1 /*
2 * Copyright (c) 2019, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <float.h>
13
14 #include "config/aom_config.h"
15
16 #include "av1/encoder/encodeframe_utils.h"
17 #if CONFIG_THREE_PASS
18 #include "av1/encoder/thirdpass.h"
19 #endif
20 #include "config/aom_dsp_rtcd.h"
21
22 #include "av1/common/enums.h"
23 #include "av1/common/reconinter.h"
24
25 #if !CONFIG_REALTIME_ONLY
26 #include "av1/encoder/cnn.h"
27 #include "av1/encoder/partition_model_weights.h"
28 #include "av1/encoder/partition_cnn_weights.h"
29 #endif
30 #include "av1/encoder/encoder.h"
31
32 #include "av1/encoder/motion_search_facade.h"
33 #include "av1/encoder/partition_strategy.h"
34 #include "av1/encoder/partition_search.h"
35 #include "av1/encoder/rdopt.h"
36
37 #if !CONFIG_REALTIME_ONLY
38 static inline void simple_motion_search_prune_part_features(
39 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
40 int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
41 int features_to_get);
42
43 static bool ext_ml_model_decision_before_none(
44 AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
45 int *partition_none_allowed, int *partition_horz_allowed,
46 int *partition_vert_allowed, int *do_rectangular_split,
47 int *do_square_split);
48
49 static bool ext_ml_model_decision_before_none_part2(
50 AV1_COMP *cpi,
51 const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
52 int *prune_horz, int *prune_vert);
53
54 static bool ext_ml_model_decision_after_none(
55 ExtPartController *const ext_part_controller, const int is_intra_frame,
56 const float *const features_after_none, int *do_square_split,
57 int *do_rectangular_split);
58
59 static bool ext_ml_model_decision_after_none_part2(
60 AV1_COMP *const cpi, const float *const features_terminate,
61 int *terminate_partition_search);
62
63 static bool ext_ml_model_decision_after_split(
64 AV1_COMP *const cpi, const float *const features_terminate,
65 int *terminate_partition_search);
66
67 static bool ext_ml_model_decision_after_split_part2(
68 ExtPartController *const ext_part_controller, const int is_intra_frame,
69 const float *const features_prune, int *prune_rect_part_horz,
70 int *prune_rect_part_vert);
71
72 static bool ext_ml_model_decision_after_rect(
73 ExtPartController *const ext_part_controller, const int is_intra_frame,
74 const float *const features_after_rect, int *horza_partition_allowed,
75 int *horzb_partition_allowed, int *verta_partition_allowed,
76 int *vertb_partition_allowed);
77
78 static bool ext_ml_model_decision_after_part_ab(
79 AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
80 int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
81 int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
82 int *const partition_vert4_allowed, unsigned int pb_source_variance,
83 int mi_row, int mi_col);
84
convert_bsize_to_idx(BLOCK_SIZE bsize)85 static inline int convert_bsize_to_idx(BLOCK_SIZE bsize) {
86 switch (bsize) {
87 case BLOCK_128X128: return 0;
88 case BLOCK_64X64: return 1;
89 case BLOCK_32X32: return 2;
90 case BLOCK_16X16: return 3;
91 case BLOCK_8X8: return 4;
92 default: assert(0 && "Invalid bsize"); return -1;
93 }
94 }
95
get_feature_file_name(int id)96 static char *get_feature_file_name(int id) {
97 static char *feature_file_names[] = {
98 "feature_before_partition_none",
99 "feature_before_partition_none_prune_rect",
100 "feature_after_partition_none_prune",
101 "feature_after_partition_none_terminate",
102 "feature_after_partition_split_terminate",
103 "feature_after_partition_split_prune_rect",
104 "feature_after_partition_rect",
105 "feature_after_partition_ab",
106 };
107
108 return feature_file_names[id];
109 }
110
write_features_to_file(const char * const path,const bool is_test_mode,const float * features,const int feature_size,const int id,const BLOCK_SIZE bsize,const int mi_row,const int mi_col)111 static void write_features_to_file(const char *const path,
112 const bool is_test_mode,
113 const float *features,
114 const int feature_size, const int id,
115 const BLOCK_SIZE bsize, const int mi_row,
116 const int mi_col) {
117 if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;
118
119 char filename[256];
120 snprintf(filename, sizeof(filename), "%s/%s", path,
121 get_feature_file_name(id));
122 FILE *pfile = fopen(filename, "a");
123 if (pfile == NULL) return;
124 if (!is_test_mode) {
125 fprintf(pfile, "%d,%d,%d,%d,%d\n", id, (int)bsize, mi_row, mi_col,
126 feature_size);
127 }
128 for (int i = 0; i < feature_size; ++i) {
129 fprintf(pfile, "%.6f", features[i]);
130 if (i < feature_size - 1) fprintf(pfile, ",");
131 }
132 fprintf(pfile, "\n");
133 fclose(pfile);
134 }
135
136 // TODO([email protected]): This is very much a work in progress. We still
137 // need to the following:
138 // -- add support for hdres
139 // -- add support for pruning rectangular partitions
140 // -- use reconstructed pixels instead of source pixels for padding
141 // -- use chroma pixels in addition to luma pixels
intra_mode_cnn_partition(const AV1_COMMON * const cm,MACROBLOCK * x,int quad_tree_idx,int intra_cnn_based_part_prune_level,PartitionSearchState * part_state)142 static void intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
143 int quad_tree_idx,
144 int intra_cnn_based_part_prune_level,
145 PartitionSearchState *part_state) {
146 assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
147 "Invalid sb_size for intra_cnn!");
148 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
149 const BLOCK_SIZE bsize = blk_params->bsize;
150
151 const int bsize_idx = convert_bsize_to_idx(bsize);
152
153 if (bsize == BLOCK_128X128) {
154 return;
155 }
156
157 PartitionSearchInfo *part_info = &x->part_search_info;
158
159 // Precompute the CNN part and cache the result in MACROBLOCK
160 if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
161 const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
162
163 // Prepare the output
164 const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
165 const int num_outputs = 4;
166 const int output_dims[4] = { 1, 2, 4, 8 };
167 const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
168 CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
169 float *output_buffer[CNN_TOT_OUT_CH];
170
171 float **cur_output_buf = output_buffer;
172 float *curr_buf_ptr = part_info->cnn_buffer;
173 for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
174 const int num_chs = out_chs[output_idx];
175 const int ch_size = output_dims[output_idx] * output_dims[output_idx];
176 for (int ch = 0; ch < num_chs; ch++) {
177 cur_output_buf[ch] = curr_buf_ptr;
178 curr_buf_ptr += ch_size;
179 }
180 cur_output_buf += num_chs;
181 }
182
183 CNN_MULTI_OUT output = {
184 .num_outputs = 4,
185 .output_channels = out_chs,
186 .output_strides = output_dims,
187 .output_buffer = output_buffer,
188 };
189
190 // Prepare the input
191 const MACROBLOCKD *xd = &x->e_mbd;
192 const int bit_depth = xd->bd;
193 const int dc_q =
194 av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
195 part_info->log_q = log1pf((float)(dc_q * dc_q) / 256.0f);
196 part_info->log_q =
197 (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
198 av1_intra_mode_cnn_partition_std[0];
199
200 const int width = 65, height = 65,
201 stride = x->plane[AOM_PLANE_Y].src.stride;
202
203 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
204 uint16_t *image[1] = {
205 CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
206 };
207
208 if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
209 cnn_config, &thread_data,
210 bit_depth, &output)) {
211 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
212 "Error allocating CNN data");
213 return;
214 }
215 } else {
216 uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
217
218 if (!av1_cnn_predict_img_multi_out(image, width, height, stride,
219 cnn_config, &thread_data, &output)) {
220 aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
221 "Error allocating CNN data");
222 return;
223 }
224 }
225
226 part_info->cnn_output_valid = 1;
227 }
228
229 if (!part_info->cnn_output_valid) {
230 return;
231 }
232
233 const NN_CONFIG *dnn_configs[5] = {
234 NULL,
235 &av1_intra_mode_cnn_partition_branch_0_dnn_config,
236 &av1_intra_mode_cnn_partition_branch_1_dnn_config,
237 &av1_intra_mode_cnn_partition_branch_2_dnn_config,
238 &av1_intra_mode_cnn_partition_branch_3_dnn_config,
239 };
240
241 const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
242
243 float dnn_features[100];
244 float logits[4] = { 0.0f };
245
246 const float *branch_0 = part_info->cnn_buffer;
247 const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
248 const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
249 const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
250
251 if (bsize == BLOCK_64X64) {
252 int f_idx = 0;
253 for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
254 dnn_features[f_idx++] = branch_0[ch_idx];
255 }
256
257 const int spa_stride = 2 * 2;
258 for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
259 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
260 dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
261 }
262 }
263 dnn_features[f_idx++] = part_info->log_q;
264 } else if (bsize == BLOCK_32X32) {
265 int f_idx = 0;
266 for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
267 dnn_features[f_idx++] = branch_0[idx];
268 }
269
270 const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
271 const int spa_stride = 2 * 2;
272 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
273 dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
274 }
275 dnn_features[f_idx++] = part_info->log_q;
276 } else if (bsize == BLOCK_16X16) {
277 int f_idx = 0;
278 const int prev_quad_idx = (quad_tree_idx - 1) / 4;
279 const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
280 const int prev_spa_stride = 2 * 2;
281 for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
282 dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
283 }
284
285 const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
286 const int spa_stride = 4 * 4;
287 for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
288 dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
289 }
290 dnn_features[f_idx++] = part_info->log_q;
291 } else if (bsize == BLOCK_8X8) {
292 int f_idx = 0;
293 const int prev_quad_idx = (quad_tree_idx - 1) / 4;
294 const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
295 const int prev_spa_stride = 4 * 4;
296 for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
297 dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
298 }
299
300 const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
301 const int spa_stride = 8 * 8;
302 for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
303 dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
304 }
305 dnn_features[f_idx++] = part_info->log_q;
306 } else {
307 assert(0 && "Invalid bsize in intra_cnn partition");
308 }
309
310 // Make decision
311 av1_nn_predict(dnn_features, dnn_config, 1, logits);
312
313 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
314 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
315 float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
316 if (is_720p_or_larger) {
317 split_only_thresh =
318 av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
319 no_split_thresh =
320 av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
321 } else if (is_480p_or_larger) {
322 split_only_thresh =
323 av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
324 no_split_thresh =
325 av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
326 } else {
327 split_only_thresh =
328 av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
329 no_split_thresh =
330 av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
331 }
332
333 if (logits[0] > split_only_thresh) {
334 // As screen contents tend to choose larger partitions, do not prune
335 // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
336 if (intra_cnn_based_part_prune_level != 1) {
337 part_state->partition_none_allowed = 0;
338 }
339 part_state->do_square_split = 1;
340 av1_disable_rect_partitions(part_state);
341 }
342
343 if (logits[0] < no_split_thresh) {
344 av1_disable_square_split_partition(part_state);
345 }
346 }
347
get_simple_motion_search_prune_agg(int qindex,int prune_level,int is_rect_part)348 static inline int get_simple_motion_search_prune_agg(int qindex,
349 int prune_level,
350 int is_rect_part) {
351 assert(prune_level < TOTAL_AGG_LVLS);
352 if (prune_level == NO_PRUNING) {
353 return -1;
354 }
355
356 // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except
357 // QIDX_BASED_AGG_LVL
358 const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3 };
359 if (prune_level < TOTAL_SIMPLE_AGG_LVLS) {
360 return sms_prune_agg_levels[prune_level];
361 }
362
363 // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value.
