1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <string.h>
16
17 #include "aom_mem/aom_mem.h"
18
19 #include "av1/common/entropy.h"
20 #include "av1/common/pred_common.h"
21 #include "av1/common/scan.h"
22 #include "av1/common/seg_common.h"
23
24 #include "av1/encoder/cost.h"
25 #include "av1/encoder/encoder.h"
26 #include "av1/encoder/encodetxb.h"
27 #include "av1/encoder/rdopt.h"
28 #include "av1/encoder/tokenize.h"
29
av1_fast_palette_color_index_context_on_edge(const uint8_t * color_map,int stride,int r,int c,int * color_idx)30 static inline int av1_fast_palette_color_index_context_on_edge(
31 const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
32 const bool has_left = (c - 1 >= 0);
33 const bool has_above = (r - 1 >= 0);
34 assert(r > 0 || c > 0);
35 assert(has_above ^ has_left);
36 assert(color_idx);
37 (void)has_left;
38
39 const uint8_t color_neighbor = has_above
40 ? color_map[(r - 1) * stride + (c - 0)]
41 : color_map[(r - 0) * stride + (c - 1)];
42 // If the neighbor color has higher index than current color index, then we
43 // move up by 1.
44 const uint8_t current_color = *color_idx = color_map[r * stride + c];
45 if (color_neighbor > current_color) {
46 (*color_idx)++;
47 } else if (color_neighbor == current_color) {
48 *color_idx = 0;
49 }
50
51 // Get hash value of context.
52 // The non-diagonal neighbors get a weight of 2.
53 const uint8_t color_score = 2;
54 const uint8_t hash_multiplier = 1;
55 const uint8_t color_index_ctx_hash = color_score * hash_multiplier;
56
57 // Lookup context from hash.
58 const int color_index_ctx =
59 av1_palette_color_index_context_lookup[color_index_ctx_hash];
60 assert(color_index_ctx == 0);
61 (void)color_index_ctx;
62 return 0;
63 }
64
65 #define SWAP(i, j) \
66 do { \
67 const uint8_t tmp_score = score_rank[i]; \
68 const uint8_t tmp_color = color_rank[i]; \
69 score_rank[i] = score_rank[j]; \
70 color_rank[i] = color_rank[j]; \
71 score_rank[j] = tmp_score; \
72 color_rank[j] = tmp_color; \
73 } while (0)
74 #define INVALID_COLOR_IDX (UINT8_MAX)
75
76 // A faster version of av1_get_palette_color_index_context used by the encoder
77 // exploiting the fact that the encoder does not need to maintain a color order.
av1_fast_palette_color_index_context(const uint8_t * color_map,int stride,int r,int c,int * color_idx)78 static inline int av1_fast_palette_color_index_context(const uint8_t *color_map,
79 int stride, int r, int c,
80 int *color_idx) {
81 assert(r > 0 || c > 0);
82
83 const bool has_above = (r - 1 >= 0);
84 const bool has_left = (c - 1 >= 0);
85 assert(has_above || has_left);
86 if (has_above ^ has_left) {
87 return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c,
88 color_idx);
89 }
90
91 // This goes in the order of left, top, and top-left. This has the advantage
92 // that unless anything here are not distinct or invalid, this will already
93 // be in sorted order. Furthermore, if either of the first two is
94 // invalid, we know the last one is also invalid.
95 uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS];
96 color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)];
97 color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)];
98 color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)];
99
100 // Aggregate duplicated values.
101 // Since our array is so small, using a couple if statements is faster
102 uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 };
103 uint8_t num_invalid_colors = 0;
104 if (color_neighbors[0] == color_neighbors[1]) {
105 scores[0] += scores[1];
106 color_neighbors[1] = INVALID_COLOR_IDX;
107 num_invalid_colors += 1;
108
109 if (color_neighbors[0] == color_neighbors[2]) {
110 scores[0] += scores[2];
111 num_invalid_colors += 1;
112 }
113 } else if (color_neighbors[0] == color_neighbors[2]) {
114 scores[0] += scores[2];
115 num_invalid_colors += 1;
116 } else if (color_neighbors[1] == color_neighbors[2]) {
117 scores[1] += scores[2];
118 num_invalid_colors += 1;
119 }
120
121 const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors;
122
123 uint8_t *color_rank = color_neighbors;
124 uint8_t *score_rank = scores;
125
126 // Sort everything
127 if (num_valid_colors > 1) {
128 if (color_neighbors[1] == INVALID_COLOR_IDX) {
129 scores[1] = scores[2];
130 color_neighbors[1] = color_neighbors[2];
131 }
132
133 // We need to swap the first two elements if they have the same score but
134 // the color indices are not in the right order
135 if (score_rank[0] < score_rank[1] ||
136 (score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) {
137 SWAP(0, 1);
138 }
139 if (num_valid_colors > 2) {
140 if (score_rank[0] < score_rank[2]) {
141 SWAP(0, 2);
142 }
143 if (score_rank[1] < score_rank[2]) {
144 SWAP(1, 2);
145 }
146 }
147 }
148
149 // If any of the neighbor colors has higher index than current color index,
150 // then we move up by 1 unless the current color is the same as one of the
151 // neighbors.
