1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdbool.h>
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <string.h>
18
19 #include "aom/aom_encoder.h"
20 #include "aom_dsp/aom_dsp_common.h"
21 #include "aom_dsp/binary_codes_writer.h"
22 #include "aom_dsp/bitwriter_buffer.h"
23 #include "aom_mem/aom_mem.h"
24 #include "aom_ports/bitops.h"
25 #include "aom_ports/mem_ops.h"
26 #if CONFIG_BITSTREAM_DEBUG
27 #include "aom_util/debug_util.h"
28 #endif // CONFIG_BITSTREAM_DEBUG
29
30 #include "av1/common/cdef.h"
31 #include "av1/common/cfl.h"
32 #include "av1/common/debugmodes.h"
33 #include "av1/common/entropy.h"
34 #include "av1/common/entropymode.h"
35 #include "av1/common/entropymv.h"
36 #include "av1/common/mvref_common.h"
37 #include "av1/common/pred_common.h"
38 #include "av1/common/reconinter.h"
39 #include "av1/common/reconintra.h"
40 #include "av1/common/seg_common.h"
41 #include "av1/common/tile_common.h"
42
43 #include "av1/encoder/bitstream.h"
44 #include "av1/encoder/cost.h"
45 #include "av1/encoder/encodemv.h"
46 #include "av1/encoder/encodetxb.h"
47 #include "av1/encoder/ethread.h"
48 #include "av1/encoder/mcomp.h"
49 #include "av1/encoder/palette.h"
50 #include "av1/encoder/pickrst.h"
51 #include "av1/encoder/segmentation.h"
52 #include "av1/encoder/tokenize.h"
53
54 #define ENC_MISMATCH_DEBUG 0
55 #define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker
56 #define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile
57
write_uniform(aom_writer * w,int n,int v)58 static inline void write_uniform(aom_writer *w, int n, int v) {
59 const int l = get_unsigned_bits(n);
60 const int m = (1 << l) - n;
61 if (l == 0) return;
62 if (v < m) {
63 aom_write_literal(w, v, l - 1);
64 } else {
65 aom_write_literal(w, m + ((v - m) >> 1), l - 1);
66 aom_write_literal(w, (v - m) & 1, 1);
67 }
68 }
69
70 #if !CONFIG_REALTIME_ONLY
71 static inline void loop_restoration_write_sb_coeffs(
72 const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
73 aom_writer *const w, int plane, FRAME_COUNTS *counts);
74 #endif
75
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)76 static inline void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
77 const MB_MODE_INFO *mi,
78 const MB_MODE_INFO *above_mi,
79 const MB_MODE_INFO *left_mi,
80 PREDICTION_MODE mode, aom_writer *w) {
81 assert(!is_intrabc_block(mi));
82 (void)mi;
83 aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
84 INTRA_MODES);
85 }
86
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)87 static inline void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
88 FRAME_CONTEXT *ec_ctx,
89 const int16_t mode_ctx) {
90 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
91
92 aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
93
94 if (mode != NEWMV) {
95 const int16_t zeromv_ctx =
96 (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
97 aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
98
99 if (mode != GLOBALMV) {
100 int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
101 aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
102 }
103 }
104 }
105
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)106 static inline void write_drl_idx(FRAME_CONTEXT *ec_ctx,
107 const MB_MODE_INFO *mbmi,
108 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
109 aom_writer *w) {
110 assert(mbmi->ref_mv_idx < 3);
111
112 const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
113 if (new_mv) {
114 int idx;
115 for (idx = 0; idx < 2; ++idx) {
116 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
117 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
118
119 aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
120 2);
121 if (mbmi->ref_mv_idx == idx) return;
122 }
123 }
124 return;
125 }
126
127 if (have_nearmv_in_inter_mode(mbmi->mode)) {
128 int idx;
129 // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
130 for (idx = 1; idx < 3; ++idx) {
131 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
132 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
133 aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
134 ec_ctx->drl_cdf[drl_ctx], 2);
135 if (mbmi->ref_mv_idx == (idx - 1)) return;
136 }
137 }
138 return;
139 }
140 }
141
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)142 static inline void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
143 PREDICTION_MODE mode,
144 const int16_t mode_ctx) {
145 assert(is_inter_compound_mode(mode));
146 aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
147 xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
148 INTER_COMPOUND_MODES);
149 }
150
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)151 static inline void write_tx_size_vartx(MACROBLOCKD *xd,
152 const MB_MODE_INFO *mbmi,
153 TX_SIZE tx_size, int depth, int blk_row,
154 int blk_col, aom_writer *w) {
155 FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
156 const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
157 const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
158
159 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
160
161 if (depth == MAX_VARTX_DEPTH) {
162 txfm_partition_update(xd->above_txfm_context + blk_col,
163 xd->left_txfm_context + blk_row, tx_size, tx_size);
164 return;
165 }
166
167 const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
168 xd->left_txfm_context + blk_row,
169 mbmi->bsize, tx_size);
170 const int txb_size_index =
171 av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
172 const int write_txfm_partition =
173 tx_size == mbmi->inter_tx_size[txb_size_index];
174 if (write_txfm_partition) {
175 aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
176
177 txfm_partition_update(xd->above_txfm_context + blk_col,
178 xd->left_txfm_context + blk_row, tx_size, tx_size);
179 // TODO(yuec): set correct txfm partition update for qttx
180 } else {
181 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
182 const int bsw = tx_size_wide_unit[sub_txs];
183 const int bsh = tx_size_high_unit[sub_txs];
184
185 aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
186
187 if (sub_txs == TX_4X4) {
188 txfm_partition_update(xd->above_txfm_context + blk_col,
189 xd->left_txfm_context + blk_row, sub_txs, tx_size);
190 return;
191 }
192
193 assert(bsw > 0 && bsh > 0);
194 for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
195 const int offsetr = blk_row + row;
196 for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
197 const int offsetc = blk_col + col;
198 write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
199 }
200 }
201 }
202 }
203
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)204 static inline void write_selected_tx_size(const MACROBLOCKD *xd,
205 aom_writer *w) {
206 const MB_MODE_INFO *const mbmi = xd->mi[0];
207 const BLOCK_SIZE bsize = mbmi->bsize;
208 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
209 if (block_signals_txsize(bsize)) {
210 const TX_SIZE tx_size = mbmi->tx_size;
211 const int tx_size_ctx = get_tx_size_context(xd);
212 const int depth = tx_size_to_depth(tx_size, bsize);
213 const int max_depths = bsize_to_max_depth(bsize);
214 const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
215
216 assert(depth >= 0 && depth <= max_depths);
217 assert(!is_inter_block(mbmi));
218 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
219
220 aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
221 max_depths + 1);
222 }
223 }
224
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)225 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
226 uint8_t segment_id, const MB_MODE_INFO *mi,
227 aom_writer *w) {
228 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
229 return 1;
230 } else {
231 const int skip_txfm = mi->skip_txfm;
232 const int ctx = av1_get_skip_txfm_context(xd);
233 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
234 aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
235 return skip_txfm;
236 }
237 }
238
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)239 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
240 uint8_t segment_id, const MB_MODE_INFO *mi,
241 aom_writer *w) {
242 if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
243 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
244 return 0;
245 }
246 const int skip_mode = mi->skip_mode;
247 if (!is_comp_ref_allowed(mi->bsize)) {
248 assert(!skip_mode);
249 return 0;
250 }
251 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
252 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
253 // These features imply single-reference mode, while skip mode implies
254 // compound reference. Hence, the two are mutually exclusive.
255 // In other words, skip_mode is implicitly 0 here.
256 assert(!skip_mode);
257 return 0;
258 }
259 const int ctx = av1_get_skip_mode_context(xd);
260 aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
261 return skip_mode;
262 }
263
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,aom_writer * w,const int is_inter)264 static inline void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
265 uint8_t segment_id, aom_writer *w,
266 const int is_inter) {
267 if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
268 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
269 assert(is_inter);
270 return;
271 }
272 const int ctx = av1_get_intra_inter_context(xd);
273 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
274 aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
275 }
276 }
277
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)278 static inline void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
279 const MB_MODE_INFO *mbmi, aom_writer *w) {
280 MOTION_MODE last_motion_mode_allowed =
281 cm->features.switchable_motion_mode
282 ? motion_mode_allowed(cm->global_motion, xd, mbmi,
283 cm->features.allow_warped_motion)
284 : SIMPLE_TRANSLATION;
285 assert(mbmi->motion_mode <= last_motion_mode_allowed);
286 switch (last_motion_mode_allowed) {
287 case SIMPLE_TRANSLATION: break;
288 case OBMC_CAUSAL:
289 aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
290 xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
291 break;
292 default:
293 aom_write_symbol(w, mbmi->motion_mode,
294 xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
295 MOTION_MODES);
296 }
297 }
298
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)299 static inline void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex,
300 aom_writer *w) {
301 int sign = delta_qindex < 0;
302 int abs = sign ? -delta_qindex : delta_qindex;
303 int rem_bits, thr;
304 int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
305 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
306
307 aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
308 DELTA_Q_PROBS + 1);
309
310 if (!smallval) {
311 rem_bits = get_msb(abs - 1);
312 thr = (1 << rem_bits) + 1;
313 aom_write_literal(w, rem_bits - 1, 3);
314 aom_write_literal(w, abs - thr, rem_bits);
315 }
316 if (abs > 0) {
317 aom_write_bit(w, sign);
318 }
319 }
320
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)321 static inline void write_delta_lflevel(const AV1_COMMON *cm,
322 const MACROBLOCKD *xd, int lf_id,
323 int delta_lflevel, int delta_lf_multi,
324 aom_writer *w) {
325 int sign = delta_lflevel < 0;
326 int abs = sign ? -delta_lflevel : delta_lflevel;
327 int rem_bits, thr;
328 int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
329 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
330 (void)cm;
331
332 if (delta_lf_multi) {
333 assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
334 : FRAME_LF_COUNT - 2));
335 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
336 ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
337 } else {
338 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
339 DELTA_LF_PROBS + 1);
340 }
341
342 if (!smallval) {
343 rem_bits = get_msb(abs - 1);
344 thr = (1 << rem_bits) + 1;
345 aom_write_literal(w, rem_bits - 1, 3);
346 aom_write_literal(w, abs - thr, rem_bits);
347 }
348 if (abs > 0) {
349 aom_write_bit(w, sign);
350 }
351 }
352
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)353 static inline void pack_map_tokens(aom_writer *w, const TokenExtra **tp, int n,
354 int num, MapCdf map_pb_cdf) {
355 const TokenExtra *p = *tp;
356 const int palette_size_idx = n - PALETTE_MIN_SIZE;
357 write_uniform(w, n, p->token); // The first color index.