364 // Aggressive pruning for lower quantizers in non-boosted frames to prune
365 // rectangular partitions.
366 const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0;
367 const int sms_prune_agg_qindex_based[2] = { 1, 2 };
368 return sms_prune_agg_qindex_based[qband];
369 }
370
371 // Performs a simple_motion_search with a single reference frame and extract
372 // the variance of residues. Then use the features to determine whether we want
373 // to go straight to splitting without trying PARTITION_NONE
simple_motion_search_based_split(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)374 static void simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
375 SIMPLE_MOTION_DATA_TREE *sms_tree,
376 PartitionSearchState *part_state) {
377 const AV1_COMMON *const cm = &cpi->common;
378 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
379 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
380 const BLOCK_SIZE bsize = blk_params->bsize;
381
382 const int bsize_idx = convert_bsize_to_idx(bsize);
383 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
384 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
385 // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
386 const int res_idx = is_480p_or_larger + is_720p_or_larger;
387
388 assert(bsize_idx >= 0 && bsize_idx <= 4 &&
389 "Invalid bsize in simple_motion_search_based_split");
390
391 const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
392 const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
393 const NN_CONFIG *nn_config =
394 av1_simple_motion_search_split_nn_config[bsize_idx];
395
396 const int agg = get_simple_motion_search_prune_agg(
397 x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0);
398 if (agg < 0) {
399 return;
400 }
401
402 const float split_only_thresh =
403 av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
404 const float no_split_thresh =
405 av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
406
407 float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
408 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
409 bsize, features,
410 FEATURE_SMS_SPLIT_MODEL_FLAG);
411
412 // Write features to file
413 write_features_to_file(cpi->oxcf.partition_info_path,
414 cpi->ext_part_controller.test_mode, features,
415 FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);
416
417 // Note: it is intended to not normalize the features here, to keep it
418 // consistent for all features collected and passed to the external model.
419 if (ext_ml_model_decision_before_none(
420 cpi, features, &part_state->partition_none_allowed,
421 &part_state->partition_rect_allowed[HORZ],
422 &part_state->partition_rect_allowed[VERT],
423 &part_state->do_rectangular_split, &part_state->do_square_split)) {
424 return;
425 }
426
427 for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
428 features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
429 }
430
431 float score = 0.0f;
432
433 av1_nn_predict(features, nn_config, 1, &score);
434
435 if (score > split_only_thresh) {
436 av1_set_square_split_only(part_state);
437 }
438
439 if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
440 score < no_split_thresh) {
441 av1_disable_square_split_partition(part_state);
442 }
443
444 // If the score is very low, prune rectangular split since it is unlikely to
445 // occur.
446 if (cpi->sf.part_sf.simple_motion_search_rect_split) {
447 const float scale = res_idx >= 2 ? 3.0f : 2.0f;
448 const float rect_split_thresh =
449 scale * av1_simple_motion_search_no_split_thresh
450 [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx]
451 [bsize_idx];
452 if (score < rect_split_thresh) {
453 part_state->do_rectangular_split = 0;
454 }
455 }
456 }
457
458 // Given a list of ref frames in refs, performs simple_motion_search on each of
459 // the refs and returns the ref with the smallest sse. Returns -1 if none of the
460 // ref in the list is available. Also stores the best sse and var in best_sse,
461 // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
462 // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
463 // subtrees.
simple_motion_search_get_best_ref(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,const int * const refs,int num_refs,int use_subpixel,int save_mv,unsigned int * best_sse,unsigned int * best_var)464 static int simple_motion_search_get_best_ref(
465 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
466 int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
467 int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
468 unsigned int *best_var) {
469 const AV1_COMMON *const cm = &cpi->common;
470 int best_ref = -1;
471
472 if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
473 // If the whole block is outside of the image, set the var and sse to 0.
474 *best_var = 0;
475 *best_sse = 0;
476
477 return best_ref;
478 }
479
480 // Otherwise do loop through the reference frames and find the one with the
481 // minimum SSE
482 const int num_planes = 1;
483
484 *best_sse = INT_MAX;
485
486 for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
487 const int ref = refs[ref_idx];
488
489 if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
490 const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
491 unsigned int curr_sse = 0, curr_var = 0;
492 const int_mv best_mv = av1_simple_motion_search_sse_var(
493 cpi, x, mi_row, mi_col, bsize, ref, start_mvs[ref], num_planes,
494 use_subpixel, &curr_sse, &curr_var);
495 if (curr_sse < *best_sse) {
496 *best_sse = curr_sse;
497 *best_var = curr_var;
498 best_ref = ref;
499 }
500
501 if (save_mv) {
502 sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
503 sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
504
505 if (bsize >= BLOCK_8X8) {
506 for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
507 // Propagate the new motion vectors to a lower level
508 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
509 sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
510 }
511 }
512 }
513 }
514 }
515
516 return best_ref;
517 }
518
519 // Collects features using simple_motion_search and store them in features. The
520 // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
521 // collected are the sse and var from the subblocks flagged by features_to_get.
522 // Furthermore, if features is not NULL, then 7 more features are appended to
523 // the end of features:
524 // - log(1.0 + dc_q ** 2)
525 // - whether an above macroblock exists
526 // - width of above macroblock
527 // - height of above macroblock
528 // - whether a left marcoblock exists
529 // - width of left macroblock
530 // - height of left macroblock
simple_motion_search_prune_part_features(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,float * features,int features_to_get)531 static inline void simple_motion_search_prune_part_features(
532 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
533 int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
534 int features_to_get) {
535 const int w_mi = mi_size_wide[bsize];
536 const int h_mi = mi_size_high[bsize];
537 assert(mi_size_wide[bsize] == mi_size_high[bsize]);
538 assert(bsize >= BLOCK_8X8);
539 assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
540 cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
541
542 // Setting up motion search
543 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
544 : LAST_FRAME };
545 const int num_refs = 1;
546 const int use_subpixel = 1;
547
548 // Doing whole block first to update the mv
549 if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
550 simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
551 ref_list, num_refs, use_subpixel, 1,
552 &sms_tree->sms_none_feat[0],
553 &sms_tree->sms_none_feat[1]);
554 sms_tree->sms_none_valid = 1;
555 }
556
557 // Split subblocks
558 if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
559 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
560 for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
561 const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
562 const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
563 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
564
565 if (!sub_tree->sms_none_valid) {
566 simple_motion_search_get_best_ref(
567 cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
568 num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
569 &sub_tree->sms_none_feat[1]);
570 sub_tree->sms_none_valid = 1;
571 }
572 }
573 }
574
575 // Rectangular subblocks
576 if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
577 // Horz subblock
578 BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
579 for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
580 const int sub_mi_col = mi_col + 0;
581 const int sub_mi_row = mi_row + r_idx * h_mi / 2;
582
583 simple_motion_search_get_best_ref(
584 cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
585 use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
586 &sms_tree->sms_rect_feat[2 * r_idx + 1]);
587 }
588
589 // Vert subblock
590 subsize = get_partition_subsize(bsize, PARTITION_VERT);
591 for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
592 const int sub_mi_col = mi_col + r_idx * w_mi / 2;
593 const int sub_mi_row = mi_row + 0;
594
595 simple_motion_search_get_best_ref(
596 cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
597 use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
598 &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
599 }
600 sms_tree->sms_rect_valid = 1;
601 }
602
603 if (!features) return;
604
605 int f_idx = 0;
606 if (features_to_get & FEATURE_SMS_NONE_FLAG) {
607 for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
608 features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[sub_idx]);
609 }
610 }
611
612 if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
613 for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
614 SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
615 features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[0]);
616 features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[1]);
617 }
618 }
619
620 if (features_to_get & FEATURE_SMS_RECT_FLAG) {
621 for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
622 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[sub_idx]);
623 }
624 }
625
626 const MACROBLOCKD *xd = &x->e_mbd;
627 set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
628
629 // Q_INDEX
630 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
631 features[f_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);
632
633 // Neighbor stuff
634 const int has_above = !!xd->above_mbmi;
635 const int has_left = !!xd->left_mbmi;
636 const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
637 const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
638 features[f_idx++] = (float)has_above;
639 features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
640 features[f_idx++] = (float)mi_size_high_log2[above_bsize];
641 features[f_idx++] = (float)has_left;
642 features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
643 features[f_idx++] = (float)mi_size_high_log2[left_bsize];
644 }
645
646 // Performs a simple_motion_search with two reference frames and extract
647 // the variance of residues. Then use the features to determine whether we want
648 // to prune some partitions.
simple_motion_search_prune_rect(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)649 static void simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
650 SIMPLE_MOTION_DATA_TREE *sms_tree,
651 PartitionSearchState *part_state) {
652 const AV1_COMMON *const cm = &cpi->common;
653 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
654 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
655 const BLOCK_SIZE bsize = blk_params->bsize;
656
657 const int bsize_idx = convert_bsize_to_idx(bsize);
658 const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
659 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
660 // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
661 const int res_idx = is_480p_or_larger + is_720p_or_larger;
662
663 // Get model parameters
664 const NN_CONFIG *nn_config =
665 av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
666 const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
667 *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
668
669 const int agg = get_simple_motion_search_prune_agg(
670 x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1);
671 if (agg < 0) {
672 return;
673 }
674
675 const float prune_thresh =
676 av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
677
678 // If there is no valid threshold, return immediately.
679 if (!nn_config || prune_thresh == 0.0f) {
680 return;
681 }
682
683 // Get features
684 float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
685 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
686 bsize, features,
687 FEATURE_SMS_PRUNE_PART_FLAG);
688
689 // Note: it is intended to not normalize the features here, to keep it
690 // consistent for all features collected and passed to the external model.
691 if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
692 !frame_is_intra_only(cm) &&
693 (part_state->partition_rect_allowed[HORZ] ||
694 part_state->partition_rect_allowed[VERT]) &&
695 bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
696 // Write features to file
697 write_features_to_file(
698 cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
699 features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);
700
701 if (ext_ml_model_decision_before_none_part2(
702 cpi, features, &part_state->prune_rect_part[HORZ],
703 &part_state->prune_rect_part[VERT])) {
704 return;
705 }
706 }
707
708 for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
709 features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
710 }
711
712 // Get probabilities
713 float scores[EXT_PARTITION_TYPES] = { 0.0f },
714 probs[EXT_PARTITION_TYPES] = { 0.0f };
715 const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
716 ? PARTITION_TYPES
717 : EXT_PARTITION_TYPES;
718
719 av1_nn_predict(features, nn_config, 1, scores);
720
721 av1_nn_softmax(scores, probs, num_classes);
722
723 // Determine if we should prune rectangular partitions.