152 const uint8_t current_color = *color_idx = color_map[r * stride + c];
153 for (int idx = 0; idx < num_valid_colors; idx++) {
154 if (color_rank[idx] > current_color) {
155 (*color_idx)++;
156 } else if (color_rank[idx] == current_color) {
157 *color_idx = idx;
158 break;
159 }
160 }
161
162 // Get hash value of context.
163 uint8_t color_index_ctx_hash = 0;
164 static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 };
165 for (int idx = 0; idx < num_valid_colors; ++idx) {
166 color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx];
167 }
168 assert(color_index_ctx_hash > 0);
169 assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH);
170
171 // Lookup context from hash.
172 const int color_index_ctx = 9 - color_index_ctx_hash;
173 assert(color_index_ctx ==
174 av1_palette_color_index_context_lookup[color_index_ctx_hash]);
175 assert(color_index_ctx >= 0);
176 assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS);
177 return color_index_ctx;
178 }
179 #undef INVALID_COLOR_IDX
180 #undef SWAP
181
cost_and_tokenize_map(Av1ColorMapParam * param,TokenExtra ** t,int plane,int calc_rate,int allow_update_cdf,FRAME_COUNTS * counts)182 static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t,
183 int plane, int calc_rate, int allow_update_cdf,
184 FRAME_COUNTS *counts) {
185 const uint8_t *const color_map = param->color_map;
186 MapCdf map_cdf = param->map_cdf;
187 ColorCost color_cost = param->color_cost;
188 const int plane_block_width = param->plane_width;
189 const int rows = param->rows;
190 const int cols = param->cols;
191 const int n = param->n_colors;
192 const int palette_size_idx = n - PALETTE_MIN_SIZE;
193 int this_rate = 0;
194
195 (void)plane;
196 (void)counts;
197
198 for (int k = 1; k < rows + cols - 1; ++k) {
199 for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) {
200 int i = k - j;
201 int color_new_idx;
202 const int color_ctx = av1_fast_palette_color_index_context(
203 color_map, plane_block_width, i, j, &color_new_idx);
204 assert(color_new_idx >= 0 && color_new_idx < n);
205 if (calc_rate) {
206 this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx];
207 } else {
208 (*t)->token = color_new_idx;
209 (*t)->color_ctx = color_ctx;
210 ++(*t);
211 if (allow_update_cdf)
212 update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n);
213 #if CONFIG_ENTROPY_STATS
214 if (plane) {
215 ++counts->palette_uv_color_index[palette_size_idx][color_ctx]
216 [color_new_idx];
217 } else {
218 ++counts->palette_y_color_index[palette_size_idx][color_ctx]
219 [color_new_idx];
220 }
221 #endif
222 }
223 }
224 }
225 if (calc_rate) return this_rate;
226 return 0;
227 }
228
get_palette_params(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,Av1ColorMapParam * params)229 static void get_palette_params(const MACROBLOCK *const x, int plane,
230 BLOCK_SIZE bsize, Av1ColorMapParam *params) {
231 const MACROBLOCKD *const xd = &x->e_mbd;
232 const MB_MODE_INFO *const mbmi = xd->mi[0];
233 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
234 params->color_map = xd->plane[plane].color_index_map;
235 params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
236 : xd->tile_ctx->palette_y_color_index_cdf;
237 params->color_cost = plane ? x->mode_costs.palette_uv_color_cost
238 : x->mode_costs.palette_y_color_cost;
239 params->n_colors = pmi->palette_size[plane];
240 av1_get_block_dimensions(bsize, plane, xd, ¶ms->plane_width, NULL,
241 ¶ms->rows, ¶ms->cols);
242 }
243
244 // TODO(any): Remove this function
get_color_map_params(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type,Av1ColorMapParam * params)245 static void get_color_map_params(const MACROBLOCK *const x, int plane,
246 BLOCK_SIZE bsize, TX_SIZE tx_size,
247 COLOR_MAP_TYPE type,
248 Av1ColorMapParam *params) {
249 (void)tx_size;
250 memset(params, 0, sizeof(*params));
251 switch (type) {
252 case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break;
253 default: assert(0 && "Invalid color map type"); return;
254 }
255 }
256
av1_cost_color_map(const MACROBLOCK * const x,int plane,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type)257 int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize,
258 TX_SIZE tx_size, COLOR_MAP_TYPE type) {
259 assert(plane == 0 || plane == 1);
260 Av1ColorMapParam color_map_params;
261 get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
262 return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL);
263 }
264
av1_tokenize_color_map(const MACROBLOCK * const x,int plane,TokenExtra ** t,BLOCK_SIZE bsize,TX_SIZE tx_size,COLOR_MAP_TYPE type,int allow_update_cdf,FRAME_COUNTS * counts)265 void av1_tokenize_color_map(const MACROBLOCK *const x, int plane,
266 TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size,
267 COLOR_MAP_TYPE type, int allow_update_cdf,
268 FRAME_COUNTS *counts) {
269 assert(plane == 0 || plane == 1);
270 Av1ColorMapParam color_map_params;
271 get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
272 // The first color index does not use context or entropy.