358 ++p;
359 --num;
360 for (int i = 0; i < num; ++i) {
361 assert((p->color_ctx >= 0) &&
362 (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
363 aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
364 aom_write_symbol(w, p->token, color_map_cdf, n);
365 ++p;
366 }
367 *tp = p;
368 }
369
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)370 static inline void pack_txb_tokens(
371 aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
372 const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
373 int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
374 int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
375 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
376 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
377
378 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
379
380 const struct macroblockd_plane *const pd = &xd->plane[plane];
381 const TX_SIZE plane_tx_size =
382 plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
383 pd->subsampling_y)
384 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
385 blk_col)];
386
387 if (tx_size == plane_tx_size || plane) {
388 av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
389 #if CONFIG_RD_DEBUG
390 TOKEN_STATS tmp_token_stats;
391 init_token_stats(&tmp_token_stats);
392 token_stats->cost += tmp_token_stats.cost;
393 #endif
394 } else {
395 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
396 const int bsw = tx_size_wide_unit[sub_txs];
397 const int bsh = tx_size_high_unit[sub_txs];
398 const int step = bsh * bsw;
399 const int row_end =
400 AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
401 const int col_end =
402 AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
403
404 assert(bsw > 0 && bsh > 0);
405
406 for (int r = 0; r < row_end; r += bsh) {
407 const int offsetr = blk_row + r;
408 for (int c = 0; c < col_end; c += bsw) {
409 const int offsetc = blk_col + c;
410 pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
411 bit_depth, block, offsetr, offsetc, sub_txs,
412 token_stats);
413 block += step;
414 }
415 }
416 }
417 }
418
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,uint8_t segment_id)419 static inline void set_spatial_segment_id(
420 const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
421 BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
422 const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
423 const int bw = mi_size_wide[bsize];
424 const int bh = mi_size_high[bsize];
425 const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
426 const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
427
428 const int mi_stride = mi_params->mi_cols;
429
430 set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
431 }
432
av1_neg_interleave(int x,int ref,int max)433 int av1_neg_interleave(int x, int ref, int max) {
434 assert(x < max);
435 const int diff = x - ref;
436 if (!ref) return x;
437 if (ref >= (max - 1)) return -x + max - 1;
438 if (2 * ref < max) {
439 if (abs(diff) <= ref) {
440 if (diff > 0)
441 return (diff << 1) - 1;
442 else
443 return ((-diff) << 1);
444 }
445 return x;
446 } else {
447 if (abs(diff) < (max - ref)) {
448 if (diff > 0)
449 return (diff << 1) - 1;
450 else
451 return ((-diff) << 1);
452 }
453 return (max - x) - 1;
454 }
455 }
456
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)457 static inline void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
458 const MB_MODE_INFO *const mbmi,
459 aom_writer *w,
460 const struct segmentation *seg,
461 struct segmentation_probs *segp,
462 int skip_txfm) {
463 if (!seg->enabled || !seg->update_map) return;
464
465 AV1_COMMON *const cm = &cpi->common;
466 int cdf_num;
467 const uint8_t pred = av1_get_spatial_seg_pred(
468 cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
469 const int mi_row = xd->mi_row;
470 const int mi_col = xd->mi_col;
471
472 if (skip_txfm) {
473 // Still need to transmit tx size for intra blocks even if skip_txfm is
474 // true. Changing segment_id may make the tx size become invalid, e.g
475 // changing from lossless to lossy.
476 assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
477
478 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
479 mi_row, mi_col, pred);
480 set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
481 mi_row, mi_col, pred);
482 /* mbmi is read only but we need to update segment_id */
483 ((MB_MODE_INFO *)mbmi)->segment_id = pred;
484 return;
485 }
486
487 const int coded_id =
488 av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
489 aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
490 aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
491 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
492 mi_row, mi_col, mbmi->segment_id);
493 }
494
495 #define WRITE_REF_BIT(bname, pname) \
496 aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
497
498 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)499 static inline void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
500 aom_writer *w) {
501 const MB_MODE_INFO *const mbmi = xd->mi[0];
502 const int is_compound = has_second_ref(mbmi);
503 const uint8_t segment_id = mbmi->segment_id;
504
505 // If segment level coding of this signal is disabled...
506 // or the segment allows multiple reference frame options
507 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
508 assert(!is_compound);
509 assert(mbmi->ref_frame[0] ==
510 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
511 } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
512 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
513 assert(!is_compound);
514 assert(mbmi->ref_frame[0] == LAST_FRAME);
515 } else {
516 // does the feature use compound prediction or not
517 // (if not specified at the frame/segment level)
518 if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
519 if (is_comp_ref_allowed(mbmi->bsize))
520 aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
521 } else {
522 assert((!is_compound) ==
523 (cm->current_frame.reference_mode == SINGLE_REFERENCE));
524 }
525
526 if (is_compound) {
527 const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
528 ? UNIDIR_COMP_REFERENCE
529 : BIDIR_COMP_REFERENCE;
530 aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
531 2);
532
533 if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
534 const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
535 WRITE_REF_BIT(bit, uni_comp_ref_p);
536
537 if (!bit) {
538 assert(mbmi->ref_frame[0] == LAST_FRAME);
539 const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
540 mbmi->ref_frame[1] == GOLDEN_FRAME;
541 WRITE_REF_BIT(bit1, uni_comp_ref_p1);
542 if (bit1) {
543 const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
544 WRITE_REF_BIT(bit2, uni_comp_ref_p2);
545 }
546 } else {
547 assert(mbmi->ref_frame[1] == ALTREF_FRAME);
548 }
549
550 return;
551 }
552
553 assert(comp_ref_type == BIDIR_COMP_REFERENCE);
554
555 const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
556 mbmi->ref_frame[0] == LAST3_FRAME);
557 WRITE_REF_BIT(bit, comp_ref_p);
558
559 if (!bit) {
560 const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
561 WRITE_REF_BIT(bit1, comp_ref_p1);
562 } else {
563 const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
564 WRITE_REF_BIT(bit2, comp_ref_p2);
565 }
566
567 const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
568 WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
569
570 if (!bit_bwd) {
571 WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
572 }
573
574 } else {
575 const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
576 mbmi->ref_frame[0] >= BWDREF_FRAME);
577 WRITE_REF_BIT(bit0, single_ref_p1);
578
579 if (bit0) {
580 const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
581 WRITE_REF_BIT(bit1, single_ref_p2);
582
583 if (!bit1) {
584 WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
585 }
586 } else {
587 const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
588 mbmi->ref_frame[0] == GOLDEN_FRAME);
589 WRITE_REF_BIT(bit2, single_ref_p3);
590
591 if (!bit2) {
592 const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
593 WRITE_REF_BIT(bit3, single_ref_p4);
594 } else {
595 const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
596 WRITE_REF_BIT(bit4, single_ref_p5);
597 }
598 }
599 }
600 }
601 }
602
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)603 static inline void write_filter_intra_mode_info(const AV1_COMMON *cm,
604 const MACROBLOCKD *xd,
605 const MB_MODE_INFO *const mbmi,
606 aom_writer *w) {
607 if (av1_filter_intra_allowed(cm, mbmi)) {
608 aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
609 xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
610 if (mbmi->filter_intra_mode_info.use_filter_intra) {
611 const FILTER_INTRA_MODE mode =
612 mbmi->filter_intra_mode_info.filter_intra_mode;
613 aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
614 FILTER_INTRA_MODES);
615 }
616 }
617 }
618
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)619 static inline void write_angle_delta(aom_writer *w, int angle_delta,
620 aom_cdf_prob *cdf) {
621 aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
622 2 * MAX_ANGLE_DELTA + 1);
623 }
624
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)625 static inline void write_mb_interp_filter(AV1_COMMON *const cm, ThreadData *td,
626 aom_writer *w) {
627 const MACROBLOCKD *xd = &td->mb.e_mbd;
628 const MB_MODE_INFO *const mbmi = xd->mi[0];
629 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
630
631 if (!av1_is_interp_needed(xd)) {
632 int_interpfilters filters = av1_broadcast_interp_filter(
633 av1_unswitchable_filter(cm->features.interp_filter));
634 assert(mbmi->interp_filters.as_int == filters.as_int);
635 (void)filters;
636 return;
637 }
638 if (cm->features.interp_filter == SWITCHABLE) {
639 int dir;
640 for (dir = 0; dir < 2; ++dir) {
641 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
642 InterpFilter filter =
643 av1_extract_interp_filter(mbmi->interp_filters, dir);
644 aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
645 SWITCHABLE_FILTERS);
646 ++td->interp_filter_selected[filter];
647 if (cm->seq_params->enable_dual_filter == 0) return;
648 }
649 }
650 }
651
652 // Transmit color values with delta encoding. Write the first value as
653 // literal, and the deltas between each value and the previous one. "min_val" is
654 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)655 static inline void delta_encode_palette_colors(const int *colors, int num,
656 int bit_depth, int min_val,
657 aom_writer *w) {
658 if (num <= 0) return;
659 assert(colors[0] < (1 << bit_depth));
660 aom_write_literal(w, colors[0], bit_depth);
661 if (num == 1) return;
662 int max_delta = 0;
663 int deltas[PALETTE_MAX_SIZE];
664 memset(deltas, 0, sizeof(deltas));
665 for (int i = 1; i < num; ++i) {
666 assert(colors[i] < (1 << bit_depth));
667 const int delta = colors[i] - colors[i - 1];
668 deltas[i - 1] = delta;
669 assert(delta >= min_val);
670 if (delta > max_delta) max_delta = delta;
671 }
672 const int min_bits = bit_depth - 3;
673 int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
674 assert(bits <= bit_depth);
675 int range = (1 << bit_depth) - colors[0] - min_val;
676 aom_write_literal(w, bits - min_bits, 2);
677 for (int i = 0; i < num - 1; ++i) {
678 aom_write_literal(w, deltas[i] - min_val, bits);
679 range -= deltas[i];
680 bits = AOMMIN(bits, av1_ceil_log2(range));
681 }
682 }
683
684 // Transmit luma palette color values. First signal if each color in the color
685 // cache is used. Those colors that are not in the cache are transmitted with
686 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)687 static inline void write_palette_colors_y(const MACROBLOCKD *const xd,
688 const PALETTE_MODE_INFO *const pmi,
689 int bit_depth, aom_writer *w) {
690 const int n = pmi->palette_size[0];
691 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
692 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
693 int out_cache_colors[PALETTE_MAX_SIZE];
694 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
695 const int n_out_cache =
696 av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
697 cache_color_found, out_cache_colors);
698 int n_in_cache = 0;
699 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
700 const int found = cache_color_found[i];
701 aom_write_bit(w, found);
702 n_in_cache += found;
703 }
704 assert(n_in_cache + n_out_cache == n);
705 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
706 }
707
708 // Write chroma palette color values. U channel is handled similarly to the luma
709 // channel. For v channel, either use delta encoding or transmit raw values
710 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)711 static inline void write_palette_colors_uv(const MACROBLOCKD *const xd,
712 const PALETTE_MODE_INFO *const pmi,
713 int bit_depth, aom_writer *w) {
714 const int n = pmi->palette_size[1];
715 const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
716 const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
717 // U channel colors.
718 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
719 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
720 int out_cache_colors[PALETTE_MAX_SIZE];
721 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
722 const int n_out_cache = av1_index_color_cache(
723 color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
724 int n_in_cache = 0;
725 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
726 const int found = cache_color_found[i];
727 aom_write_bit(w, found);
728 n_in_cache += found;
729 }
730 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
731
732 // V channel colors. Don't use color cache as the colors are not sorted.
733 const int max_val = 1 << bit_depth;
734 int zero_count = 0, min_bits_v = 0;
735 int bits_v =
736 av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
737 const int rate_using_delta =
738 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
739 const int rate_using_raw = bit_depth * n;
740 if (rate_using_delta < rate_using_raw) { // delta encoding
741 assert(colors_v[0] < (1 << bit_depth));
742 aom_write_bit(w, 1);
743 aom_write_literal(w, bits_v - min_bits_v, 2);
744 aom_write_literal(w, colors_v[0], bit_depth);
745 for (int i = 1; i < n; ++i) {
746 assert(colors_v[i] < (1 << bit_depth));
747 if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
748 aom_write_literal(w, 0, bits_v);
749 continue;
750 }
751 const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
752 const int sign_bit = colors_v[i] < colors_v[i - 1];
753 if (delta <= max_val - delta) {
754 aom_write_literal(w, delta, bits_v);
755 aom_write_bit(w, sign_bit);
756 } else {
757 aom_write_literal(w, max_val - delta, bits_v);
758 aom_write_bit(w, !sign_bit);
759 }
760 }
761 } else { // Transmit raw values.