724 if (probs[PARTITION_HORZ] <= prune_thresh) {
725 part_state->prune_rect_part[HORZ] = 1;
726 }
727 if (probs[PARTITION_VERT] <= prune_thresh) {
728 part_state->prune_rect_part[VERT] = 1;
729 }
730 }
731
732 // Early terminates PARTITION_NONE using simple_motion_search features and the
733 // rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
734 // - The frame is a show frame
735 // - The frame is not intra only
736 // - The current bsize is > BLOCK_8X8
737 // - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
av1_simple_motion_search_early_term_none(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,const RD_STATS * none_rdc,PartitionSearchState * part_state)738 void av1_simple_motion_search_early_term_none(
739 AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
740 const RD_STATS *none_rdc, PartitionSearchState *part_state) {
741 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
742 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
743 const BLOCK_SIZE bsize = blk_params->bsize;
744
745 float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
746 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
747 bsize, features,
748 FEATURE_SMS_PRUNE_PART_FLAG);
749 int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
750
751 features[f_idx++] = log1pf((float)none_rdc->rate);
752 features[f_idx++] = log1pf((float)none_rdc->dist);
753 features[f_idx++] = log1pf((float)none_rdc->rdcost);
754
755 assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
756
757 const float *ml_mean = NULL;
758 const float *ml_std = NULL;
759 const float *ml_model = NULL;
760
761 if (bsize == BLOCK_128X128) {
762 ml_mean = av1_simple_motion_search_term_none_mean_128;
763 ml_std = av1_simple_motion_search_term_none_std_128;
764 ml_model = av1_simple_motion_search_term_none_model_128;
765 } else if (bsize == BLOCK_64X64) {
766 ml_mean = av1_simple_motion_search_term_none_mean_64;
767 ml_std = av1_simple_motion_search_term_none_std_64;
768 ml_model = av1_simple_motion_search_term_none_model_64;
769 } else if (bsize == BLOCK_32X32) {
770 ml_mean = av1_simple_motion_search_term_none_mean_32;
771 ml_std = av1_simple_motion_search_term_none_std_32;
772 ml_model = av1_simple_motion_search_term_none_model_32;
773 } else if (bsize == BLOCK_16X16) {
774 ml_mean = av1_simple_motion_search_term_none_mean_16;
775 ml_std = av1_simple_motion_search_term_none_std_16;
776 ml_model = av1_simple_motion_search_term_none_model_16;
777 } else {
778 assert(0 && "Unexpected block size in simple_motion_term_none");
779 }
780
781 // Write features to file
782 write_features_to_file(cpi->oxcf.partition_info_path,
783 cpi->ext_part_controller.test_mode, features,
784 FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);
785
786 if (ext_ml_model_decision_after_none_part2(
787 cpi, features, &part_state->terminate_partition_search)) {
788 return;
789 }
790
791 if (ml_model) {
792 float score = 0.0f;
793 for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
794 score +=
795 ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
796 }
797 score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
798
799 if (score >= 0.0f) {
800 part_state->terminate_partition_search = 1;
801 }
802 }
803 }
804
av1_get_max_min_partition_features(AV1_COMP * const cpi,MACROBLOCK * x,int mi_row,int mi_col,float * features)805 void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
806 int mi_row, int mi_col,
807 float *features) {
808 AV1_COMMON *const cm = &cpi->common;
809 MACROBLOCKD *xd = &x->e_mbd;
810 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
811
812 // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
813 assert(sb_size == BLOCK_128X128);
814
815 int f_idx = 0;
816
817 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
818 const float log_q_sq = log1pf((float)(dc_q * dc_q) / 256.0f);
819
820 // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
821 float sum_mv_row_sq = 0;
822 float sum_mv_row = 0;
823 float min_abs_mv_row = FLT_MAX;
824 float max_abs_mv_row = 0;
825
826 float sum_mv_col_sq = 0;
827 float sum_mv_col = 0;
828 float min_abs_mv_col = FLT_MAX;
829 float max_abs_mv_col = 0;
830
831 float sum_log_sse_sq = 0;
832 float sum_log_sse = 0;
833 float min_log_sse = FLT_MAX;
834 float max_log_sse = 0;
835
836 const BLOCK_SIZE mb_size = BLOCK_16X16;
837 const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
838 const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
839 const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
840 const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
841
842 for (int mb_row = 0; mb_row < mb_rows; mb_row++)
843 for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
844 const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
845 const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
846 unsigned int sse = 0;
847 unsigned int var = 0;
848 const FULLPEL_MV start_mv = kZeroFullMv;
849 const MV_REFERENCE_FRAME ref =
850 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
851 const int_mv best_mv = av1_simple_motion_search_sse_var(
852 cpi, x, this_mi_row, this_mi_col, mb_size, ref, start_mv, 1, 0, &sse,
853 &var);
854
855 const float mv_row = (float)(best_mv.as_mv.row / 8);
856 const float mv_col = (float)(best_mv.as_mv.col / 8);
857 const float log_sse = log1pf((float)sse);
858 const float abs_mv_row = fabsf(mv_row);
859 const float abs_mv_col = fabsf(mv_col);
860
861 sum_mv_row_sq += mv_row * mv_row;
862 sum_mv_row += mv_row;
863 sum_mv_col_sq += mv_col * mv_col;
864 sum_mv_col += mv_col;
865
866 if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
867 if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
868 if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
869 if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
870
871 sum_log_sse_sq += log_sse * log_sse;
872 sum_log_sse += log_sse;
873 if (log_sse < min_log_sse) min_log_sse = log_sse;
874 if (log_sse > max_log_sse) max_log_sse = log_sse;
875 }
876 const int blks = mb_rows * mb_cols;
877 const float avg_mv_row = sum_mv_row / (float)blks;
878 const float var_mv_row =
879 sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;
880
881 const float avg_mv_col = sum_mv_col / (float)blks;
882 const float var_mv_col =
883 sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;
884
885 const float avg_log_sse = sum_log_sse / (float)blks;
886 const float var_log_sse =
887 sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;
888
889 features[f_idx++] = avg_log_sse;
890 features[f_idx++] = avg_mv_col;
891 features[f_idx++] = avg_mv_row;
892 features[f_idx++] = log_q_sq;
893 features[f_idx++] = max_abs_mv_col;
894 features[f_idx++] = max_abs_mv_row;
895 features[f_idx++] = max_log_sse;
896 features[f_idx++] = min_abs_mv_col;
897 features[f_idx++] = min_abs_mv_row;
898 features[f_idx++] = min_log_sse;
899 features[f_idx++] = var_log_sse;
900 features[f_idx++] = var_mv_col;
901 features[f_idx++] = var_mv_row;
902
903 assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
904 }
905
906 // Convert result index to block size.
907 // result idx block size
908 // 0 BLOCK_16X16
909 // 1 BLOCK_32X32
910 // 2 BLOCK_64X64
911 // 3 BLOCK_128X128
get_block_size(int idx)912 static BLOCK_SIZE get_block_size(int idx) {
913 return (BLOCK_SIZE)((idx + 2) * 3);
914 }
915
av1_predict_max_partition(const AV1_COMP * const cpi,const MACROBLOCK * const x,const float * features)916 BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
917 const MACROBLOCK *const x,
918 const float *features) {
919 float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
920 const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
921
922 assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
923 NOT_IN_USE);
924
925 av1_nn_predict(features, nn_config, 1, scores);
926
927 int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
928 if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
929 DIRECT_PRED) {
930 result = 0;
931 float max_score = scores[0];
932 for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
933 if (scores[i] > max_score) {
934 max_score = scores[i];
935 result = i;
936 }
937 }
938 return get_block_size(result);
939 }
940
941 float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
942 av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
943
944 if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
945 RELAXED_PRED) {
946 for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
947 --result) {
948 if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
949 probs[result] += probs[result + 1];
950 }
951 if (probs[result] > 0.2) break;
952 }
953 } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
954 ADAPT_PRED) {
955 const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
956 // TODO(debargha): x->source_variance is unavailable at this point,
957 // so compute. The redundant recomputation later can be removed.
958 const unsigned int source_variance = av1_get_perpixel_variance_facade(
959 cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y);
960 if (source_variance > 16) {
961 const double thresh = source_variance < 128 ? 0.05 : 0.1;
962 for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
963 --result) {
964 if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
965 probs[result] += probs[result + 1];
966 }
967 if (probs[result] > thresh) break;
968 }
969 }
970 }
971
972 return get_block_size(result);
973 }
974
975 // Get the minimum partition block width and height(in log scale) under a
976 // SIMPLE_MOTION_DATA_TREE.
get_min_bsize(const SIMPLE_MOTION_DATA_TREE * sms_tree,int * min_bw,int * min_bh)977 static inline void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
978 int *min_bw, int *min_bh) {
979 if (!sms_tree) return;
980
981 const BLOCK_SIZE bsize = sms_tree->block_size;
982 if (bsize == BLOCK_4X4) {
983 *min_bw = 0;
984 *min_bh = 0;
985 return;
986 }
987
988 PARTITION_TYPE part_type = sms_tree->partitioning;
989 if (part_type == PARTITION_INVALID) return;
990
991 if (part_type == PARTITION_SPLIT) {
992 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
993 get_min_bsize(sms_tree->split[i], min_bw, min_bh);
994 }
995 } else {
996 if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
997 part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
998 part_type = PARTITION_SPLIT;
999 const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
1000 if (subsize != BLOCK_INVALID) {
1001 *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
1002 *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
1003 }
1004 }
1005 }
1006
add_rd_feature(int64_t rd,int64_t best_rd,float * features,int * feature_idx)1007 static inline void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
1008 int *feature_idx) {
1009 const int rd_valid = rd > 0 && rd < INT64_MAX;
1010 const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
1011 features[(*feature_idx)++] = (float)rd_valid;
1012 features[(*feature_idx)++] = rd_ratio;
1013 }
1014
1015 #define FEATURES 31
av1_ml_early_term_after_split(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,int64_t best_rd,int64_t part_none_rd,int64_t part_split_rd,int64_t * split_block_rd,PartitionSearchState * part_state)1016 void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
1017 SIMPLE_MOTION_DATA_TREE *const sms_tree,
1018 int64_t best_rd, int64_t part_none_rd,
1019 int64_t part_split_rd,
1020 int64_t *split_block_rd,
1021 PartitionSearchState *part_state) {
1022 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1023 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1024 const BLOCK_SIZE bsize = blk_params->bsize;
1025
1026 if (best_rd <= 0 || best_rd == INT64_MAX ||
1027 part_state->terminate_partition_search)
1028 return;
1029
1030 const AV1_COMMON *const cm = &cpi->common;
1031 const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
1032 const NN_CONFIG *nn_config = NULL;
1033 float thresh = -1e6;
1034 switch (bsize) {
1035 case BLOCK_128X128: break;
1036 case BLOCK_64X64:
1037 nn_config = &av1_early_term_after_split_nnconfig_64;
1038 thresh = is_480p_or_larger ? -2.0f : -1.2f;
1039 break;
1040 case BLOCK_32X32:
1041 nn_config = &av1_early_term_after_split_nnconfig_32;
1042 thresh = is_480p_or_larger ? -2.6f : -2.3f;
1043 break;
1044 case BLOCK_16X16:
1045 nn_config = &av1_early_term_after_split_nnconfig_16;
1046 thresh = is_480p_or_larger ? -2.0f : -2.4f;
1047 break;
1048 case BLOCK_8X8:
1049 nn_config = &av1_early_term_after_split_nnconfig_8;
1050 thresh = is_480p_or_larger ? -1.0f : -1.4f;
1051 break;
1052 case BLOCK_4X4: break;
1053 default:
1054 assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
1055 break;
1056 }
1057 if (!nn_config) return;
1058
1059 // Use more conservative threshold for level 1.