273 (*t)->token = color_map_params.color_map[0];
274 (*t)->color_ctx = -1;
275 ++(*t);
276 cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf,
277 counts);
278 }
279
tokenize_vartx(ThreadData * td,TX_SIZE tx_size,BLOCK_SIZE plane_bsize,int blk_row,int blk_col,int block,int plane,void * arg)280 static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size,
281 BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
282 int block, int plane, void *arg) {
283 MACROBLOCK *const x = &td->mb;
284 MACROBLOCKD *const xd = &x->e_mbd;
285 MB_MODE_INFO *const mbmi = xd->mi[0];
286 const struct macroblockd_plane *const pd = &xd->plane[plane];
287 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
288 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
289
290 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
291
292 const TX_SIZE plane_tx_size =
293 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
294 pd->subsampling_y)
295 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
296 blk_col)];
297
298 if (tx_size == plane_tx_size || plane) {
299 plane_bsize =
300 get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
301
302 struct tokenize_b_args *args = arg;
303 if (args->allow_update_cdf)
304 av1_update_and_record_txb_context(plane, block, blk_row, blk_col,
305 plane_bsize, tx_size, arg);
306 else
307 av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize,
308 tx_size, arg);
309
310 } else {
311 // Half the block size in transform block unit.
312 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
313 const int bsw = tx_size_wide_unit[sub_txs];
314 const int bsh = tx_size_high_unit[sub_txs];
315 const int step = bsw * bsh;
316 const int row_end =
317 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
318 const int col_end =
319 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
320
321 assert(bsw > 0 && bsh > 0);
322
323 for (int row = 0; row < row_end; row += bsh) {
324 const int offsetr = blk_row + row;
325 for (int col = 0; col < col_end; col += bsw) {
326 const int offsetc = blk_col + col;
327
328 tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane,
329 arg);
330 block += step;
331 }
332 }
333 }
334 }
335
av1_tokenize_sb_vartx(const AV1_COMP * cpi,ThreadData * td,RUN_TYPE dry_run,BLOCK_SIZE bsize,int * rate,uint8_t allow_update_cdf)336 void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td,
337 RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
338 uint8_t allow_update_cdf) {
339 assert(bsize < BLOCK_SIZES_ALL);
340 const AV1_COMMON *const cm = &cpi->common;
341 MACROBLOCK *const x = &td->mb;
342 MACROBLOCKD *const xd = &x->e_mbd;
343 const int mi_row = xd->mi_row;
344 const int mi_col = xd->mi_col;
345 if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
346 return;
347
348 const int num_planes = av1_num_planes(cm);
349 MB_MODE_INFO *const mbmi = xd->mi[0];
350 struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
351
352 if (mbmi->skip_txfm) {
353 av1_reset_entropy_context(xd, bsize, num_planes);
354 return;
355 }
356
357 for (int plane = 0; plane < num_planes; ++plane) {
358 if (plane && !xd->is_chroma_ref) break;
359 const struct macroblockd_plane *const pd = &xd->plane[plane];
360 const int ss_x = pd->subsampling_x;
361 const int ss_y = pd->subsampling_y;
362 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
363 assert(plane_bsize < BLOCK_SIZES_ALL);
364 const int mi_width = mi_size_wide[plane_bsize];
365 const int mi_height = mi_size_high[plane_bsize];
366 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
367 const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
368 const int bw = mi_size_wide[txb_size];
369 const int bh = mi_size_high[txb_size];
370 int block = 0;
371 const int step =
372 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
373
374 const BLOCK_SIZE max_unit_bsize =
375 get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
376 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
377 int mu_blocks_high = mi_size_high[max_unit_bsize];
378
379 mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
380 mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
381
382 for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
383 for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
384 const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
385 const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
386 for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
387 for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
388 tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col,
389 block, plane, &arg);
390 block += step;
391 }
392 }
393 }
394 }
395 }
396 if (rate) *rate += arg.this_rate;
397 }
398