762 aom_write_bit(w, 0);
763 for (int i = 0; i < n; ++i) {
764 assert(colors_v[i] < (1 << bit_depth));
765 aom_write_literal(w, colors_v[i], bit_depth);
766 }
767 }
768 }
769
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)770 static inline void write_palette_mode_info(const AV1_COMMON *cm,
771 const MACROBLOCKD *xd,
772 const MB_MODE_INFO *const mbmi,
773 aom_writer *w) {
774 const int num_planes = av1_num_planes(cm);
775 const BLOCK_SIZE bsize = mbmi->bsize;
776 assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
777 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
778 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
779
780 if (mbmi->mode == DC_PRED) {
781 const int n = pmi->palette_size[0];
782 const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
783 aom_write_symbol(
784 w, n > 0,
785 xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
786 if (n > 0) {
787 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
788 xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
789 PALETTE_SIZES);
790 write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
791 }
792 }
793
794 const int uv_dc_pred =
795 num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
796 if (uv_dc_pred) {
797 const int n = pmi->palette_size[1];
798 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
799 aom_write_symbol(w, n > 0,
800 xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
801 if (n > 0) {
802 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
803 xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
804 PALETTE_SIZES);
805 write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
806 }
807 }
808 }
809
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)810 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
811 TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
812 MB_MODE_INFO *mbmi = xd->mi[0];
813 const FeatureFlags *const features = &cm->features;
814 const int is_inter = is_inter_block(mbmi);
815 if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
816 ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
817 (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
818 !mbmi->skip_txfm &&
819 !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
820 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
821 const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
822 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
823 tx_size, is_inter, features->reduced_tx_set_used);
824 const int eset =
825 get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
826 // eset == 0 should correspond to a set with only DCT_DCT and there
827 // is no need to send the tx_type
828 assert(eset > 0);
829 assert(av1_ext_tx_used[tx_set_type][tx_type]);
830 if (is_inter) {
831 aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
832 ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
833 av1_num_ext_tx_set[tx_set_type]);
834 } else {
835 PREDICTION_MODE intra_dir;
836 if (mbmi->filter_intra_mode_info.use_filter_intra)
837 intra_dir =
838 fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
839 else
840 intra_dir = mbmi->mode;
841 aom_write_symbol(
842 w, av1_ext_tx_ind[tx_set_type][tx_type],
843 ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
844 av1_num_ext_tx_set[tx_set_type]);
845 }
846 }
847 }
848
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)849 static inline void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
850 BLOCK_SIZE bsize,
851 PREDICTION_MODE mode,
852 aom_writer *w) {
853 aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
854 INTRA_MODES);
855 }
856
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)857 static inline void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
858 UV_PREDICTION_MODE uv_mode,
859 PREDICTION_MODE y_mode,
860 CFL_ALLOWED_TYPE cfl_allowed,
861 aom_writer *w) {
862 aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
863 UV_INTRA_MODES - !cfl_allowed);
864 }
865
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)866 static inline void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, uint8_t idx,
867 int8_t joint_sign, aom_writer *w) {
868 aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
869 // Magnitudes are only signaled for nonzero codes.
870 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
871 aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
872 aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
873 }
874 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
875 aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
876 aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
877 }
878 }
879
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)880 static inline void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
881 aom_writer *w, int skip) {
882 if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
883
884 // At the start of a superblock, mark that we haven't yet written CDEF
885 // strengths for any of the CDEF units contained in this superblock.
886 const int sb_mask = (cm->seq_params->mib_size - 1);
887 const int mi_row_in_sb = (xd->mi_row & sb_mask);
888 const int mi_col_in_sb = (xd->mi_col & sb_mask);
889 if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
890 xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
891 xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
892 }
893
894 // CDEF unit size is 64x64 irrespective of the superblock size.
895 const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
896
897 // Find index of this CDEF unit in this superblock.
898 const int index_mask = cdef_size;
899 const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
900 const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
901 const int index = (cm->seq_params->sb_size == BLOCK_128X128)
902 ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
903 : 0;
904
905 // Write CDEF strength to the first non-skip coding block in this CDEF unit.
906 if (!xd->cdef_transmitted[index] && !skip) {
907 // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
908 // of the 1st block in this CDEF unit.
909 const int first_block_mask = ~(cdef_size - 1);
910 const CommonModeInfoParams *const mi_params = &cm->mi_params;
911 const int grid_idx =
912 get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
913 xd->mi_col & first_block_mask);
914 const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
915 aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
916 xd->cdef_transmitted[index] = true;
917 }
918 }
919
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)920 static inline void write_inter_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
921 aom_writer *w,
922 const struct segmentation *const seg,
923 struct segmentation_probs *const segp,
924 int skip, int preskip) {
925 MB_MODE_INFO *const mbmi = xd->mi[0];
926 AV1_COMMON *const cm = &cpi->common;
927 const int mi_row = xd->mi_row;
928 const int mi_col = xd->mi_col;
929
930 if (seg->update_map) {
931 if (preskip) {
932 if (!seg->segid_preskip) return;
933 } else {
934 if (seg->segid_preskip) return;
935 if (skip) {
936 write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
937 if (seg->temporal_update) mbmi->seg_id_predicted = 0;
938 return;
939 }
940 }
941 if (seg->temporal_update) {
942 const int pred_flag = mbmi->seg_id_predicted;
943 aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
944 aom_write_symbol(w, pred_flag, pred_cdf, 2);
945 if (!pred_flag) {
946 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
947 }
948 if (pred_flag) {
949 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
950 mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
951 }
952 } else {
953 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
954 }
955 }
956 }
957
958 // If delta q is present, writes delta_q index.
959 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)960 static inline void write_delta_q_params(AV1_COMMON *const cm,
961 MACROBLOCKD *const xd, int skip,
962 aom_writer *w) {
963 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
964
965 if (delta_q_info->delta_q_present_flag) {
966 const MB_MODE_INFO *const mbmi = xd->mi[0];
967 const BLOCK_SIZE bsize = mbmi->bsize;
968 const int super_block_upper_left =
969 ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
970 ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
971
972 if ((bsize != cm->seq_params->sb_size || skip == 0) &&
973 super_block_upper_left) {
974 assert(mbmi->current_qindex > 0);
975 const int reduced_delta_qindex =
976 (mbmi->current_qindex - xd->current_base_qindex) /
977 delta_q_info->delta_q_res;
978 write_delta_qindex(xd, reduced_delta_qindex, w);
979 xd->current_base_qindex = mbmi->current_qindex;
980 if (delta_q_info->delta_lf_present_flag) {
981 if (delta_q_info->delta_lf_multi) {
982 const int frame_lf_count =
983 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
984 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
985 int reduced_delta_lflevel =
986 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
987 delta_q_info->delta_lf_res;
988 write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
989 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
990 }
991 } else {
992 int reduced_delta_lflevel =
993 (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
994 delta_q_info->delta_lf_res;
995 write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
996 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
997 }
998 }
999 }
1000 }
1001 }
1002
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)1003 static inline void write_intra_prediction_modes(const AV1_COMMON *cm,
1004 MACROBLOCKD *const xd,
1005 int is_keyframe,
1006 aom_writer *w) {
1007 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1008 const MB_MODE_INFO *const mbmi = xd->mi[0];
1009 const PREDICTION_MODE mode = mbmi->mode;
1010 const BLOCK_SIZE bsize = mbmi->bsize;
1011
1012 // Y mode.
1013 if (is_keyframe) {
1014 const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1015 const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1016 write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1017 } else {
1018 write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1019 }
1020
1021 // Y angle delta.
1022 const int use_angle_delta = av1_use_angle_delta(bsize);
1023 if (use_angle_delta && av1_is_directional_mode(mode)) {
1024 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1025 ec_ctx->angle_delta_cdf[mode - V_PRED]);
1026 }
1027
1028 // UV mode and UV angle delta.
1029 if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1030 const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1031 write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1032 if (uv_mode == UV_CFL_PRED)
1033 write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1034 const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
1035 if (use_angle_delta && av1_is_directional_mode(intra_mode)) {
1036 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1037 ec_ctx->angle_delta_cdf[intra_mode - V_PRED]);
1038 }
1039 }
1040
1041 // Palette.
1042 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1043 write_palette_mode_info(cm, xd, mbmi, w);
1044 }
1045
1046 // Filter intra.
1047 write_filter_intra_mode_info(cm, xd, mbmi, w);
1048 }
1049
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1050 static inline int16_t mode_context_analyzer(
1051 const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1052 if (rf[1] <= INTRA_FRAME) return mode_context;
1053
1054 const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1055 const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1056
1057 const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1058 newmv_ctx, COMP_NEWMV_CTXS - 1)];
1059 return comp_ctx;
1060 }
1061
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1062 static inline int_mv get_ref_mv_from_stack(
1063 int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1064 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1065 const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1066 const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1067
1068 if (ref_frame[1] > INTRA_FRAME) {
1069 assert(ref_idx == 0 || ref_idx == 1);
1070 return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1071 : curr_ref_mv_stack[ref_mv_idx].this_mv;
1072 }
1073
1074 assert(ref_idx == 0);
1075 return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1076 ? curr_ref_mv_stack[ref_mv_idx].this_mv
1077 : mbmi_ext_frame->global_mvs[ref_frame_type];
1078 }
1079
get_ref_mv(const MACROBLOCK * x,int ref_idx)1080 static inline int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1081 const MACROBLOCKD *xd = &x->e_mbd;
1082 const MB_MODE_INFO *mbmi = xd->mi[0];
1083 int ref_mv_idx = mbmi->ref_mv_idx;
1084 if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1085 assert(has_second_ref(mbmi));
1086 ref_mv_idx += 1;
1087 }
1088 return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1089 x->mbmi_ext_frame);
1090 }
1091
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1092 static inline void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1093 aom_writer *w) {
1094 AV1_COMMON *const cm = &cpi->common;
1095 MACROBLOCK *const x = &td->mb;
1096 MACROBLOCKD *const xd = &x->e_mbd;
1097 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1098 const struct segmentation *const seg = &cm->seg;
1099 struct segmentation_probs *const segp = &ec_ctx->seg;
1100 const MB_MODE_INFO *const mbmi = xd->mi[0];
1101 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1102 const PREDICTION_MODE mode = mbmi->mode;
1103 const uint8_t segment_id = mbmi->segment_id;
1104 const BLOCK_SIZE bsize = mbmi->bsize;
1105 const int allow_hp = cm->features.allow_high_precision_mv;
1106 const int is_inter = is_inter_block(mbmi);
1107 const int is_compound = has_second_ref(mbmi);
1108 int ref;
1109
1110 write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1111
1112 write_skip_mode(cm, xd, segment_id, mbmi, w);
1113
1114 assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1115 const int skip =
1116 mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1117
1118 write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1119
1120 write_cdef(cm, xd, w, skip);
1121
1122 write_delta_q_params(cm, xd, skip, w);
1123
1124 if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1125
1126 if (mbmi->skip_mode) return;
1127
1128 if (!is_inter) {
1129 write_intra_prediction_modes(cm, xd, 0, w);
1130 } else {
1131 int16_t mode_ctx;
1132
1133 av1_collect_neighbors_ref_counts(xd);
1134
1135 write_ref_frames(cm, xd, w);
1136
1137 mode_ctx =
1138 mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1139
1140 // If segment skip is not enabled code the mode.