1060 if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
1061
1062 const MACROBLOCKD *const xd = &x->e_mbd;
1063 const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
1064 const int bs = block_size_wide[bsize];
1065 int f_idx = 0;
1066 float features[FEATURES] = { 0.0f };
1067
1068 features[f_idx++] = log1pf((float)dc_q / 4.0f);
1069 features[f_idx++] = log1pf((float)best_rd / bs / bs / 1024.0f);
1070
1071 add_rd_feature(part_none_rd, best_rd, features, &f_idx);
1072 add_rd_feature(part_split_rd, best_rd, features, &f_idx);
1073
1074 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1075 add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
1076 int min_bw = MAX_SB_SIZE_LOG2;
1077 int min_bh = MAX_SB_SIZE_LOG2;
1078 get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
1079 features[f_idx++] = (float)min_bw;
1080 features[f_idx++] = (float)min_bh;
1081 }
1082
1083 simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
1084 bsize, NULL,
1085 FEATURE_SMS_PRUNE_PART_FLAG);
1086
1087 features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[1]);
1088
1089 features[f_idx++] = log1pf((float)sms_tree->split[0]->sms_none_feat[1]);
1090 features[f_idx++] = log1pf((float)sms_tree->split[1]->sms_none_feat[1]);
1091 features[f_idx++] = log1pf((float)sms_tree->split[2]->sms_none_feat[1]);
1092 features[f_idx++] = log1pf((float)sms_tree->split[3]->sms_none_feat[1]);
1093
1094 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[1]);
1095 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[3]);
1096 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[5]);
1097 features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[7]);
1098
1099 assert(f_idx == FEATURES);
1100
1101 // Write features to file
1102 write_features_to_file(cpi->oxcf.partition_info_path,
1103 cpi->ext_part_controller.test_mode, features, FEATURES,
1104 4, bsize, mi_row, mi_col);
1105
1106 if (ext_ml_model_decision_after_split(
1107 cpi, features, &part_state->terminate_partition_search)) {
1108 return;
1109 }
1110
1111 float score = 0.0f;
1112 av1_nn_predict(features, nn_config, 1, &score);
1113 // Score is indicator of confidence that we should NOT terminate.
1114 if (score < thresh) {
1115 part_state->terminate_partition_search = 1;
1116 }
1117 }
1118 #undef FEATURES
1119
av1_ml_prune_rect_partition(AV1_COMP * const cpi,const MACROBLOCK * const x,int64_t best_rd,int64_t none_rd,const int64_t * split_rd,PartitionSearchState * part_state)1120 void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
1121 int64_t best_rd, int64_t none_rd,
1122 const int64_t *split_rd,
1123 PartitionSearchState *part_state) {
1124 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1125 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1126 const BLOCK_SIZE bsize = blk_params->bsize;
1127
1128 if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1129 best_rd = AOMMAX(best_rd, 1);
1130 const NN_CONFIG *nn_config = NULL;
1131 const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
1132 float cur_thresh = 0.0f;
1133 switch (bsize) {
1134 case BLOCK_8X8:
1135 nn_config = &av1_rect_partition_nnconfig_8;
1136 cur_thresh = prob_thresholds[0];
1137 break;
1138 case BLOCK_16X16:
1139 nn_config = &av1_rect_partition_nnconfig_16;
1140 cur_thresh = prob_thresholds[1];
1141 break;
1142 case BLOCK_32X32:
1143 nn_config = &av1_rect_partition_nnconfig_32;
1144 cur_thresh = prob_thresholds[2];
1145 break;
1146 case BLOCK_64X64:
1147 nn_config = &av1_rect_partition_nnconfig_64;
1148 cur_thresh = prob_thresholds[3];
1149 break;
1150 case BLOCK_128X128:
1151 nn_config = &av1_rect_partition_nnconfig_128;
1152 cur_thresh = prob_thresholds[4];
1153 break;
1154 default: assert(0 && "Unexpected bsize.");
1155 }
1156 if (!nn_config) return;
1157
1158 // 1. Compute input features
1159 float features[9];
1160
1161 // RD cost ratios
1162 for (int i = 0; i < 5; i++) features[i] = 1.0f;
1163 if (none_rd > 0 && none_rd < 1000000000)
1164 features[0] = (float)none_rd / (float)best_rd;
1165 for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
1166 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1167 features[1 + i] = (float)split_rd[i] / (float)best_rd;
1168 }
1169
1170 // Variance ratios
1171 const MACROBLOCKD *const xd = &x->e_mbd;
1172 int whole_block_variance;
1173 whole_block_variance = av1_get_perpixel_variance_facade(
1174 cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
1175 whole_block_variance = AOMMAX(whole_block_variance, 1);
1176
1177 int split_variance[SUB_PARTITIONS_SPLIT];
1178 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1179 struct buf_2d buf;
1180 buf.stride = x->plane[0].src.stride;
1181 const int bw = block_size_wide[bsize];
1182 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1183 const int x_idx = (i & 1) * bw / 2;
1184 const int y_idx = (i >> 1) * bw / 2;
1185 buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
1186 split_variance[i] =
1187 av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y);
1188 }
1189
1190 for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
1191 features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
1192
1193 // Write features to file
1194 write_features_to_file(cpi->oxcf.partition_info_path,
1195 cpi->ext_part_controller.test_mode, features,
1196 /*feature_size=*/9, 5, bsize, mi_row, mi_col);
1197
1198 if (ext_ml_model_decision_after_split_part2(
1199 &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1200 features, &part_state->prune_rect_part[HORZ],
1201 &part_state->prune_rect_part[VERT])) {
1202 return;
1203 }
1204
1205 // 2. Do the prediction and prune 0-2 partitions based on their probabilities
1206 float raw_scores[3] = { 0.0f };
1207 av1_nn_predict(features, nn_config, 1, raw_scores);
1208 float probs[3] = { 0.0f };
1209 av1_nn_softmax(raw_scores, probs, 3);
1210
1211 // probs[0] is the probability of the fact that both rectangular partitions
1212 // are worse than current best_rd
1213 if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
1214 if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
1215 }
1216
1217 // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
1218 // considered.
ml_prune_ab_partition(AV1_COMP * const cpi,int part_ctx,int var_ctx,int64_t best_rd,PartitionSearchState * part_state,int * ab_partitions_allowed)1219 static void ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx,
1220 int var_ctx, int64_t best_rd,
1221 PartitionSearchState *part_state,
1222 int *ab_partitions_allowed) {
1223 const PartitionBlkParams blk_params = part_state->part_blk_params;
1224 const int mi_row = blk_params.mi_row;
1225 const int mi_col = blk_params.mi_col;
1226 const BLOCK_SIZE bsize = blk_params.bsize;
1227
1228 if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1229 const NN_CONFIG *nn_config = NULL;
1230 switch (bsize) {
1231 case BLOCK_8X8: nn_config = NULL; break;
1232 case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
1233 case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
1234 case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
1235 case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
1236 default: assert(0 && "Unexpected bsize.");
1237 }
1238 if (!nn_config) return;
1239
1240 // Generate features.
1241 float features[10];
1242 int feature_index = 0;
1243 features[feature_index++] = (float)part_ctx;
1244 features[feature_index++] = (float)var_ctx;
1245 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1246 int sub_block_rdcost[8] = { 0 };
1247 int rd_index = 0;
1248 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1249 const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1250 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1251 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1252 ++rd_index;
1253 }
1254 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1255 const int64_t *vert_rd = part_state->rect_part_rd[VERT];
1256 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1257 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1258 ++rd_index;
1259 }
1260 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1261 const int64_t *split_rd = part_state->split_rd;
1262 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1263 sub_block_rdcost[rd_index] = (int)split_rd[i];
1264 ++rd_index;
1265 }
1266 for (int i = 0; i < 8; ++i) {
1267 // Ratio between the sub-block RD and the whole-block RD.
1268 float rd_ratio = 1.0f;
1269 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1270 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1271 features[feature_index++] = rd_ratio;
1272 }
1273 assert(feature_index == 10);
1274
1275 // Write features to file
1276 if (!frame_is_intra_only(&cpi->common)) {
1277 write_features_to_file(cpi->oxcf.partition_info_path,
1278 cpi->ext_part_controller.test_mode, features,
1279 /*feature_size=*/10, 6, bsize, mi_row, mi_col);
1280 }
1281
1282 if (ext_ml_model_decision_after_rect(
1283 &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1284 features, &ab_partitions_allowed[HORZ_A],
1285 &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
1286 &ab_partitions_allowed[VERT_B])) {
1287 return;
1288 }
1289
1290 // Calculate scores using the NN model.
1291 float score[16] = { 0.0f };
1292 av1_nn_predict(features, nn_config, 1, score);
1293 int int_score[16];
1294 int max_score = -1000;
1295 for (int i = 0; i < 16; ++i) {
1296 int_score[i] = (int)(100 * score[i]);
1297 max_score = AOMMAX(int_score[i], max_score);
1298 }
1299
1300 // Make decisions based on the model scores.
1301 int thresh = max_score;
1302 switch (bsize) {
1303 case BLOCK_16X16: thresh -= 150; break;
1304 case BLOCK_32X32: thresh -= 100; break;
1305 default: break;
1306 }
1307 av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
1308 for (int i = 0; i < 16; ++i) {
1309 if (int_score[i] >= thresh) {
1310 if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
1311 if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
1312 if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
1313 if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
1314 }
1315 }
1316 }
1317
1318 #define FEATURES 18
1319 #define LABELS 4
1320 // Use a ML model to predict if horz4 and vert4 should be considered.
av1_ml_prune_4_partition(AV1_COMP * const cpi,MACROBLOCK * const x,int part_ctx,int64_t best_rd,PartitionSearchState * part_state,int * part4_allowed,unsigned int pb_source_variance)1321 void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
1322 int part_ctx, int64_t best_rd,
1323 PartitionSearchState *part_state,
1324 int *part4_allowed,
1325 unsigned int pb_source_variance) {
1326 const PartitionBlkParams blk_params = part_state->part_blk_params;
1327 const int mi_row = blk_params.mi_row;
1328 const int mi_col = blk_params.mi_col;
1329 const BLOCK_SIZE bsize = blk_params.bsize;
1330
1331 int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
1332 int64_t *split_rd = part_state->split_rd;
1333 if (ext_ml_model_decision_after_part_ab(
1334 cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
1335 &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
1336 mi_row, mi_col))
1337 return;
1338
1339 if (best_rd >= 1000000000) return;
1340 int64_t *horz_rd = rect_part_rd[HORZ4];
1341 int64_t *vert_rd = rect_part_rd[VERT4];
1342 const NN_CONFIG *nn_config = NULL;
1343 // 4-way partitions are only allowed for these three square block sizes.
1344 switch (bsize) {
1345 case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
1346 case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
1347 case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
1348 default: assert(0 && "Unexpected bsize.");
1349 }
1350 if (!nn_config) return;
1351
1352 // Generate features.
