_epi64(sum64, sum32l);
1475       const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
1476       sum64 = _mm_add_epi64(sum64, sum32h);
1477 
1478       // Process remaining pixels (modulu 8)
1479       for (k = j; k < width; ++k) {
1480         const int32_t e = (int32_t)(dat[k]) - src[k];
1481         err += ((int64_t)e * e);
1482       }
1483       dat += dat_stride;
1484       src += src_stride;
1485     }
1486   }
1487 
1488   // Sum 4 values from sum64l and sum64h into err
1489   int64_t sum[2];
1490   xx_storeu_128(sum, sum64);
1491   err += sum[0] + sum[1];
1492   return err;
1493 }
1494 #endif  // CONFIG_AV1_HIGHBITDEPTH
1495