1141 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1142 if (is_inter_compound_mode(mode))
1143 write_inter_compound_mode(xd, w, mode, mode_ctx);
1144 else if (is_inter_singleref_mode(mode))
1145 write_inter_mode(w, mode, ec_ctx, mode_ctx);
1146
1147 if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1148 write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1149 else
1150 assert(mbmi->ref_mv_idx == 0);
1151 }
1152
1153 if (mode == NEWMV || mode == NEW_NEWMV) {
1154 for (ref = 0; ref < 1 + is_compound; ++ref) {
1155 nmv_context *nmvc = &ec_ctx->nmvc;
1156 const int_mv ref_mv = get_ref_mv(x, ref);
1157 av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1158 allow_hp);
1159 }
1160 } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1161 nmv_context *nmvc = &ec_ctx->nmvc;
1162 const int_mv ref_mv = get_ref_mv(x, 1);
1163 av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1164 allow_hp);
1165 } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1166 nmv_context *nmvc = &ec_ctx->nmvc;
1167 const int_mv ref_mv = get_ref_mv(x, 0);
1168 av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1169 allow_hp);
1170 }
1171
1172 if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1173 cpi->common.seq_params->enable_interintra_compound &&
1174 is_interintra_allowed(mbmi)) {
1175 const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1176 const int bsize_group = size_group_lookup[bsize];
1177 aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1178 if (interintra) {
1179 aom_write_symbol(w, mbmi->interintra_mode,
1180 ec_ctx->interintra_mode_cdf[bsize_group],
1181 INTERINTRA_MODES);
1182 if (av1_is_wedge_used(bsize)) {
1183 aom_write_symbol(w, mbmi->use_wedge_interintra,
1184 ec_ctx->wedge_interintra_cdf[bsize], 2);
1185 if (mbmi->use_wedge_interintra) {
1186 aom_write_symbol(w, mbmi->interintra_wedge_index,
1187 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1188 }
1189 }
1190 }
1191 }
1192
1193 if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1194
1195 // First write idx to indicate current compound inter prediction mode group
1196 // Group A (0): dist_wtd_comp, compound_average
1197 // Group B (1): interintra, compound_diffwtd, wedge
1198 if (has_second_ref(mbmi)) {
1199 const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1200 cm->seq_params->enable_masked_compound;
1201
1202 if (masked_compound_used) {
1203 const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1204 aom_write_symbol(w, mbmi->comp_group_idx,
1205 ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1206 } else {
1207 assert(mbmi->comp_group_idx == 0);
1208 }
1209
1210 if (mbmi->comp_group_idx == 0) {
1211 if (mbmi->compound_idx)
1212 assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1213
1214 if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1215 const int comp_index_ctx = get_comp_index_context(cm, xd);
1216 aom_write_symbol(w, mbmi->compound_idx,
1217 ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1218 } else {
1219 assert(mbmi->compound_idx == 1);
1220 }
1221 } else {
1222 assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1223 is_inter_compound_mode(mbmi->mode) &&
1224 mbmi->motion_mode == SIMPLE_TRANSLATION);
1225 assert(masked_compound_used);
1226 // compound_diffwtd, wedge
1227 assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1228 mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1229
1230 if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1231 aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1232 ec_ctx->compound_type_cdf[bsize],
1233 MASKED_COMPOUND_TYPES);
1234
1235 if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1236 assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1237 aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1238 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1239 aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1240 } else {
1241 assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1242 aom_write_literal(w, mbmi->interinter_comp.mask_type,
1243 MAX_DIFFWTD_MASK_BITS);
1244 }
1245 }
1246 }
1247 write_mb_interp_filter(cm, td, w);
1248 }
1249 }
1250
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1251 static inline void write_intrabc_info(
1252 MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1253 aom_writer *w) {
1254 const MB_MODE_INFO *const mbmi = xd->mi[0];
1255 int use_intrabc = is_intrabc_block(mbmi);
1256 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1257 aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1258 if (use_intrabc) {
1259 assert(mbmi->mode == DC_PRED);
1260 assert(mbmi->uv_mode == UV_DC_PRED);
1261 assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1262 int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1263 av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1264 }
1265 }
1266
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1267 static inline void write_mb_modes_kf(
1268 AV1_COMP *cpi, MACROBLOCKD *xd,
1269 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1270 AV1_COMMON *const cm = &cpi->common;
1271 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1272 const struct segmentation *const seg = &cm->seg;
1273 struct segmentation_probs *const segp = &ec_ctx->seg;
1274 const MB_MODE_INFO *const mbmi = xd->mi[0];
1275
1276 if (seg->segid_preskip && seg->update_map)
1277 write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1278
1279 const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1280
1281 if (!seg->segid_preskip && seg->update_map)
1282 write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1283
1284 write_cdef(cm, xd, w, skip);
1285
1286 write_delta_q_params(cm, xd, skip, w);
1287
1288 if (av1_allow_intrabc(cm)) {
1289 write_intrabc_info(xd, mbmi_ext_frame, w);
1290 if (is_intrabc_block(mbmi)) return;
1291 }
1292
1293 write_intra_prediction_modes(cm, xd, 1, w);
1294 }
1295
1296 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1297 static inline void dump_mode_info(MB_MODE_INFO *mi) {
1298 printf("\nmi->mi_row == %d\n", mi->mi_row);
1299 printf("&& mi->mi_col == %d\n", mi->mi_col);
1300 printf("&& mi->bsize == %d\n", mi->bsize);
1301 printf("&& mi->tx_size == %d\n", mi->tx_size);
1302 printf("&& mi->mode == %d\n", mi->mode);
1303 }
1304
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1305 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1306 int plane) {
1307 if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1308 printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1309 plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1310 return 1;
1311 }
1312 return 0;
1313 }
1314 #endif
1315
1316 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1317 static inline void enc_dump_logs(
1318 const AV1_COMMON *const cm,
1319 const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1320 const MB_MODE_INFO *const mbmi = *(
1321 cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1322 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1323 mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1324 cm->mi_params.mi_alloc_bsize,
1325 mbmi_ext_info->stride);
1326 if (is_inter_block(mbmi)) {
1327 #define FRAME_TO_CHECK 11
1328 if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1329 cm->show_frame == 1) {
1330 const BLOCK_SIZE bsize = mbmi->bsize;
1331
1332 int_mv mv[2] = { 0 };
1333 const int is_comp_ref = has_second_ref(mbmi);
1334
1335 for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1336 mv[ref].as_mv = mbmi->mv[ref].as_mv;
1337
1338 if (!is_comp_ref) {
1339 mv[1].as_int = 0;
1340 }
1341
1342 const int16_t mode_ctx =
1343 is_comp_ref ? 0
1344 : mode_context_analyzer(mbmi_ext_frame->mode_context,
1345 mbmi->ref_frame);
1346
1347 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1348 int16_t zeromv_ctx = -1;
1349 int16_t refmv_ctx = -1;
1350
1351 if (mbmi->mode != NEWMV) {
1352 zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1353 if (mbmi->mode != GLOBALMV)
1354 refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1355 }
1356
1357 printf(
1358 "=== ENCODER ===: "
1359 "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1360 "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1361 "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1362 "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1363 cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1364 mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1365 mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1366 mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1367 zeromv_ctx, refmv_ctx, mbmi->tx_size);
1368 }
1369 }
1370 }
1371 #endif // ENC_MISMATCH_DEBUG
1372
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1373 static inline void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1374 aom_writer *w) {
1375 AV1_COMMON *const cm = &cpi->common;
1376 MACROBLOCKD *const xd = &td->mb.e_mbd;
1377 MB_MODE_INFO *m = xd->mi[0];
1378
1379 if (frame_is_intra_only(cm)) {
1380 write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1381 } else {
1382 // has_subpel_mv_component needs the ref frame buffers set up to look
1383 // up if they are scaled. has_subpel_mv_component is in turn needed by
1384 // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1385 set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1386
1387 #if ENC_MISMATCH_DEBUG
1388 enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1389 #endif // ENC_MISMATCH_DEBUG
1390
1391 pack_inter_mode_mvs(cpi, td, w);
1392 }
1393 }
1394
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1395 static inline void write_inter_txb_coeff(
1396 AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1397 aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1398 TOKEN_STATS *token_stats, const int row, const int col, int *block,
1399 const int plane) {
1400 MACROBLOCKD *const xd = &x->e_mbd;
1401 const struct macroblockd_plane *const pd = &xd->plane[plane];
1402 const BLOCK_SIZE bsize = mbmi->bsize;
1403 assert(bsize < BLOCK_SIZES_ALL);
1404 const int ss_x = pd->subsampling_x;
1405 const int ss_y = pd->subsampling_y;
1406 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1407 assert(plane_bsize < BLOCK_SIZES_ALL);
1408 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1409 const int step =
1410 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1411 const int bkw = tx_size_wide_unit[max_tx_size];
1412 const int bkh = tx_size_high_unit[max_tx_size];
1413 const BLOCK_SIZE max_unit_bsize =
1414 get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1415 const int num_4x4_w = mi_size_wide[plane_bsize];
1416 const int num_4x4_h = mi_size_high[plane_bsize];
1417 const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1418 const int mu_blocks_high = mi_size_high[max_unit_bsize];
1419 const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1420 const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1421 for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1422 for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1423 pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1424 cm->seq_params->bit_depth, *block, blk_row, blk_col,
1425 max_tx_size, token_stats);
1426 *block += step;
1427 }
1428 }
1429 }
1430
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1431 static inline void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1432 aom_writer *w, const TokenExtra **tok,
1433 const TokenExtra *const tok_end) {
1434 AV1_COMMON *const cm = &cpi->common;
1435 MACROBLOCKD *const xd = &x->e_mbd;
1436 MB_MODE_INFO *const mbmi = xd->mi[0];
1437 const BLOCK_SIZE bsize = mbmi->bsize;
1438
1439 assert(!mbmi->skip_txfm);
1440
1441 const int is_inter = is_inter_block(mbmi);
1442 if (!is_inter) {
1443 av1_write_intra_coeffs_mb(cm, x, w, bsize);
1444 } else {
1445 int block[MAX_MB_PLANE] = { 0 };
1446 assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1447 xd->plane[0].subsampling_y));
1448 const int num_4x4_w = mi_size_wide[bsize];
1449 const int num_4x4_h = mi_size_high[bsize];
1450 TOKEN_STATS token_stats;
1451 init_token_stats(&token_stats);
1452
1453 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1454 assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1455 xd->plane[0].subsampling_x,
1456 xd->plane[0].subsampling_y));
1457 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1458 int mu_blocks_high = mi_size_high[max_unit_bsize];
1459 mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1460 mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1461
1462 const int num_planes = av1_num_planes(cm);
1463 for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1464 for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1465 for (int plane = 0; plane < num_planes; ++plane) {
1466 if (plane && !xd->is_chroma_ref) break;
1467 write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1468 col, &block[plane], plane);
1469 }
1470 }
1471 }
1472 #if CONFIG_RD_DEBUG
1473 for (int plane = 0; plane < num_planes; ++plane) {
1474 if (mbmi->bsize >= BLOCK_8X8 &&
1475 rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1476 dump_mode_info(mbmi);
1477 assert(0);
1478 }
1479 }
1480 #endif // CONFIG_RD_DEBUG
1481 }
1482 }
1483
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1484 static inline void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1485 const TileInfo *const tile, aom_writer *w,
1486 const TokenExtra **tok,
1487 const TokenExtra *const tok_end, int mi_row,
1488 int mi_col) {
1489 const AV1_COMMON *cm = &cpi->common;
1490 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1491 MACROBLOCKD *xd = &td->mb.e_mbd;
1492 FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1493 const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1494 xd->mi = mi_params->mi_grid_base + grid_idx;
1495 td->mb.mbmi_ext_frame =
1496 cpi->mbmi_ext_info.frame_base +
1497 get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1498 cpi->mbmi_ext_info.stride);
1499 xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1500 xd->tx_type_map_stride = mi_params->mi_stride;
1501
1502 const MB_MODE_INFO *mbmi = xd->mi[0];
1503 const BLOCK_SIZE bsize = mbmi->bsize;
1504 assert(bsize <= cm->seq_params->sb_size ||
1505 (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1506
1507 const int bh = mi_size_high[bsize];
1508 const int bw = mi_size_wide[bsize];
1509 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1510 mi_params->mi_cols);
1511
1512 xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1513 xd->left_txfm_context =
1514 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1515
1516 write_mbmi_b(cpi, td, w);
1517
1518 for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1519 const uint8_t palette_size_plane =
1520 mbmi->palette_mode_info.palette_size[plane];
1521 assert(!mbmi->skip_mode || !palette_size_plane);
1522 if (palette_size_plane > 0) {
1523 assert(mbmi->use_intrabc == 0);
1524 assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1525 mbmi->bsize));
1526 assert(!plane || xd->is_chroma_ref);
1527 int rows, cols;
1528 av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1529 &cols);
1530 assert(*tok < tok_end);
1531 MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1532 : tile_ctx->palette_y_color_index_cdf;
1533 pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1534 }
1535 }
1536
1537 const int is_inter_tx = is_inter_block(mbmi);
1538 const int skip_txfm = mbmi->skip_txfm;
1539 const uint8_t segment_id = mbmi->segment_id;
1540 if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1541 !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1542 if (is_inter_tx) { // This implies skip flag is 0.