1353 float features[FEATURES];
1354 int feature_index = 0;
1355 features[feature_index++] = (float)part_ctx;
1356 features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
1357
1358 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1359 int sub_block_rdcost[8] = { 0 };
1360 int rd_index = 0;
1361 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1362 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1363 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1364 ++rd_index;
1365 }
1366 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1367 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1368 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1369 ++rd_index;
1370 }
1371 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1372 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1373 sub_block_rdcost[rd_index] = (int)split_rd[i];
1374 ++rd_index;
1375 }
1376 for (int i = 0; i < 8; ++i) {
1377 // Ratio between the sub-block RD and the whole-block RD.
1378 float rd_ratio = 1.0f;
1379 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1380 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1381 features[feature_index++] = rd_ratio;
1382 }
1383
1384 // Get variance of the 1:4 and 4:1 sub-blocks.
1385 unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1386 unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1387 {
1388 BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1389 BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1390
1391 assert(horz_4_bs != BLOCK_INVALID);
1392 assert(vert_4_bs != BLOCK_INVALID);
1393
1394 av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1395 av1_num_planes(&cpi->common), bsize);
1396 const int src_stride = x->plane[0].src.stride;
1397 uint8_t *src = x->plane[0].src.buf;
1398 const MACROBLOCKD *const xd = &x->e_mbd;
1399
1400 struct buf_2d horz_4_src, vert_4_src;
1401 horz_4_src.stride = src_stride;
1402 vert_4_src.stride = src_stride;
1403
1404 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1405 horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1406 vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1407
1408 horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1409 cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1410 vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1411 cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1412 }
1413 }
1414
1415 const float denom = (float)(pb_source_variance + 1);
1416 const float low_b = 0.1f;
1417 const float high_b = 10.0f;
1418 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1419 // Ratio between the 4:1 sub-block variance and the whole-block variance.
1420 float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1421 if (var_ratio < low_b) var_ratio = low_b;
1422 if (var_ratio > high_b) var_ratio = high_b;
1423 features[feature_index++] = var_ratio;
1424 }
1425 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1426 // Ratio between the 1:4 sub-block RD and the whole-block RD.
1427 float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1428 if (var_ratio < low_b) var_ratio = low_b;
1429 if (var_ratio > high_b) var_ratio = high_b;
1430 features[feature_index++] = var_ratio;
1431 }
1432 assert(feature_index == FEATURES);
1433
1434 // Write features to file
1435 if (!frame_is_intra_only(&cpi->common)) {
1436 write_features_to_file(cpi->oxcf.partition_info_path,
1437 cpi->ext_part_controller.test_mode, features,
1438 FEATURES, 7, bsize, mi_row, mi_col);
1439 }
1440
1441 // Calculate scores using the NN model.
1442 float score[LABELS] = { 0.0f };
1443 av1_nn_predict(features, nn_config, 1, score);
1444 int int_score[LABELS];
1445 int max_score = -1000;
1446 for (int i = 0; i < LABELS; ++i) {
1447 int_score[i] = (int)(100 * score[i]);
1448 max_score = AOMMAX(int_score[i], max_score);
1449 }
1450
1451 // Make decisions based on the model scores.
1452 int thresh = max_score;
1453 switch (bsize) {
1454 case BLOCK_16X16: thresh -= 500; break;
1455 case BLOCK_32X32: thresh -= 500; break;
1456 case BLOCK_64X64: thresh -= 200; break;
1457 default: break;
1458 }
1459 av1_zero_array(part4_allowed, NUM_PART4_TYPES);
1460 for (int i = 0; i < LABELS; ++i) {
1461 if (int_score[i] >= thresh) {
1462 if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
1463 if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
1464 }
1465 }
1466 }
1467 #undef FEATURES
1468 #undef LABELS
1469
1470 #define FEATURES 4
av1_ml_predict_breakout(AV1_COMP * const cpi,const MACROBLOCK * const x,const RD_STATS * const rd_stats,unsigned int pb_source_variance,int bit_depth,PartitionSearchState * part_state)1471 void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
1472 const RD_STATS *const rd_stats,
1473 unsigned int pb_source_variance, int bit_depth,
1474 PartitionSearchState *part_state) {
1475 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1476 const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1477 const BLOCK_SIZE bsize = blk_params->bsize;
1478
1479 const NN_CONFIG *nn_config = NULL;
1480 int thresh = 0;
1481 switch (bsize) {
1482 case BLOCK_8X8:
1483 nn_config = &av1_partition_breakout_nnconfig_8;
1484 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
1485 break;
1486 case BLOCK_16X16:
1487 nn_config = &av1_partition_breakout_nnconfig_16;
1488 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
1489 break;
1490 case BLOCK_32X32:
1491 nn_config = &av1_partition_breakout_nnconfig_32;
1492 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
1493 break;
1494 case BLOCK_64X64:
1495 nn_config = &av1_partition_breakout_nnconfig_64;
1496 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
1497 break;
1498 case BLOCK_128X128:
1499 nn_config = &av1_partition_breakout_nnconfig_128;
1500 thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
1501 break;
1502 default: assert(0 && "Unexpected bsize.");
1503 }
1504 if (!nn_config || thresh < 0) return;
1505
1506 const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
1507 thresh = (int)((float)thresh *
1508 ml_predict_breakout_thresh_scale
1509 [cpi->sf.part_sf.ml_predict_breakout_level - 1]);
1510
1511 // Generate feature values.
1512 float features[FEATURES];
1513 int feature_index = 0;
1514
1515 const int num_pels_log2 = num_pels_log2_lookup[bsize];
1516 float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
1517 rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
1518 rate_f;
1519 features[feature_index++] = rate_f;
1520
1521 const float dist_f =
1522 (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
1523 features[feature_index++] = dist_f;
1524
1525 features[feature_index++] = (float)pb_source_variance;
1526
1527 const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
1528 features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
1529 assert(feature_index == FEATURES);
1530
1531 // Write features to file
1532 write_features_to_file(cpi->oxcf.partition_info_path,
1533 cpi->ext_part_controller.test_mode, features, FEATURES,
1534 2, bsize, mi_row, mi_col);
1535
1536 if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
1537 frame_is_intra_only(&cpi->common),
1538 features, &part_state->do_square_split,
1539 &part_state->do_rectangular_split)) {
1540 return;
1541 }
1542
1543 // Calculate score using the NN model.
1544 float score = 0.0f;
1545 av1_nn_predict(features, nn_config, 1, &score);
1546
1547 // Make decision.
1548 if ((int)(score * 100) >= thresh) {
1549 part_state->do_square_split = 0;
1550 part_state->do_rectangular_split = 0;
1551 }
1552 }
1553 #undef FEATURES
1554
av1_prune_partitions_before_search(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,PartitionSearchState * part_state)1555 void av1_prune_partitions_before_search(AV1_COMP *const cpi,
1556 MACROBLOCK *const x,
1557 SIMPLE_MOTION_DATA_TREE *const sms_tree,
1558 PartitionSearchState *part_state) {
1559 const AV1_COMMON *const cm = &cpi->common;
1560 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1561
1562 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1563 const BLOCK_SIZE bsize = blk_params->bsize;
1564
1565 #if CONFIG_THREE_PASS
1566 if (cpi->third_pass_ctx) {
1567 int mi_row = blk_params->mi_row;
1568 int mi_col = blk_params->mi_col;
1569 double ratio_h, ratio_w;
1570 av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width,
1571 &ratio_h, &ratio_w);
1572 THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
1573 cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w);
1574 BLOCK_SIZE third_pass_bsize =
1575 av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w);
1576 // check the actual partition of this block in the second pass
1577 PARTITION_TYPE third_pass_part =
1578 av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi);
1579
1580 int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) ||
1581 (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols);
1582
1583 if (!is_edge && block_size_wide[bsize] >= 16) {
1584 // If in second pass we used rectangular partition, then do not search for
1585 // rectangular partition in the different direction.
1586 if (third_pass_part != PARTITION_NONE) {
1587 if (third_pass_part == PARTITION_HORZ ||
1588 third_pass_part == PARTITION_HORZ_4 ||
1589 third_pass_part == PARTITION_HORZ_A ||
1590 third_pass_part == PARTITION_HORZ_B) {
1591 part_state->partition_rect_allowed[VERT] = 0;
1592 } else if (third_pass_part == PARTITION_VERT ||
1593 third_pass_part == PARTITION_VERT_4 ||
1594 third_pass_part == PARTITION_VERT_A ||
1595 third_pass_part == PARTITION_VERT_B) {
1596 part_state->partition_rect_allowed[HORZ] = 0;
1597 }
1598 }
1599
1600 int minSize = AOMMIN(block_size_wide[third_pass_bsize],
1601 block_size_high[third_pass_bsize]);
1602 int maxSize = AOMMAX(block_size_wide[third_pass_bsize],
1603 block_size_high[third_pass_bsize]);
1604 if (block_size_wide[bsize] < minSize / 4) {
1605 // Current partition is too small, just terminate
1606 part_state->terminate_partition_search = 1;
1607 return;
1608 } else if (block_size_wide[bsize] < minSize / 2) {
1609 if (third_pass_part != PARTITION_NONE) {
1610 // Current partition is very small, and in second pass we used
1611 // rectangular partition. Terminate the search here then.
1612 part_state->terminate_partition_search = 1;
1613 return;
1614 } else {
1615 // Partition is small, but we still check this partition, only disable
1616 // further splits.
1617 // TODO(any): check why this is not covered by the termination for <
1618 // minSize/4.
1619 av1_disable_square_split_partition(part_state);
1620 av1_disable_rect_partitions(part_state);
1621 return;
1622 }
1623 } else if (block_size_wide[bsize] > maxSize) {
1624 // Partition is larger than in the second pass. Only allow split.
1625 av1_set_square_split_only(part_state);
1626 return;
1627 } else if (block_size_wide[bsize] >= minSize &&
1628 block_size_wide[bsize] <= maxSize) {
1629 // Partition is within a range where it is very likely to find a good
1630 // choice, so do not prune anything.
1631 return;
1632 }
1633 }
1634 }
1635 #endif // CONFIG_THREE_PASS
1636
1637 // Prune rectangular partitions for larger blocks.
1638 if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
1639 part_state->do_rectangular_split = 0;
1640 part_state->partition_rect_allowed[HORZ] = 0;
1641 part_state->partition_rect_allowed[VERT] = 0;
1642 }
1643
1644 // Prune rectangular, AB and 4-way partition based on q index and block size
1645 if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
1646 if (bsize == BLOCK_8X8 && x->qindex < 35)
1647 av1_disable_rect_partitions(part_state);
1648
1649 } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
1650 // Enumeration difference between two square partitions
1651 const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
1652 int max_bsize =
1653 BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
1654 max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
1655 const BLOCK_SIZE max_prune_bsize =
1656 (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);
1657
1658 // Prune partition
1659 // qidx 0 to 85: prune bsize below BLOCK_32X32
1660 // qidx 86 to 170: prune bsize below BLOCK_16X16
1661 // qidx 171 to 255: prune bsize below BLOCK_8X8
1662 if (bsize < max_prune_bsize) {
1663 av1_disable_rect_partitions(part_state);
1664 }
1665 }
1666
1667 if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
1668 const MACROBLOCKD *const xd = &x->e_mbd;
1669 int prune_sub_8x8;
1670 if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 2) {
1671 prune_sub_8x8 = 1;
1672 } else {
1673 assert(cpi->sf.part_sf.prune_sub_8x8_partition_level == 1);
1674 // Prune if both neighbors are available and either is > BLOCK_8X8
1675 prune_sub_8x8 = xd->left_available && xd->up_available &&
1676 (xd->left_mbmi->bsize > BLOCK_8X8 ||
1677 xd->above_mbmi->bsize > BLOCK_8X8);
1678 }
1679 if (prune_sub_8x8) {
1680 av1_disable_all_splits(part_state);
1681 }
1682 }
1683
1684 // A CNN-based speed feature pruning out either split or all non-split
1685 // partition in INTRA frame coding.