1543 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1544 const int txbh = tx_size_high_unit[max_tx_size];
1545 const int txbw = tx_size_wide_unit[max_tx_size];
1546 const int width = mi_size_wide[bsize];
1547 const int height = mi_size_high[bsize];
1548 for (int idy = 0; idy < height; idy += txbh) {
1549 for (int idx = 0; idx < width; idx += txbw) {
1550 write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1551 }
1552 }
1553 } else {
1554 write_selected_tx_size(xd, w);
1555 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1556 }
1557 } else {
1558 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1559 skip_txfm && is_inter_tx, xd);
1560 }
1561
1562 if (!mbmi->skip_txfm) {
1563 int start = aom_tell_size(w);
1564
1565 write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1566
1567 const int end = aom_tell_size(w);
1568 td->coefficient_size += end - start;
1569 }
1570 }
1571
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1572 static inline void write_partition(const AV1_COMMON *const cm,
1573 const MACROBLOCKD *const xd, int hbs,
1574 int mi_row, int mi_col, PARTITION_TYPE p,
1575 BLOCK_SIZE bsize, aom_writer *w) {
1576 const int is_partition_point = bsize >= BLOCK_8X8;
1577
1578 if (!is_partition_point) return;
1579
1580 const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1581 const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1582 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1583 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1584
1585 if (!has_rows && !has_cols) {
1586 assert(p == PARTITION_SPLIT);
1587 return;
1588 }
1589
1590 if (has_rows && has_cols) {
1591 aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1592 partition_cdf_length(bsize));
1593 } else if (!has_rows && has_cols) {
1594 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1595 assert(bsize > BLOCK_8X8);
1596 aom_cdf_prob cdf[2];
1597 partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1598 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1599 } else {
1600 assert(has_rows && !has_cols);
1601 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1602 assert(bsize > BLOCK_8X8);
1603 aom_cdf_prob cdf[2];
1604 partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1605 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1606 }
1607 }
1608
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1609 static inline void write_modes_sb(AV1_COMP *const cpi, ThreadData *const td,
1610 const TileInfo *const tile,
1611 aom_writer *const w, const TokenExtra **tok,
1612 const TokenExtra *const tok_end, int mi_row,
1613 int mi_col, BLOCK_SIZE bsize) {
1614 const AV1_COMMON *const cm = &cpi->common;
1615 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1616 MACROBLOCKD *const xd = &td->mb.e_mbd;
1617 assert(bsize < BLOCK_SIZES_ALL);
1618 const int hbs = mi_size_wide[bsize] / 2;
1619 const int quarter_step = mi_size_wide[bsize] / 4;
1620 int i;
1621 const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1622 const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1623
1624 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1625
1626 #if !CONFIG_REALTIME_ONLY
1627 const int num_planes = av1_num_planes(cm);
1628 for (int plane = 0; plane < num_planes; ++plane) {
1629 int rcol0, rcol1, rrow0, rrow1;
1630
1631 // Skip some unnecessary work if loop restoration is disabled
1632 if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1633
1634 if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1635 &rcol0, &rcol1, &rrow0, &rrow1)) {
1636 const int rstride = cm->rst_info[plane].horz_units;
1637 for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1638 for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1639 const int runit_idx = rcol + rrow * rstride;
1640 loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane,
1641 td->counts);
1642 }
1643 }
1644 }
1645 }
1646 #endif
1647
1648 write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1649 switch (partition) {
1650 case PARTITION_NONE:
1651 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1652 break;
1653 case PARTITION_HORZ:
1654 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1655 if (mi_row + hbs < mi_params->mi_rows)
1656 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1657 break;
1658 case PARTITION_VERT:
1659 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1660 if (mi_col + hbs < mi_params->mi_cols)
1661 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1662 break;
1663 case PARTITION_SPLIT:
1664 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1665 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1666 subsize);
1667 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1668 subsize);
1669 write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1670 subsize);
1671 break;
1672 case PARTITION_HORZ_A:
1673 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1674 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1675 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676 break;
1677 case PARTITION_HORZ_B:
1678 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1679 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1680 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1681 break;
1682 case PARTITION_VERT_A:
1683 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1684 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1685 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1686 break;
1687 case PARTITION_VERT_B:
1688 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1689 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1690 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1691 break;
1692 case PARTITION_HORZ_4:
1693 for (i = 0; i < 4; ++i) {
1694 int this_mi_row = mi_row + i * quarter_step;
1695 if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1696
1697 write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1698 }
1699 break;
1700 case PARTITION_VERT_4:
1701 for (i = 0; i < 4; ++i) {
1702 int this_mi_col = mi_col + i * quarter_step;
1703 if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1704
1705 write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1706 }
1707 break;
1708 default: assert(0);
1709 }
1710
1711 // update partition context
1712 update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1713 }
1714
1715 // Populate token pointers appropriately based on token_info.
get_token_pointers(const TokenInfo * token_info,const int tile_row,int tile_col,const int sb_row_in_tile,const TokenExtra ** tok,const TokenExtra ** tok_end)1716 static inline void get_token_pointers(const TokenInfo *token_info,
1717 const int tile_row, int tile_col,
1718 const int sb_row_in_tile,
1719 const TokenExtra **tok,
1720 const TokenExtra **tok_end) {
1721 if (!is_token_info_allocated(token_info)) {
1722 *tok = NULL;
1723 *tok_end = NULL;
1724 return;
1725 }
1726 *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
1727 *tok_end =
1728 *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
1729 }
1730
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1731 static inline void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1732 const TileInfo *const tile, aom_writer *const w,
1733 int tile_row, int tile_col) {
1734 AV1_COMMON *const cm = &cpi->common;
1735 MACROBLOCKD *const xd = &td->mb.e_mbd;
1736 const int mi_row_start = tile->mi_row_start;
1737 const int mi_row_end = tile->mi_row_end;
1738 const int mi_col_start = tile->mi_col_start;
1739 const int mi_col_end = tile->mi_col_end;
1740 const int num_planes = av1_num_planes(cm);
1741
1742 av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1743 av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1744
1745 if (cpi->common.delta_q_info.delta_q_present_flag) {
1746 xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1747 if (cpi->common.delta_q_info.delta_lf_present_flag) {
1748 av1_reset_loop_filter_delta(xd, num_planes);
1749 }
1750 }
1751
1752 for (int mi_row = mi_row_start; mi_row < mi_row_end;
1753 mi_row += cm->seq_params->mib_size) {
1754 const int sb_row_in_tile =
1755 (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1756 const TokenInfo *token_info = &cpi->token_info;
1757 const TokenExtra *tok;
1758 const TokenExtra *tok_end;
1759 get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
1760 &tok_end);
1761
1762 av1_zero_left_context(xd);
1763
1764 for (int mi_col = mi_col_start; mi_col < mi_col_end;
1765 mi_col += cm->seq_params->mib_size) {
1766 td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1767 write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1768 cm->seq_params->sb_size);
1769 }
1770 assert(tok == tok_end);
1771 }
1772 }
1773
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1774 static inline void encode_restoration_mode(AV1_COMMON *cm,
1775 struct aom_write_bit_buffer *wb) {
1776 assert(!cm->features.all_lossless);
1777 if (!cm->seq_params->enable_restoration) return;
1778 if (cm->features.allow_intrabc) return;
1779 const int num_planes = av1_num_planes(cm);
1780 int all_none = 1, chroma_none = 1;
1781 for (int p = 0; p < num_planes; ++p) {
1782 RestorationInfo *rsi = &cm->rst_info[p];
1783 if (rsi->frame_restoration_type != RESTORE_NONE) {
1784 all_none = 0;
1785 chroma_none &= p == 0;
1786 }
1787 switch (rsi->frame_restoration_type) {
1788 case RESTORE_NONE:
1789 aom_wb_write_bit(wb, 0);
1790 aom_wb_write_bit(wb, 0);
1791 break;
1792 case RESTORE_WIENER:
1793 aom_wb_write_bit(wb, 1);
1794 aom_wb_write_bit(wb, 0);
1795 break;
1796 case RESTORE_SGRPROJ:
1797 aom_wb_write_bit(wb, 1);
1798 aom_wb_write_bit(wb, 1);
1799 break;
1800 case RESTORE_SWITCHABLE:
1801 aom_wb_write_bit(wb, 0);
1802 aom_wb_write_bit(wb, 1);
1803 break;
1804 default: assert(0);
1805 }
1806 }
1807 if (!all_none) {
1808 assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1809 cm->seq_params->sb_size == BLOCK_128X128);
1810 const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1811
1812 RestorationInfo *rsi = &cm->rst_info[0];
1813
1814 assert(rsi->restoration_unit_size >= sb_size);
1815 assert(RESTORATION_UNITSIZE_MAX == 256);
1816
1817 if (sb_size == 64) {
1818 aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1819 }
1820 if (rsi->restoration_unit_size > 64) {
1821 aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1822 }
1823 }
1824
1825 if (num_planes > 1) {
1826 int s =
1827 AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1828 if (s && !chroma_none) {
1829 aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1830 cm->rst_info[0].restoration_unit_size);
1831 assert(cm->rst_info[1].restoration_unit_size ==
1832 cm->rst_info[0].restoration_unit_size ||
1833 cm->rst_info[1].restoration_unit_size ==
1834 (cm->rst_info[0].restoration_unit_size >> s));
1835 assert(cm->rst_info[2].restoration_unit_size ==
1836 cm->rst_info[1].restoration_unit_size);
1837 } else if (!s) {
1838 assert(cm->rst_info[1].restoration_unit_size ==
1839 cm->rst_info[0].restoration_unit_size);
1840 assert(cm->rst_info[2].restoration_unit_size ==
1841 cm->rst_info[1].restoration_unit_size);
1842 }
1843 }
1844 }
1845
1846 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1847 static inline void write_wiener_filter(int wiener_win,
1848 const WienerInfo *wiener_info,
1849 WienerInfo *ref_wiener_info,
1850 aom_writer *wb) {
1851 if (wiener_win == WIENER_WIN)
1852 aom_write_primitive_refsubexpfin(
1853 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1854 WIENER_FILT_TAP0_SUBEXP_K,
1855 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1856 wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1857 else
1858 assert(wiener_info->vfilter[0] == 0 &&
1859 wiener_info->vfilter[WIENER_WIN - 1] == 0);
1860 aom_write_primitive_refsubexpfin(
1861 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1862 WIENER_FILT_TAP1_SUBEXP_K,
1863 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1864 wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1865 aom_write_primitive_refsubexpfin(
1866 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1867 WIENER_FILT_TAP2_SUBEXP_K,
1868 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1869 wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1870 if (wiener_win == WIENER_WIN)
1871 aom_write_primitive_refsubexpfin(
1872 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1873 WIENER_FILT_TAP0_SUBEXP_K,
1874 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1875 wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1876 else
1877 assert(wiener_info->hfilter[0] == 0 &&
1878 wiener_info->hfilter[WIENER_WIN - 1] == 0);
1879 aom_write_primitive_refsubexpfin(
1880 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1881 WIENER_FILT_TAP1_SUBEXP_K,
1882 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1883 wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1884 aom_write_primitive_refsubexpfin(
1885 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1886 WIENER_FILT_TAP2_SUBEXP_K,
1887 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1888 wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1889 memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1890 }
1891
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1892 static inline void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1893 SgrprojInfo *ref_sgrproj_info,
1894 aom_writer *wb) {
1895 aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1896 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1897
1898 if (params->r[0] == 0) {
1899 assert(sgrproj_info->xqd[0] == 0);
1900 aom_write_primitive_refsubexpfin(
1901 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1902 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1903 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1904 } else if (params->r[1] == 0) {
1905 aom_write_primitive_refsubexpfin(
1906 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1907 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1908 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1909 } else {
1910 aom_write_primitive_refsubexpfin(