1686 const int try_intra_cnn_based_part_prune =
1687 frame_is_intra_only(cm) &&
1688 cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
1689 cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
1690 blk_params->bsize_at_least_8x8 &&
1691 av1_is_whole_blk_in_frame(blk_params, mi_params);
1692
1693 if (try_intra_cnn_based_part_prune) {
1694 intra_mode_cnn_partition(&cpi->common, x, x->part_search_info.quad_tree_idx,
1695 cpi->sf.part_sf.intra_cnn_based_part_prune_level,
1696 part_state);
1697 }
1698
1699 // Use simple motion search to prune out split or non-split partitions. This
1700 // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
1701 // smaller blocksize.
1702 const int try_split_only =
1703 cpi->sf.part_sf.simple_motion_search_split &&
1704 part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
1705 av1_is_whole_blk_in_frame(blk_params, mi_params) &&
1706 !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
1707
1708 if (try_split_only) {
1709 simple_motion_search_based_split(cpi, x, sms_tree, part_state);
1710 }
1711
1712 // Use simple motion search to prune out rectangular partition in some
1713 // direction. The results are stored in prune_horz and prune_vert in order to
1714 // bypass future related pruning checks if a pruning decision has been made.
1715
1716 // We want to search at least one partition mode, so don't prune if NONE and
1717 // SPLIT are disabled.
1718 const int non_rect_part_allowed =
1719 part_state->do_square_split || part_state->partition_none_allowed;
1720 // Only run the model if the partitions are not already pruned.
1721 const int rect_part_allowed = part_state->do_rectangular_split &&
1722 ((part_state->partition_rect_allowed[HORZ] &&
1723 !part_state->prune_rect_part[HORZ]) ||
1724 (part_state->partition_rect_allowed[VERT] &&
1725 !part_state->prune_rect_part[VERT]));
1726
1727 const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
1728 !frame_is_intra_only(cm) &&
1729 non_rect_part_allowed && rect_part_allowed &&
1730 !av1_superres_scaled(cm);
1731
1732 if (try_prune_rect) {
1733 simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
1734 }
1735 }
1736
1737 #ifndef NDEBUG
is_bsize_square(BLOCK_SIZE bsize)1738 static inline int is_bsize_square(BLOCK_SIZE bsize) {
1739 return block_size_wide[bsize] == block_size_high[bsize];
1740 }
1741 #endif // NDEBUG
1742
av1_prune_partitions_by_max_min_bsize(SuperBlockEnc * sb_enc,PartitionSearchState * part_state)1743 void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
1744 PartitionSearchState *part_state) {
1745 assert(is_bsize_square(sb_enc->max_partition_size));
1746 assert(is_bsize_square(sb_enc->min_partition_size));
1747 assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
1748 const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1749 const BLOCK_SIZE bsize = blk_params->bsize;
1750 assert(is_bsize_square(bsize));
1751 const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
1752 const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
1753 const int bsize_1d = block_size_wide[bsize];
1754 assert(min_partition_size_1d <= max_partition_size_1d);
1755 const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
1756 const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
1757 if (is_gt_max_sq_part) {
1758 // If current block size is larger than max, only allow split.
1759 av1_set_square_split_only(part_state);
1760 } else if (is_le_min_sq_part) {
1761 // If current block size is less or equal to min, only allow none if valid
1762 // block large enough; only allow split otherwise.
1763 av1_disable_rect_partitions(part_state);
1764
1765 // only disable square split when current block is not at the picture
1766 // boundary. otherwise, inherit the square split flag from previous logic
1767 if (av1_blk_has_rows_and_cols(blk_params)) {
1768 part_state->do_square_split = 0;
1769 }
1770 part_state->partition_none_allowed = !(part_state->do_square_split);
1771 }
1772 }
1773
1774 // Decide whether to evaluate the AB partition specified by part_type based on
1775 // split and HORZ/VERT info
evaluate_ab_partition_based_on_split(const PC_TREE * pc_tree,PARTITION_TYPE rect_part,const RD_RECT_PART_WIN_INFO * rect_part_win_info,int qindex,int split_idx1,int split_idx2)1776 static int evaluate_ab_partition_based_on_split(
1777 const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
1778 const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
1779 int split_idx2) {
1780 int num_win = 0;
1781 // Threshold for number of winners
1782 // Conservative pruning for high quantizers
1783 const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
1784 int sub_part_win =
1785 (rect_part_win_info == NULL) ? (pc_tree->partitioning == rect_part)
1786 : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ]
1787 : rect_part_win_info->rect_part_win[VERT];
1788 num_win += (sub_part_win) ? 1 : 0;
1789 if (pc_tree->split[split_idx1]) {
1790 num_win +=
1791 (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
1792 } else {
1793 num_win += 1;
1794 }
1795 if (pc_tree->split[split_idx2]) {
1796 num_win +=
1797 (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
1798 } else {
1799 num_win += 1;
1800 }
1801 if (num_win < num_win_thresh) {
1802 return 0;
1803 }
1804 return 1;
1805 }
1806
av1_prune_ab_partitions(AV1_COMP * cpi,const MACROBLOCK * x,const PC_TREE * pc_tree,int pb_source_variance,int64_t best_rdcost,const RD_RECT_PART_WIN_INFO * rect_part_win_info,bool ext_partition_allowed,PartitionSearchState * part_state,int * ab_partitions_allowed)1807 void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
1808 const PC_TREE *pc_tree, int pb_source_variance,
1809 int64_t best_rdcost,
1810 const RD_RECT_PART_WIN_INFO *rect_part_win_info,
1811 bool ext_partition_allowed,
1812 PartitionSearchState *part_state,
1813 int *ab_partitions_allowed) {
1814 int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1815 int64_t *vert_rd = part_state->rect_part_rd[VERT];
1816 int64_t *split_rd = part_state->split_rd;
1817 const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
1818 // The standard AB partitions are allowed initially if ext-partition-types are
1819 // allowed.
1820 int horzab_partition_allowed = ext_partition_allowed &&
1821 part_cfg->enable_ab_partitions &&
1822 part_state->partition_rect_allowed[HORZ];
1823 int vertab_partition_allowed = ext_partition_allowed &&
1824 part_cfg->enable_ab_partitions &&
1825 part_state->partition_rect_allowed[VERT];
1826
1827 // Pruning: pruning out AB partitions on one main direction based on the
1828 // current best partition and source variance.
1829 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1830 if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
1831 // TODO(debargha,[email protected]): may need to tune the threshold for
1832 // pb_source_variance.
1833 horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1834 (pc_tree->partitioning == PARTITION_NONE &&
1835 pb_source_variance < 32) ||
1836 pc_tree->partitioning == PARTITION_SPLIT);
1837 vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1838 (pc_tree->partitioning == PARTITION_NONE &&
1839 pb_source_variance < 32) ||
1840 pc_tree->partitioning == PARTITION_SPLIT);
1841 } else {
1842 horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1843 pc_tree->partitioning == PARTITION_SPLIT);
1844 vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1845 pc_tree->partitioning == PARTITION_SPLIT);
1846 }
1847 horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
1848 horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
1849 vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
1850 vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
1851 split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
1852 split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
1853 split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
1854 split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
1855 }
1856
1857 // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
1858 // subblocks estimated from previous partitions is much higher than the best
1859 // rd so far.
1860 ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
1861 ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
1862 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1863 const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
1864 const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
1865 switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1866 case 1:
1867 ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
1868 ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
1869 break;
1870 case 2:
1871 default:
1872 ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
1873 ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
1874 break;
1875 }
1876 }
1877
1878 // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
1879 // subblocks estimated from previous partitions is much higher than the best
1880 // rd so far.
1881 ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
1882 ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
1883 if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1884 const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
1885 const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
1886 switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1887 case 1:
1888 ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
1889 ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
1890 break;
1891 case 2:
1892 default:
1893 ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
1894 ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
1895 break;
1896 }
1897 }
1898
1899 // Pruning: pruning out some ab partitions using a DNN taking rd costs of
1900 // sub-blocks from previous basic partition types.
1901 if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
1902 part_state->partition_rect_allowed[HORZ] &&
1903 part_state->partition_rect_allowed[VERT]) {
1904 // TODO([email protected]): x->source_variance may not be the current
1905 // block's variance. The correct one to use is pb_source_variance. Need to
1906 // re-train the model to fix it.
1907 ml_prune_ab_partition(cpi, pc_tree->partitioning,
1908 get_unsigned_bits(x->source_variance), best_rdcost,
1909 part_state, ab_partitions_allowed);
1910 }
1911
1912 // Pruning: pruning AB partitions based on the number of horz/vert wins
1913 // in the current block and sub-blocks in PARTITION_SPLIT.
1914 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1915 ab_partitions_allowed[HORZ_A]) {
1916 ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
1917 pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
1918 }
1919 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1920 ab_partitions_allowed[HORZ_B]) {
1921 ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
1922 pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
1923 }
1924 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1925 ab_partitions_allowed[VERT_A]) {
1926 ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
1927 pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
1928 }
1929 if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1930 ab_partitions_allowed[VERT_B]) {
1931 ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
1932 pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
1933 }
1934 }
1935
1936 // Prepare features for the external model. Specifically, features after
1937 // ab partition is searched.
prepare_features_after_part_ab(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],unsigned int pb_source_variance,int mi_row,int mi_col,aom_partition_features_t * const features)1938 static void prepare_features_after_part_ab(
1939 const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
1940 int part_ctx, int64_t best_rd,
1941 int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
1942 int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
1943 int mi_row, int mi_col, aom_partition_features_t *const features) {
1944 int64_t *horz_rd = rect_part_rd[HORZ];
1945 int64_t *vert_rd = rect_part_rd[VERT];
1946
1947 // Generate features.
1948 int feature_index = 0;
1949 features->after_part_ab.f[feature_index++] = (float)part_ctx;
1950 features->after_part_ab.f[feature_index++] =
1951 (float)get_unsigned_bits(pb_source_variance);
1952
1953 const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1954 int sub_block_rdcost[8] = { 0 };
1955 int rd_index = 0;
1956 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1957 if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1958 sub_block_rdcost[rd_index] = (int)horz_rd[i];
1959 ++rd_index;
1960 }
1961 for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1962 if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1963 sub_block_rdcost[rd_index] = (int)vert_rd[i];
1964 ++rd_index;
1965 }
1966 for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1967 if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1968 sub_block_rdcost[rd_index] = (int)split_rd[i];
1969 ++rd_index;
1970 }
1971 for (int i = 0; i < 8; ++i) {
1972 // Ratio between the sub-block RD and the whole-block RD.
1973 float rd_ratio = 1.0f;
1974 if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1975 rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1976 features->after_part_ab.f[feature_index++] = rd_ratio;
1977 }
1978
1979 // 4-way partitions are only allowed for these three square block sizes.