1911 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1912 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1913 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1914 aom_write_primitive_refsubexpfin(
1915 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1916 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1917 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1918 }
1919
1920 memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1921 }
1922
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,int runit_idx,aom_writer * const w,int plane,FRAME_COUNTS * counts)1923 static inline void loop_restoration_write_sb_coeffs(
1924 const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
1925 aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1926 const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx];
1927 const RestorationInfo *rsi = cm->rst_info + plane;
1928 RestorationType frame_rtype = rsi->frame_restoration_type;
1929 assert(frame_rtype != RESTORE_NONE);
1930
1931 (void)counts;
1932 assert(!cm->features.all_lossless);
1933
1934 const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1935 WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1936 SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1937 RestorationType unit_rtype = rui->restoration_type;
1938
1939 if (frame_rtype == RESTORE_SWITCHABLE) {
1940 aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1941 RESTORE_SWITCHABLE_TYPES);
1942 #if CONFIG_ENTROPY_STATS
1943 ++counts->switchable_restore[unit_rtype];
1944 #endif
1945 switch (unit_rtype) {
1946 case RESTORE_WIENER:
1947 #if DEBUG_LR_COSTING
1948 assert(!memcmp(
1949 ref_wiener_info,
1950 &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info,
1951 sizeof(*ref_wiener_info)));
1952 #endif
1953 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1954 break;
1955 case RESTORE_SGRPROJ:
1956 #if DEBUG_LR_COSTING
1957 assert(!memcmp(&ref_sgrproj_info->xqd,
1958 &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx]
1959 .sgrproj_info.xqd,
1960 sizeof(ref_sgrproj_info->xqd)));
1961 #endif
1962 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1963 break;
1964 default: assert(unit_rtype == RESTORE_NONE); break;
1965 }
1966 } else if (frame_rtype == RESTORE_WIENER) {
1967 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1968 xd->tile_ctx->wiener_restore_cdf, 2);
1969 #if CONFIG_ENTROPY_STATS
1970 ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1971 #endif
1972 if (unit_rtype != RESTORE_NONE) {
1973 #if DEBUG_LR_COSTING
1974 assert(
1975 !memcmp(ref_wiener_info,
1976 &lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info,
1977 sizeof(*ref_wiener_info)));
1978 #endif
1979 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1980 }
1981 } else if (frame_rtype == RESTORE_SGRPROJ) {
1982 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1983 xd->tile_ctx->sgrproj_restore_cdf, 2);
1984 #if CONFIG_ENTROPY_STATS
1985 ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1986 #endif
1987 if (unit_rtype != RESTORE_NONE) {
1988 #if DEBUG_LR_COSTING
1989 assert(!memcmp(
1990 &ref_sgrproj_info->xqd,
1991 &lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd,
1992 sizeof(ref_sgrproj_info->xqd)));
1993 #endif
1994 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1995 }
1996 }
1997 }
1998 #endif // !CONFIG_REALTIME_ONLY
1999
2000 // Only write out the ref delta section if any of the elements
2001 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)2002 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
2003 struct loopfilter *lf = &cm->lf;
2004 if (!lf->mode_ref_delta_update) {
2005 return 0;
2006 }
2007 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2008 int8_t last_ref_deltas[REF_FRAMES];
2009 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2010 if (buf == NULL) {
2011 av1_set_default_ref_deltas(last_ref_deltas);
2012 av1_set_default_mode_deltas(last_mode_deltas);
2013 } else {
2014 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2015 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2016 }
2017 for (int i = 0; i < REF_FRAMES; i++) {
2018 if (lf->ref_deltas[i] != last_ref_deltas[i]) {
2019 return true;
2020 }
2021 }
2022 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2023 if (lf->mode_deltas[i] != last_mode_deltas[i]) {
2024 return true;
2025 }
2026 }
2027 return false;
2028 }
2029
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2030 static inline void encode_loopfilter(AV1_COMMON *cm,
2031 struct aom_write_bit_buffer *wb) {
2032 assert(!cm->features.coded_lossless);
2033 if (cm->features.allow_intrabc) return;
2034 const int num_planes = av1_num_planes(cm);
2035 struct loopfilter *lf = &cm->lf;
2036
2037 // Encode the loop filter level and type
2038 aom_wb_write_literal(wb, lf->filter_level[0], 6);
2039 aom_wb_write_literal(wb, lf->filter_level[1], 6);
2040 if (num_planes > 1) {
2041 if (lf->filter_level[0] || lf->filter_level[1]) {
2042 aom_wb_write_literal(wb, lf->filter_level_u, 6);
2043 aom_wb_write_literal(wb, lf->filter_level_v, 6);
2044 }
2045 }
2046 aom_wb_write_literal(wb, lf->sharpness_level, 3);
2047
2048 aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
2049
2050 // Write out loop filter deltas applied at the MB level based on mode or
2051 // ref frame (if they are enabled), only if there is information to write.
2052 int meaningful = is_mode_ref_delta_meaningful(cm);
2053 aom_wb_write_bit(wb, meaningful);
2054 if (!meaningful) {
2055 return;
2056 }
2057
2058 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2059 int8_t last_ref_deltas[REF_FRAMES];
2060 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2061 if (buf == NULL) {
2062 av1_set_default_ref_deltas(last_ref_deltas);
2063 av1_set_default_mode_deltas(last_mode_deltas);
2064 } else {
2065 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2066 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2067 }
2068 for (int i = 0; i < REF_FRAMES; i++) {
2069 const int delta = lf->ref_deltas[i];
2070 const int changed = delta != last_ref_deltas[i];
2071 aom_wb_write_bit(wb, changed);
2072 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2073 }
2074 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2075 const int delta = lf->mode_deltas[i];
2076 const int changed = delta != last_mode_deltas[i];
2077 aom_wb_write_bit(wb, changed);
2078 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2079 }
2080 }
2081
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2082 static inline void encode_cdef(const AV1_COMMON *cm,
2083 struct aom_write_bit_buffer *wb) {
2084 assert(!cm->features.coded_lossless);
2085 if (!cm->seq_params->enable_cdef) return;
2086 if (cm->features.allow_intrabc) return;
2087 const int num_planes = av1_num_planes(cm);
2088 int i;
2089 aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2090 aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2091 for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2092 aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2093 CDEF_STRENGTH_BITS);
2094 if (num_planes > 1)
2095 aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2096 CDEF_STRENGTH_BITS);
2097 }
2098 }
2099
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2100 static inline void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
2101 if (delta_q != 0) {
2102 aom_wb_write_bit(wb, 1);
2103 aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2104 } else {
2105 aom_wb_write_bit(wb, 0);
2106 }
2107 }
2108
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2109 static inline void encode_quantization(
2110 const CommonQuantParams *const quant_params, int num_planes,
2111 bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2112 aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2113 write_delta_q(wb, quant_params->y_dc_delta_q);
2114 if (num_planes > 1) {
2115 int diff_uv_delta =
2116 (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2117 (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2118 if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2119 write_delta_q(wb, quant_params->u_dc_delta_q);
2120 write_delta_q(wb, quant_params->u_ac_delta_q);
2121 if (diff_uv_delta) {
2122 write_delta_q(wb, quant_params->v_dc_delta_q);
2123 write_delta_q(wb, quant_params->v_ac_delta_q);
2124 }
2125 }
2126 aom_wb_write_bit(wb, quant_params->using_qmatrix);
2127 if (quant_params->using_qmatrix) {
2128 aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2129 aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2130 if (!separate_uv_delta_q)
2131 assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2132 else
2133 aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2134 }
2135 }
2136
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2137 static inline void encode_segmentation(AV1_COMMON *cm,
2138 struct aom_write_bit_buffer *wb) {
2139 int i, j;
2140 struct segmentation *seg = &cm->seg;
2141
2142 aom_wb_write_bit(wb, seg->enabled);
2143 if (!seg->enabled) return;
2144
2145 // Write update flags
2146 if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2147 aom_wb_write_bit(wb, seg->update_map);
2148 if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2149 aom_wb_write_bit(wb, seg->update_data);
2150 }
2151
2152 // Segmentation data
2153 if (seg->update_data) {
2154 for (i = 0; i < MAX_SEGMENTS; i++) {
2155 for (j = 0; j < SEG_LVL_MAX; j++) {
2156 const int active = segfeature_active(seg, i, j);
2157 aom_wb_write_bit(wb, active);
2158 if (active) {
2159 const int data_max = av1_seg_feature_data_max(j);
2160 const int data_min = -data_max;
2161 const int ubits = get_unsigned_bits(data_max);
2162 const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2163
2164 if (av1_is_segfeature_signed(j)) {
2165 aom_wb_write_inv_signed_literal(wb, data, ubits);
2166 } else {
2167 aom_wb_write_literal(wb, data, ubits);
2168 }
2169 }
2170 }
2171 }
2172 }
2173 }
2174
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2175 static inline void write_frame_interp_filter(InterpFilter filter,
2176 struct aom_write_bit_buffer *wb) {
2177 aom_wb_write_bit(wb, filter == SWITCHABLE);
2178 if (filter != SWITCHABLE)
2179 aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2180 }
2181
2182 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2183 static inline void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2184 int v) {
2185 const int l = get_unsigned_bits(n);
2186 const int m = (1 << l) - n;
2187 if (l == 0) return;
2188 if (v < m) {
2189 aom_wb_write_literal(wb, v, l - 1);
2190 } else {
2191 aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2192 aom_wb_write_literal(wb, (v - m) & 1, 1);
2193 }
2194 }
2195
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2196 static inline void write_tile_info_max_tile(const AV1_COMMON *const cm,
2197 struct aom_write_bit_buffer *wb) {
2198 int width_sb =
2199 CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2200 int height_sb =
2201 CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2202 int size_sb, i;
2203 const CommonTileParams *const tiles = &cm->tiles;
2204
2205 aom_wb_write_bit(wb, tiles->uniform_spacing);
2206
2207 if (tiles->uniform_spacing) {
2208 int ones = tiles->log2_cols - tiles->min_log2_cols;
2209 while (ones--) {
2210 aom_wb_write_bit(wb, 1);
2211 }
2212 if (tiles->log2_cols < tiles->max_log2_cols) {
2213 aom_wb_write_bit(wb, 0);
2214 }
2215
2216 // rows
2217 ones = tiles->log2_rows - tiles->min_log2_rows;
2218 while (ones--) {
2219 aom_wb_write_bit(wb, 1);
2220 }
2221 if (tiles->log2_rows < tiles->max_log2_rows) {
2222 aom_wb_write_bit(wb, 0);
2223 }
2224 } else {
2225 // Explicit tiles with configurable tile widths and heights
2226 // columns
2227 for (i = 0; i < tiles->cols; i++) {
2228 size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2229 wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2230 width_sb -= size_sb;
2231 }
2232 assert(width_sb == 0);
2233
2234 // rows
2235 for (i = 0; i < tiles->rows; i++) {
2236 size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2237 wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2238 size_sb - 1);
2239 height_sb -= size_sb;
2240 }
2241 assert(height_sb == 0);
2242 }
2243 }
2244
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2245 static inline void write_tile_info(const AV1_COMMON *const cm,
2246 struct aom_write_bit_buffer *saved_wb,
2247 struct aom_write_bit_buffer *wb) {
2248 write_tile_info_max_tile(cm, wb);
2249
2250 *saved_wb = *wb;
2251 if (cm->tiles.rows * cm->tiles.cols > 1) {
2252 // tile id used for cdf update
2253 aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2254 // Number of bytes in tile size - 1
2255 aom_wb_write_literal(wb, 3, 2);
2256 }
2257 }
2258
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2259 static inline void write_ext_tile_info(const AV1_COMMON *const cm,
2260 struct aom_write_bit_buffer *saved_wb,
2261 struct aom_write_bit_buffer *wb) {
2262 // This information is stored as a separate byte.
2263 int mod = wb->bit_offset % CHAR_BIT;
2264 if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2265 assert(aom_wb_is_byte_aligned(wb));
2266
2267 *saved_wb = *wb;
2268 if (cm->tiles.rows * cm->tiles.cols > 1) {
2269 // Note that the last item in the uncompressed header is the data
2270 // describing tile configuration.
2271 // Number of bytes in tile column size - 1
2272 aom_wb_write_literal(wb, 0, 2);
2273 // Number of bytes in tile size - 1
2274 aom_wb_write_literal(wb, 0, 2);
2275 }
2276 }
2277
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2278 static inline int find_identical_tile(
2279 const int tile_row, const int tile_col,
2280 TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2281 const MV32 candidate_offset[1] = { { 1, 0 } };
2282 const uint8_t *const cur_tile_data =
2283 tile_buffers[tile_row][tile_col].data + 4;
2284 const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2285
2286 int i;
2287
2288 if (tile_row == 0) return 0;
2289
2290 // (TODO: yunqingwang) For now, only above tile is checked and used.
2291 // More candidates such as left tile can be added later.