1980 assert(bsize == BLOCK_16X16 || bsize == BLOCK_32X32 || bsize == BLOCK_64X64);
1981
1982 // Get variance of the 1:4 and 4:1 sub-blocks.
1983 unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1984 unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1985 {
1986 BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1987 BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1988
1989 assert(horz_4_bs != BLOCK_INVALID);
1990 assert(vert_4_bs != BLOCK_INVALID);
1991
1992 av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1993 av1_num_planes(&cpi->common), bsize);
1994 const int src_stride = x->plane[0].src.stride;
1995 uint8_t *src = x->plane[0].src.buf;
1996 const MACROBLOCKD *const xd = &x->e_mbd;
1997
1998 struct buf_2d horz_4_src, vert_4_src;
1999 horz_4_src.stride = src_stride;
2000 vert_4_src.stride = src_stride;
2001
2002 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2003 horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
2004 vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
2005
2006 horz_4_source_var[i] = av1_get_perpixel_variance_facade(
2007 cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
2008 vert_4_source_var[i] = av1_get_perpixel_variance_facade(
2009 cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
2010 }
2011 }
2012
2013 const float denom = (float)(pb_source_variance + 1);
2014 const float low_b = 0.1f;
2015 const float high_b = 10.0f;
2016 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2017 // Ratio between the 4:1 sub-block variance and the whole-block variance.
2018 float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
2019 if (var_ratio < low_b) var_ratio = low_b;
2020 if (var_ratio > high_b) var_ratio = high_b;
2021 features->after_part_ab.f[feature_index++] = var_ratio;
2022 }
2023 for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2024 // Ratio between the 1:4 sub-block RD and the whole-block RD.
2025 float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
2026 if (var_ratio < low_b) var_ratio = low_b;
2027 if (var_ratio > high_b) var_ratio = high_b;
2028 features->after_part_ab.f[feature_index++] = var_ratio;
2029 }
2030 assert(feature_index == 18);
2031 }
2032
2033 // If the external partition model is used, we let it determine partition
2034 // decisions before partition none. Specifically, these parameters:
2035 // partition_none_allowed
2036 // partition_horz_allowed
2037 // partition_vert_allowed
2038 // do_rectangular_split
2039 // do_square_split
ext_ml_model_decision_before_none(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],int * partition_none_allowed,int * partition_horz_allowed,int * partition_vert_allowed,int * do_rectangular_split,int * do_square_split)2040 static bool ext_ml_model_decision_before_none(
2041 AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
2042 int *partition_none_allowed, int *partition_horz_allowed,
2043 int *partition_vert_allowed, int *do_rectangular_split,
2044 int *do_square_split) {
2045 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2046 if (!ext_part_controller->ready) return false;
2047
2048 // Setup features.
2049 aom_partition_features_t features;
2050 features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
2051 for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
2052 features.before_part_none.f[i] = features_from_motion[i];
2053 }
2054
2055 // Send necessary features to the external model.
2056 av1_ext_part_send_features(ext_part_controller, &features);
2057
2058 // Get partition decisions from the external model.
2059 aom_partition_decision_t decision;
2060 const bool valid_decision =
2061 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2062 if (!valid_decision) return false;
2063
2064 // Populate decisions
2065 *partition_none_allowed = decision.partition_none_allowed;
2066 *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
2067 *partition_vert_allowed = decision.partition_rect_allowed[VERT];
2068 *do_rectangular_split = decision.do_rectangular_split;
2069 *do_square_split = decision.do_square_split;
2070
2071 return true;
2072 }
2073
2074 // If the external partition model is used, we let it determine partition
2075 // decisions before partition none. Specifically, these parameters:
2076 // prune_horz
2077 // prune_vert
ext_ml_model_decision_before_none_part2(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],int * prune_horz,int * prune_vert)2078 static bool ext_ml_model_decision_before_none_part2(
2079 AV1_COMP *cpi,
2080 const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
2081 int *prune_horz, int *prune_vert) {
2082 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2083 if (!ext_part_controller->ready) return false;
2084
2085 // Setup features.
2086 aom_partition_features_t features;
2087 features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
2088 for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
2089 features.before_part_none.f_part2[i] = features_from_motion[i];
2090 }
2091
2092 // Send necessary features to the external model.
2093 av1_ext_part_send_features(ext_part_controller, &features);
2094
2095 // Get partition decisions from the external model.
2096 aom_partition_decision_t decision;
2097 const bool valid_decision =
2098 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2099 if (!valid_decision) return false;
2100
2101 // Populate decisions
2102 *prune_horz = decision.prune_rect_part[HORZ];
2103 *prune_vert = decision.prune_rect_part[VERT];
2104
2105 return true;
2106 }
2107
2108 // If the external partition model is used, we let it determine partition
2109 // decisions after none partition. Specifically, these parameters:
2110 // do_square_split
2111 // do_rectangular_split
ext_ml_model_decision_after_none(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_none,int * do_square_split,int * do_rectangular_split)2112 bool ext_ml_model_decision_after_none(
2113 ExtPartController *const ext_part_controller, const int is_intra_frame,
2114 const float *const features_after_none, int *do_square_split,
2115 int *do_rectangular_split) {
2116 if (!ext_part_controller->ready || is_intra_frame) return false;
2117
2118 // Setup features.
2119 aom_partition_features_t features;
2120 features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
2121 for (int i = 0; i < 4; ++i) {
2122 features.after_part_none.f[i] = features_after_none[i];
2123 }
2124
2125 // Send necessary features to the external model.
2126 av1_ext_part_send_features(ext_part_controller, &features);
2127
2128 // Get partition decisions from the external model.
2129 aom_partition_decision_t decision;
2130 const bool valid_decision =
2131 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2132 if (!valid_decision) return false;
2133
2134 // Populate decisions
2135 *do_square_split = decision.do_square_split;
2136 *do_rectangular_split = decision.do_rectangular_split;
2137
2138 return true;
2139 }
2140
2141 // If the external partition model is used, we let it determine partition
2142 // decisions after none partition. Specifically, these parameters:
2143 // terminate_partition_search
ext_ml_model_decision_after_none_part2(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2144 bool ext_ml_model_decision_after_none_part2(
2145 AV1_COMP *const cpi, const float *const features_terminate,
2146 int *terminate_partition_search) {
2147 AV1_COMMON *const cm = &cpi->common;
2148 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2149 if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;
2150
2151 // Setup features.
2152 aom_partition_features_t features;
2153 features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
2154 for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
2155 features.after_part_none.f_terminate[i] = features_terminate[i];
2156 }
2157
2158 // Send necessary features to the external model.
2159 av1_ext_part_send_features(ext_part_controller, &features);
2160
2161 // Get partition decisions from the external model.
2162 aom_partition_decision_t decision;
2163 const bool valid_decision =
2164 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2165 if (!valid_decision) return false;
2166
2167 // Populate decisions
2168 *terminate_partition_search = decision.terminate_partition_search;
2169
2170 return true;
2171 }
2172
2173 // If the external partition model is used, we let it determine partition
2174 // decisions after none partition. Specifically, these parameters:
2175 // terminate_partition_search
ext_ml_model_decision_after_split(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2176 bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
2177 const float *const features_terminate,
2178 int *terminate_partition_search) {
2179 const AV1_COMMON *const cm = &cpi->common;
2180 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2181 if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
2182 return false;
2183 }
2184
2185 // Setup features.
2186 aom_partition_features_t features;
2187 features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
2188 for (int i = 0; i < 31; ++i) {
2189 features.after_part_split.f_terminate[i] = features_terminate[i];
2190 }
2191
2192 // Send necessary features to the external model.
2193 av1_ext_part_send_features(ext_part_controller, &features);
2194
2195 // Get partition decisions from the external model.
2196 aom_partition_decision_t decision;
2197 const bool valid_decision =
2198 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2199 if (!valid_decision) return false;
2200
2201 // Populate decisions
2202 *terminate_partition_search = decision.terminate_partition_search;
2203
2204 return true;
2205 }
2206
2207 // If the external partition model is used, we let it determine partition
2208 // decisions after none partition. Specifically, these parameters:
2209 // prune_rect_part[HORZ]
2210 // prune_rect_part[VERT]
ext_ml_model_decision_after_split_part2(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_prune,int * prune_rect_part_horz,int * prune_rect_part_vert)2211 bool ext_ml_model_decision_after_split_part2(
2212 ExtPartController *const ext_part_controller, const int is_intra_frame,
2213 const float *const features_prune, int *prune_rect_part_horz,
2214 int *prune_rect_part_vert) {
2215 if (is_intra_frame || !ext_part_controller->ready) {
2216 return false;
2217 }
2218
2219 // Setup features.
2220 aom_partition_features_t features;
2221 features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
2222 for (int i = 0; i < 9; ++i) {
2223 features.after_part_split.f_prune_rect[i] = features_prune[i];
2224 }
2225
2226 // Send necessary features to the external model.
2227 av1_ext_part_send_features(ext_part_controller, &features);
2228
2229 // Get partition decisions from the external model.
2230 aom_partition_decision_t decision;
2231 const bool valid_decision =
2232 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2233 if (!valid_decision) return false;
2234
2235 // Populate decisions
2236 *prune_rect_part_horz = decision.prune_rect_part[0];
2237 *prune_rect_part_vert = decision.prune_rect_part[1];
2238
2239 return true;
2240 }
2241
2242 // If the external partition model is used, we let it determine partition
2243 // decisions after rectangular partition. Specifically, these parameters:
2244 // horza_partition_allowed
2245 // horzb_partition_allowed
2246 // verta_partition_allowed
2247 // vertb_partition_allowed
ext_ml_model_decision_after_rect(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_rect,int * horza_partition_allowed,int * horzb_partition_allowed,int * verta_partition_allowed,int * vertb_partition_allowed)2248 static bool ext_ml_model_decision_after_rect(
2249 ExtPartController *const ext_part_controller, const int is_intra_frame,
2250 const float *const features_after_rect, int *horza_partition_allowed,
2251 int *horzb_partition_allowed, int *verta_partition_allowed,
2252 int *vertb_partition_allowed) {
2253 if (is_intra_frame || !ext_part_controller->ready) return false;
2254
2255 // Setup features.
2256 aom_partition_features_t features;
2257 features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
2258 for (int i = 0; i < 10; ++i) {
2259 features.after_part_rect.f[i] = features_after_rect[i];
2260 }
2261
2262 // Send necessary features to the external model.
2263 av1_ext_part_send_features(ext_part_controller, &features);
2264
2265 // Get partition decisions from the external model.
2266 aom_partition_decision_t decision;
2267 const bool valid_decision =
2268 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2269 if (!valid_decision) return false;
2270
2271 // Populate decisions
2272 *horza_partition_allowed = decision.horza_partition_allowed;
2273 *horzb_partition_allowed = decision.horzb_partition_allowed;
2274 *verta_partition_allowed = decision.verta_partition_allowed;
2275 *vertb_partition_allowed = decision.vertb_partition_allowed;
2276
2277 return true;
2278 }
2279
2280 // If the external partition model is used, we let it determine partition
2281 // decisions after AB partition. Specifically, these parameters:
2282 // partition_vert4_allowed
2283 // partition_horz4_allowed
ext_ml_model_decision_after_part_ab(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],int * const partition_horz4_allowed,int * const partition_vert4_allowed,unsigned int pb_source_variance,int mi_row,int mi_col)2284 static bool ext_ml_model_decision_after_part_ab(
2285 AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
2286 int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
2287 int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
2288 int *const partition_vert4_allowed, unsigned int pb_source_variance,
2289 int mi_row, int mi_col) {
2290 const AV1_COMMON *const cm = &cpi->common;
2291 ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2292
2293 if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
2294 // Setup features.
2295 aom_partition_features_t features;
2296 features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
2297 prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
2298 rect_part_rd, split_rd, pb_source_variance,
2299 mi_row, mi_col, &features);
2300
2301 // Send necessary features to the external model.
2302 av1_ext_part_send_features(ext_part_controller, &features);
2303
2304 // Get partition decisions from the external model.
2305 aom_partition_decision_t decision;
2306 const bool valid_decision =
2307 av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2308 if (!valid_decision) return false;
2309
2310 // Populate decisions
2311 *partition_horz4_allowed = decision.partition_horz4_allowed;
2312 *partition_vert4_allowed = decision.partition_vert4_allowed;
2313
2314 return true;
2315 }
2316
2317 return false;
2318 }
2319
2320 // This function resembles "av1_setup_sms_tree()" in context_tree.c
2321 // with function signature change.
setup_sms_tree(AV1_COMP * const cpi,SIMPLE_MOTION_DATA_TREE * sms_tree)2322 static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
2323 AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
2324 AV1_COMMON *const cm = &cpi->common;
2325 const int stat_generation_stage = is_stat_generation_stage(cpi);
2326 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2327 const int tree_nodes =
2328 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2329 int sms_tree_index = 0;
2330 SIMPLE_MOTION_DATA_TREE *this_sms;
2331 int square_index = 1;
2332 int nodes;
2333 this_sms = &sms_tree[0];
2334
2335 if (!stat_generation_stage) {
2336 const int leaf_factor = is_sb_size_128 ? 4 : 1;
2337 const int leaf_nodes = 256 * leaf_factor;
2338
2339 // Sets up all the leaf nodes in the tree.
2340 for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
2341 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2342 tree->block_size = square[0];
2343 }
2344
2345 // Each node has 4 leaf nodes, fill each block_size level of the tree
2346 // from leafs to the root.
2347 for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
2348 for (int i = 0; i < nodes; ++i) {
2349 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2350 tree->block_size = square[square_index];
2351 for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
2352 ++sms_tree_index;
2353 }
2354 ++square_index;
2355 }
2356 } else {
2357 // Allocation for firstpass/LAP stage
2358 // TODO(Mufaddal): refactor square_index to use a common block_size macro
2359 // from firstpass.c
2360 SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2361 square_index = 2;
2362 tree->block_size = square[square_index];
2363 }
2364
2365 // Set up the root node for the largest superblock size
2366 return &sms_tree[tree_nodes - 1];
2367 }
2368
write_motion_feature_to_file(const char * const path,const int sb_counter,const unsigned int * block_sse,const unsigned int * block_var,const int num_blocks,const BLOCK_SIZE bsize,const BLOCK_SIZE fixed_block_size,const int mi_row,const int mi_col)2369 static void write_motion_feature_to_file(
2370 const char *const path, const int sb_counter, const unsigned int *block_sse,
2371 const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
2372 const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
2373 char filename[256];
2374 snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
2375 sb_counter);
2376 FILE *pfile = fopen(filename, "w");
2377 fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
2378 block_size_wide[fixed_block_size], num_blocks);
2379 for (int i = 0; i < num_blocks; ++i) {
2380 fprintf(pfile, "%d", block_sse[i]);
2381 if (i < num_blocks - 1) fprintf(pfile, ",");
2382 }
2383 fprintf(pfile, "\n");
2384 for (int i = 0; i < num_blocks; ++i) {
2385 fprintf(pfile, "%d", block_var[i]);
2386 if (i < num_blocks - 1) fprintf(pfile, ",");
2387 }
2388 fprintf(pfile, "\n");
2389 fclose(pfile);
2390 }
2391
av1_collect_motion_search_features_sb(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,aom_partition_features_t * features)2392 void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
2393 TileDataEnc *tile_data,
2394 const int mi_row, const int mi_col,
2395 const BLOCK_SIZE bsize,
2396 aom_partition_features_t *features) {
2397 const AV1_COMMON *const cm = &cpi->common;
2398 if (frame_is_intra_only(cm)) return;
2399
2400 MACROBLOCK *const x = &td->mb;
2401 const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
2402 const int col_step = mi_size_wide[fixed_block_size];
2403 const int row_step = mi_size_high[fixed_block_size];
2404 SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2405 const int stat_generation_stage = is_stat_generation_stage(cpi);
2406 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2407 const int tree_nodes =
2408 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2409 CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2410 SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2411 TileInfo *const tile_info = &tile_data->tile_info;
2412 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2413 av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
2414 mi_col);
2415 av1_reset_simple_motion_tree_partition(sms_root, bsize);
2416 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2417 : LAST_FRAME };
2418 const int mi_width =
2419 AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
2420 const int mi_height =
2421 AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
2422 const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
2423 const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
2424 const int num_blocks = col_steps * row_steps;
2425 unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
2426 unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
2427 if (!(block_sse && block_var)) {
2428 aom_free(sms_tree);
2429 aom_free(block_sse);
2430 aom_free(block_var);
2431 aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2432 "Error allocating block_sse & block_var");
2433 }
2434 int idx = 0;
2435
2436 for (int row = mi_row;
2437 row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
2438 row += row_step) {
2439 for (int col = mi_col;
2440 col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
2441 col += col_step) {
2442 simple_motion_search_get_best_ref(
2443 cpi, x, sms_root, row, col, fixed_block_size, ref_list,
2444 /*num_refs=*/1, /*use_subpixel=*/1,
2445 /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
2446 ++idx;
2447 }
2448 }
2449 if (features == NULL) {
2450 write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
2451 block_sse, block_var, idx, bsize,
2452 fixed_block_size, mi_row, mi_col);
2453 } else {
2454 features->sb_features.motion_features.unit_length =
2455 block_size_wide[fixed_block_size];
2456 features->sb_features.motion_features.num_units = idx;
2457 for (int i = 0; i < idx; ++i) {
2458 features->sb_features.motion_features.block_sse[i] = block_sse[i];
2459 features->sb_features.motion_features.block_var[i] = block_var[i];
2460 }
2461 }
2462
2463 aom_free(block_sse);
2464 aom_free(block_var);
2465 aom_free(sms_tree);
2466 }
2467
av1_prepare_motion_search_features_block(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,const int valid_partition_types,unsigned int * block_sse,unsigned int * block_var,unsigned int sub_block_sse[4],unsigned int sub_block_var[4],unsigned int horz_block_sse[2],unsigned int horz_block_var[2],unsigned int vert_block_sse[2],unsigned int vert_block_var[2])2468 void av1_prepare_motion_search_features_block(
2469 AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
2470 const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
2471 const int valid_partition_types, unsigned int *block_sse,
2472 unsigned int *block_var, unsigned int sub_block_sse[4],
2473 unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
2474 unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
2475 unsigned int vert_block_var[2]) {
2476 const AV1_COMMON *const cm = &cpi->common;
2477 if (frame_is_intra_only(cm)) return;
2478 MACROBLOCK *const x = &td->mb;
2479 SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2480 const int stat_generation_stage = is_stat_generation_stage(cpi);
2481 const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2482 const int tree_nodes =
2483 av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2484 CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2485 SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2486 TileInfo *const tile_info = &tile_data->tile_info;
2487 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2488 av1_reset_simple_motion_tree_partition(sms_root, bsize);
2489 const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2490 : LAST_FRAME };
2491 const int sub_mi_width = mi_size_wide[bsize] / 2;
2492 const int sub_mi_height = sub_mi_width;
2493 simple_motion_search_get_best_ref(
2494 cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1,
2495 /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var);
2496 // Split to 4 sub blocks.
2497 if (valid_partition_types & (1 << PARTITION_SPLIT)) {
2498 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
2499 for (int i = 0; i < 4; ++i) {
2500 const int row = mi_row + (i >> 1) * sub_mi_height;
2501 const int col = mi_col + (i & 1) * sub_mi_width;
2502 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2503 ref_list, /*num_refs=*/1,
2504 /*use_subpixel=*/1, /*save_mv=*/1,
2505 &sub_block_sse[i], &sub_block_var[i]);
2506 }
2507 }
2508 // Horizontal split
2509 if (valid_partition_types & (1 << PARTITION_HORZ)) {
2510 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
2511 for (int i = 0; i < 2; ++i) {
2512 const int row = mi_row + (i & 1) * sub_mi_height;
2513 const int col = mi_col;
2514 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2515 ref_list, /*num_refs=*/1,
2516 /*use_subpixel=*/1, /*save_mv=*/1,
2517 &horz_block_sse[i], &horz_block_var[i]);
2518 }
2519 }
2520 // Vertical split
2521 if (valid_partition_types & (1 << PARTITION_VERT)) {
2522 const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
2523 for (int i = 0; i < 2; ++i) {
2524 const int row = mi_row;
2525 const int col = mi_col + (i & 1) * sub_mi_width;
2526 simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2527 ref_list, /*num_refs=*/1,
2528 /*use_subpixel=*/1, /*save_mv=*/1,
2529 &vert_block_sse[i], &vert_block_var[i]);
2530 }
2531 }
2532
2533 aom_free(sms_tree);
2534 }
2535 #endif // !CONFIG_REALTIME_ONLY
2536
init_simple_motion_search_mvs(SIMPLE_MOTION_DATA_TREE * sms_tree,const FULLPEL_MV * start_mvs)2537 static inline void init_simple_motion_search_mvs(
2538 SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
2539 memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
2540 av1_zero(sms_tree->sms_none_feat);
2541 av1_zero(sms_tree->sms_rect_feat);
2542 av1_zero(sms_tree->sms_none_valid);
2543 av1_zero(sms_tree->sms_rect_valid);
2544
2545 if (sms_tree->block_size >= BLOCK_8X8) {
2546 init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
2547 init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
2548 init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
2549 init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
2550 }
2551 }
2552
av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP * cpi,const TileInfo * tile_info,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_root,int mi_row,int mi_col)2553 void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
2554 const TileInfo *tile_info,
2555 MACROBLOCK *x,
2556 SIMPLE_MOTION_DATA_TREE *sms_root,
2557 int mi_row, int mi_col) {
2558 // Use the NEARESTMV of the sb as the start mv
2559 const AV1_COMMON *cm = &cpi->common;
2560 MACROBLOCKD *const xd = &x->e_mbd;
2561 FULLPEL_MV ref_mvs[REF_FRAMES];
2562 const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
2563 av1_zero(ref_mvs);
2564 // If tile_info is NULL, assume that the offsets have already been set.
2565 if (tile_info) {
2566 av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
2567 sb_size);
2568 }
2569
2570 MB_MODE_INFO_EXT mbmi_ext;
2571 const int ref_frame =
2572 cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
2573 av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
2574 xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
2575 mbmi_ext.mode_context);
2576 if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
2577 ref_mvs[ref_frame] =
2578 get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
2579 } else {
2580 ref_mvs[ref_frame] =
2581 get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
2582 }
2583
2584 init_simple_motion_search_mvs(sms_root, ref_mvs);
2585 }
2586