2292 for (i = 0; i < 1; i++) {
2293 int row_offset = candidate_offset[0].row;
2294 int col_offset = candidate_offset[0].col;
2295 int row = tile_row - row_offset;
2296 int col = tile_col - col_offset;
2297 const uint8_t *tile_data;
2298 TileBufferEnc *candidate;
2299
2300 if (row < 0 || col < 0) continue;
2301
2302 const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2303
2304 // Read out tile-copy-mode bit:
2305 if ((tile_hdr >> 31) == 1) {
2306 // The candidate is a copy tile itself: the offset is stored in bits
2307 // 30 through 24 inclusive.
2308 row_offset += (tile_hdr >> 24) & 0x7f;
2309 row = tile_row - row_offset;
2310 }
2311
2312 candidate = &tile_buffers[row][col];
2313
2314 if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2315
2316 tile_data = candidate->data + 4;
2317
2318 if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2319
2320 // Identical tile found
2321 assert(row_offset > 0);
2322 return row_offset;
2323 }
2324
2325 // No identical tile found
2326 return 0;
2327 }
2328
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2329 static inline void write_render_size(const AV1_COMMON *cm,
2330 struct aom_write_bit_buffer *wb) {
2331 const int scaling_active = av1_resize_scaled(cm);
2332 aom_wb_write_bit(wb, scaling_active);
2333 if (scaling_active) {
2334 aom_wb_write_literal(wb, cm->render_width - 1, 16);
2335 aom_wb_write_literal(wb, cm->render_height - 1, 16);
2336 }
2337 }
2338
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2339 static inline void write_superres_scale(const AV1_COMMON *const cm,
2340 struct aom_write_bit_buffer *wb) {
2341 const SequenceHeader *const seq_params = cm->seq_params;
2342 if (!seq_params->enable_superres) {
2343 assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2344 return;
2345 }
2346
2347 // First bit is whether to to scale or not
2348 if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2349 aom_wb_write_bit(wb, 0); // no scaling
2350 } else {
2351 aom_wb_write_bit(wb, 1); // scaling, write scale factor
2352 assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2353 assert(cm->superres_scale_denominator <
2354 SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2355 aom_wb_write_literal(
2356 wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2357 SUPERRES_SCALE_BITS);
2358 }
2359 }
2360
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2361 static inline void write_frame_size(const AV1_COMMON *cm,
2362 int frame_size_override,
2363 struct aom_write_bit_buffer *wb) {
2364 const int coded_width = cm->superres_upscaled_width - 1;
2365 const int coded_height = cm->superres_upscaled_height - 1;
2366
2367 if (frame_size_override) {
2368 const SequenceHeader *seq_params = cm->seq_params;
2369 int num_bits_width = seq_params->num_bits_width;
2370 int num_bits_height = seq_params->num_bits_height;
2371 aom_wb_write_literal(wb, coded_width, num_bits_width);
2372 aom_wb_write_literal(wb, coded_height, num_bits_height);
2373 }
2374
2375 write_superres_scale(cm, wb);
2376 write_render_size(cm, wb);
2377 }
2378
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2379 static inline void write_frame_size_with_refs(const AV1_COMMON *const cm,
2380 struct aom_write_bit_buffer *wb) {
2381 int found = 0;
2382
2383 MV_REFERENCE_FRAME ref_frame;
2384 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2385 const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2386
2387 if (cfg != NULL) {
2388 found = cm->superres_upscaled_width == cfg->y_crop_width &&
2389 cm->superres_upscaled_height == cfg->y_crop_height;
2390 found &= cm->render_width == cfg->render_width &&
2391 cm->render_height == cfg->render_height;
2392 }
2393 aom_wb_write_bit(wb, found);
2394 if (found) {
2395 write_superres_scale(cm, wb);
2396 break;
2397 }
2398 }
2399
2400 if (!found) {
2401 int frame_size_override = 1; // Always equal to 1 in this function
2402 write_frame_size(cm, frame_size_override, wb);
2403 }
2404 }
2405
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2406 static inline void write_profile(BITSTREAM_PROFILE profile,
2407 struct aom_write_bit_buffer *wb) {
2408 assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2409 aom_wb_write_literal(wb, profile, PROFILE_BITS);
2410 }
2411
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2412 static inline void write_bitdepth(const SequenceHeader *const seq_params,
2413 struct aom_write_bit_buffer *wb) {
2414 // Profile 0/1: [0] for 8 bit, [1] 10-bit
2415 // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2416 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2417 if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2418 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2419 }
2420 }
2421
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2422 static inline void write_color_config(const SequenceHeader *const seq_params,
2423 struct aom_write_bit_buffer *wb) {
2424 write_bitdepth(seq_params, wb);
2425 const int is_monochrome = seq_params->monochrome;
2426 // monochrome bit
2427 if (seq_params->profile != PROFILE_1)
2428 aom_wb_write_bit(wb, is_monochrome);
2429 else
2430 assert(!is_monochrome);
2431 if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2432 seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2433 seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2434 aom_wb_write_bit(wb, 0); // No color description present
2435 } else {
2436 aom_wb_write_bit(wb, 1); // Color description present
2437 aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2438 aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2439 aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2440 }
2441 if (is_monochrome) {
2442 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2443 aom_wb_write_bit(wb, seq_params->color_range);
2444 return;
2445 }
2446 if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2447 seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2448 seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2449 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2450 assert(seq_params->profile == PROFILE_1 ||
2451 (seq_params->profile == PROFILE_2 &&
2452 seq_params->bit_depth == AOM_BITS_12));
2453 } else {
2454 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2455 aom_wb_write_bit(wb, seq_params->color_range);
2456 if (seq_params->profile == PROFILE_0) {
2457 // 420 only
2458 assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2459 } else if (seq_params->profile == PROFILE_1) {
2460 // 444 only
2461 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2462 } else if (seq_params->profile == PROFILE_2) {
2463 if (seq_params->bit_depth == AOM_BITS_12) {
2464 // 420, 444 or 422
2465 aom_wb_write_bit(wb, seq_params->subsampling_x);
2466 if (seq_params->subsampling_x == 0) {
2467 assert(seq_params->subsampling_y == 0 &&
2468 "4:4:0 subsampling not allowed in AV1");
2469 } else {
2470 aom_wb_write_bit(wb, seq_params->subsampling_y);
2471 }
2472 } else {
2473 // 422 only
2474 assert(seq_params->subsampling_x == 1 &&
2475 seq_params->subsampling_y == 0);
2476 }
2477 }
2478 if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2479 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2480 }
2481 if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2482 aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2483 }
2484 }
2485 aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2486 }
2487
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2488 static inline void write_timing_info_header(
2489 const aom_timing_info_t *const timing_info,
2490 struct aom_write_bit_buffer *wb) {
2491 aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2492 aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2493 aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2494 if (timing_info->equal_picture_interval) {
2495 aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2496 }
2497 }
2498
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2499 static inline void write_decoder_model_info(
2500 const aom_dec_model_info_t *const decoder_model_info,
2501 struct aom_write_bit_buffer *wb) {
2502 aom_wb_write_literal(
2503 wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2504 aom_wb_write_unsigned_literal(
2505 wb, decoder_model_info->num_units_in_decoding_tick, 32);
2506 aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2507 5);
2508 aom_wb_write_literal(
2509 wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2510 }
2511
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2512 static inline void write_dec_model_op_parameters(
2513 const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2514 struct aom_write_bit_buffer *wb) {
2515 aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2516 buffer_delay_length);
2517 aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2518 buffer_delay_length);
2519 aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2520 }
2521
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2522 static inline void write_tu_pts_info(AV1_COMMON *const cm,
2523 struct aom_write_bit_buffer *wb) {
2524 aom_wb_write_unsigned_literal(
2525 wb, cm->frame_presentation_time,
2526 cm->seq_params->decoder_model_info.frame_presentation_time_length);
2527 }
2528
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2529 static inline void write_film_grain_params(const AV1_COMP *const cpi,
2530 struct aom_write_bit_buffer *wb) {
2531 const AV1_COMMON *const cm = &cpi->common;
2532 const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2533 aom_wb_write_bit(wb, pars->apply_grain);
2534 if (!pars->apply_grain) return;
2535
2536 aom_wb_write_literal(wb, pars->random_seed, 16);
2537
2538 if (cm->current_frame.frame_type == INTER_FRAME)
2539 aom_wb_write_bit(wb, pars->update_parameters);
2540
2541 if (!pars->update_parameters) {
2542 int ref_frame, ref_idx;
2543 for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2544 ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2545 assert(ref_idx != INVALID_IDX);
2546 const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2547 if (buf->film_grain_params_present &&
2548 aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2549 break;
2550 }
2551 }
2552 assert(ref_frame < REF_FRAMES);
2553 aom_wb_write_literal(wb, ref_idx, 3);
2554 return;
2555 }
2556
2557 // Scaling functions parameters
2558 aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
2559 for (int i = 0; i < pars->num_y_points; i++) {
2560 aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2561 aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2562 }
2563
2564 if (!cm->seq_params->monochrome) {
2565 aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2566 } else {
2567 assert(!pars->chroma_scaling_from_luma);
2568 }
2569
2570 if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2571 ((cm->seq_params->subsampling_x == 1) &&
2572 (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2573 assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2574 } else {
2575 aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
2576 for (int i = 0; i < pars->num_cb_points; i++) {
2577 aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2578 aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2579 }
2580
2581 aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
2582 for (int i = 0; i < pars->num_cr_points; i++) {
2583 aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2584 aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2585 }
2586 }
2587
2588 aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
2589
2590 // AR coefficients
2591 // Only sent if the corresponsing scaling function has
2592 // more than 0 points
2593
2594 aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2595
2596 int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2597 int num_pos_chroma = num_pos_luma;
2598 if (pars->num_y_points > 0) ++num_pos_chroma;
2599
2600 if (pars->num_y_points)
2601 for (int i = 0; i < num_pos_luma; i++)
2602 aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2603
2604 if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2605 for (int i = 0; i < num_pos_chroma; i++)
2606 aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2607
2608 if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2609 for (int i = 0; i < num_pos_chroma; i++)
2610 aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2611
2612 aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
2613
2614 aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2615
2616 if (pars->num_cb_points) {
2617 aom_wb_write_literal(wb, pars->cb_mult, 8);
2618 aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2619 aom_wb_write_literal(wb, pars->cb_offset, 9);
2620 }
2621
2622 if (pars->num_cr_points) {
2623 aom_wb_write_literal(wb, pars->cr_mult, 8);
2624 aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2625 aom_wb_write_literal(wb, pars->cr_offset, 9);
2626 }
2627
2628 aom_wb_write_bit(wb, pars->overlap_flag);
2629
2630 aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2631 }
2632
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2633 static inline void write_sb_size(const SequenceHeader *const seq_params,
2634 struct aom_write_bit_buffer *wb) {
2635 (void)seq_params;
2636 (void)wb;
2637 assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2638 assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2639 assert(seq_params->sb_size == BLOCK_128X128 ||
2640 seq_params->sb_size == BLOCK_64X64);
2641 aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2642 }
2643
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2644 static inline void write_sequence_header(const SequenceHeader *const seq_params,
2645 struct aom_write_bit_buffer *wb) {
2646 aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2647 aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2648 aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2649 seq_params->num_bits_width);
2650 aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2651 seq_params->num_bits_height);
2652
2653 if (!seq_params->reduced_still_picture_hdr) {
2654 aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2655 if (seq_params->frame_id_numbers_present_flag) {
2656 // We must always have delta_frame_id_length < frame_id_length,
2657 // in order for a frame to be referenced with a unique delta.
2658 // Avoid wasting bits by using a coding that enforces this restriction.
2659 aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2660 aom_wb_write_literal(
2661 wb,
2662 seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2663 3);
2664 }
2665 }
2666
2667 write_sb_size(seq_params, wb);
2668
2669 aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2670 aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2671
2672 if (!seq_params->reduced_still_picture_hdr) {
2673 aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2674 aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2675 aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2676 aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2677
2678 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2679
2680 if (seq_params->order_hint_info.enable_order_hint) {
2681 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2682 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2683 }
2684 if (seq_params->force_screen_content_tools == 2) {
2685 aom_wb_write_bit(wb, 1);
2686 } else {
2687 aom_wb_write_bit(wb, 0);
2688 aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2689 }
2690 if (seq_params->force_screen_content_tools > 0) {
2691 if (seq_params->force_integer_mv == 2) {
2692 aom_wb_write_bit(wb, 1);
2693 } else {
2694 aom_wb_write_bit(wb, 0);
2695 aom_wb_write_bit(wb, seq_params->force_integer_mv);
2696 }
2697 } else {
2698 assert(seq_params->force_integer_mv == 2);
2699 }
2700 if (seq_params->order_hint_info.enable_order_hint)
2701 aom_wb_write_literal(
2702 wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2703 }
2704
2705 aom_wb_write_bit(wb, seq_params->enable_superres);
2706 aom_wb_write_bit(wb, seq_params->enable_cdef);
2707 aom_wb_write_bit(wb, seq_params->enable_restoration);
2708 }
2709
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2710 static inline void write_global_motion_params(
2711 const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2712 struct aom_write_bit_buffer *wb, int allow_hp) {
2713 const TransformationType type = params->wmtype;
2714
2715 // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
2716 // type models. Check here that we don't accidentally pick one somehow.
2717 // See comments in gm_get_motion_vector() for details on the bug we're
2718 // working around here
2719 assert(type != TRANSLATION);
2720
2721 aom_wb_write_bit(wb, type != IDENTITY);
2722 if (type != IDENTITY) {
2723 aom_wb_write_bit(wb, type == ROTZOOM);
2724 if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2725 }
2726
2727 if (type >= ROTZOOM) {
2728 aom_wb_write_signed_primitive_refsubexpfin(
2729 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2730 (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2731 (1 << GM_ALPHA_PREC_BITS),
2732 (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2733 aom_wb_write_signed_primitive_refsubexpfin(
2734 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2735 (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2736 (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2737 }
2738
2739 if (type >= AFFINE) {
2740 aom_wb_write_signed_primitive_refsubexpfin(
2741 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2742 (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2743 (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2744 aom_wb_write_signed_primitive_refsubexpfin(
2745 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2746 (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2747 (1 << GM_ALPHA_PREC_BITS),
2748 (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2749 }
2750
2751 if (type >= TRANSLATION) {
2752 const int trans_bits = (type == TRANSLATION)
2753 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2754 : GM_ABS_TRANS_BITS;
2755 const int trans_prec_diff = (type == TRANSLATION)
2756 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2757 : GM_TRANS_PREC_DIFF;
2758 aom_wb_write_signed_primitive_refsubexpfin(
2759 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2760 (ref_params->wmmat[0] >> trans_prec_diff),
2761 (params->wmmat[0] >> trans_prec_diff));
2762 aom_wb_write_signed_primitive_refsubexpfin(
2763 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2764 (ref_params->wmmat[1] >> trans_prec_diff),
2765 (params->wmmat[1] >> trans_prec_diff));
2766 }
2767 }
2768
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2769 static inline void write_global_motion(AV1_COMP *cpi,
2770 struct aom_write_bit_buffer *wb) {
2771 AV1_COMMON *const cm = &cpi->common;
2772 int frame;
2773 for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2774 const WarpedMotionParams *ref_params =
2775 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2776 : &default_warp_params;
2777 write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2778 cm->features.allow_high_precision_mv);
2779 // TODO(sarahparker, debargha): The logic in the commented out code below
2780 // does not work currently and causes mismatches when resize is on.
2781 // Fix it before turning the optimization back on.
2782 /*
2783 YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2784 if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2785 cpi->source->y_crop_height == ref_buf->y_crop_height) {
2786 write_global_motion_params(&cm->global_motion[frame],
2787 &cm->prev_frame->global_motion[frame], wb,
2788 cm->features.allow_high_precision_mv);
2789 } else {
2790 assert(cm->global_motion[frame].wmtype == IDENTITY &&
2791 "Invalid warp type for frames of different resolutions");
2792 }
2793 */
2794 /*
2795 printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2796 cm->current_frame.frame_number, cm->show_frame, frame,
2797 cm->global_motion[frame].wmmat[0],
2798 cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2799 cm->global_motion[frame].wmmat[3]);
2800 */
2801 }
2802 }
2803
check_frame_refs_short_signaling(AV1_COMMON * const cm,bool enable_ref_short_signaling)2804 static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
2805 bool enable_ref_short_signaling) {
2806 // In rtc case when res < 360p and speed >= 9, we turn on
2807 // frame_refs_short_signaling if it won't break the decoder.
2808 if (enable_ref_short_signaling) {
2809 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2810 const int base =
2811 1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2812
2813 const int order_hint_group_cur =
2814 cm->current_frame.display_order_hint / base;
2815 const int order_hint_group_gld =
2816 cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
2817 const int relative_dist = cm->current_frame.order_hint -
2818 cm->ref_frame_map[gld_map_idx]->order_hint;
2819
2820 // If current frame and GOLDEN frame are in the same order_hint group, and
2821 // they are not far apart (i.e., > 64 frames), then return 1.
2822 if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
2823 relative_dist <= 64) {
2824 return 1;
2825 }
2826 return 0;
2827 }
2828
2829 // Check whether all references are distinct frames.
2830 const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL };
2831 int num_refs = 0;
2832 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2833 const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2834 if (buf != NULL) {
2835 int seen = 0;
2836 for (int i = 0; i < num_refs; i++) {
2837 if (seen_bufs[i] == buf) {
2838 seen = 1;
2839 break;
2840 }
2841 }
2842 if (!seen) seen_bufs[num_refs++] = buf;
2843 }
2844 }
2845
2846 // We only turn on frame_refs_short_signaling when all references are
2847 // distinct.
2848 if (num_refs < INTER_REFS_PER_FRAME) {
2849 // It indicates that there exist more than one reference frame pointing to
2850 // the same reference buffer, i.e. two or more references are duplicate.
2851 return 0;
2852 }
2853
2854 // Check whether the encoder side ref frame choices are aligned with that to
2855 // be derived at the decoder side.
2856 int remapped_ref_idx_decoder[REF_FRAMES];
2857
2858 const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2859 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2860
2861 // Set up the frame refs mapping indexes according to the
2862 // frame_refs_short_signaling policy.
2863 av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2864
2865 // We only turn on frame_refs_short_signaling when the encoder side decision
2866 // on ref frames is identical to that at the decoder side.
2867 int frame_refs_short_signaling = 1;
2868 for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2869 // Compare the buffer index between two reference frames indexed
2870 // respectively by the encoder and the decoder side decisions.
2871 RefCntBuffer *ref_frame_buf_new = NULL;
2872 if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2873 ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2874 }
2875 if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2876 frame_refs_short_signaling = 0;
2877 break;
2878 }
2879 }
2880
2881 #if 0 // For debug
2882 printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2883 printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2884 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2885 printf("enc_ref(map_idx=%d)=%d, vs. "
2886 "dec_ref(map_idx=%d)=%d\n",
2887 get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2888 cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2889 ref_frame);
2890 }
2891 #endif // 0
2892
2893 return frame_refs_short_signaling;
2894 }
2895
2896 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2897 static inline void write_uncompressed_header_obu(
2898 AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2899 struct aom_write_bit_buffer *wb) {
2900 AV1_COMMON *const cm = &cpi->common;
2901 const SequenceHeader *const seq_params = cm->seq_params;
2902 const CommonQuantParams *quant_params = &cm->quant_params;
2903 CurrentFrame *const current_frame = &cm->current_frame;
2904 FeatureFlags *const features = &cm->features;
2905
2906 if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
2907 !seq_params->order_hint_info.enable_order_hint ||
2908 seq_params->order_hint_info.enable_ref_frame_mvs) {
2909 current_frame->frame_refs_short_signaling = 0;
2910 } else {
2911 current_frame->frame_refs_short_signaling = 1;
2912 }
2913
2914 if (seq_params->still_picture) {
2915 assert(cm->show_existing_frame == 0);
2916 assert(cm->show_frame == 1);
2917 assert(current_frame->frame_type == KEY_FRAME);
2918 }
2919 if (!seq_params->reduced_still_picture_hdr) {
2920 if (encode_show_existing_frame(cm)) {
2921 aom_wb_write_bit(wb, 1); // show_existing_frame
2922 aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2923
2924 if (seq_params->decoder_model_info_present_flag &&
2925 seq_params->timing_info.equal_picture_interval == 0) {
2926 write_tu_pts_info(cm, wb);
2927 }
2928 if (seq_params->frame_id_numbers_present_flag) {
2929 int frame_id_len = seq_params->frame_id_length;
2930 int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2931 aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2932 }
2933 return;
2934 } else {
2935 aom_wb_write_bit(wb, 0); // show_existing_frame
2936 }
2937
2938 aom_wb_write_literal(wb, current_frame->frame_type, 2);
2939
2940 aom_wb_write_bit(wb, cm->show_frame);
2941 if (cm->show_frame) {
2942 if (seq_params->decoder_model_info_present_flag &&
2943 seq_params->timing_info.equal_picture_interval == 0)
2944 write_tu_pts_info(cm, wb);
2945 } else {
2946 aom_wb_write_bit(wb, cm->showable_frame);
2947 }
2948 if (frame_is_sframe(cm)) {
2949 assert(features->error_resilient_mode);
2950 } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2951 aom_wb_write_bit(wb, features->error_resilient_mode);
2952 }
2953 }
2954 aom_wb_write_bit(wb, features->disable_cdf_update);
2955
2956 if (seq_params->force_screen_content_tools == 2) {
2957 aom_wb_write_bit(wb, features->allow_screen_content_tools);
2958 } else {
2959 assert(features->allow_screen_content_tools ==
2960 seq_params->force_screen_content_tools);
2961 }
2962
2963 if (features->allow_screen_content_tools) {
2964 if (seq_params->force_integer_mv == 2) {
2965 aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2966 } else {
2967 assert(features->cur_frame_force_integer_mv ==
2968 seq_params->force_integer_mv);
2969 }
2970 } else {
2971 assert(features->cur_frame_force_integer_mv == 0);
2972 }
2973
2974 int frame_size_override_flag = 0;
2975
2976 if (seq_params->reduced_still_picture_hdr) {
2977 assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2978 cm->superres_upscaled_height == seq_params->max_frame_height);
2979 } else {
2980 if (seq_params->frame_id_numbers_present_flag) {
2981 int frame_id_len = seq_params->frame_id_length;
2982 aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2983 }
2984
2985 if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2986 cm->superres_upscaled_height > seq_params->max_frame_height) {
2987 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2988 "Frame dimensions are larger than the maximum values");
2989 }
2990
2991 frame_size_override_flag =
2992 frame_is_sframe(cm)
2993 ? 1
2994 : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2995 cm->superres_upscaled_height != seq_params->max_frame_height);
2996 if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2997
2998 if (seq_params->order_hint_info.enable_order_hint)
2999 aom_wb_write_literal(
3000 wb, current_frame->order_hint,
3001 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3002
3003 if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
3004 aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
3005 }
3006 }
3007
3008 if (seq_params->decoder_model_info_present_flag) {
3009 aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
3010 if (cpi->ppi->buffer_removal_time_present) {
3011 for (int op_num = 0;
3012 op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
3013 if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
3014 if (seq_params->operating_point_idc[op_num] == 0 ||
3015 ((seq_params->operating_point_idc[op_num] >>
3016 cm->temporal_layer_id) &
3017 0x1 &&
3018 (seq_params->operating_point_idc[op_num] >>
3019 (cm->spatial_layer_id + 8)) &
3020 0x1)) {
3021 aom_wb_write_unsigned_literal(
3022 wb, cm->buffer_removal_times[op_num],
3023 seq_params->decoder_model_info.buffer_removal_time_length);
3024 cm->buffer_removal_times[op_num]++;
3025 if (cm->buffer_removal_times[op_num] == 0) {
3026 aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3027 "buffer_removal_time overflowed");
3028 }
3029 }
3030 }
3031 }
3032 }
3033 }
3034
3035 // Shown keyframes and switch-frames automatically refreshes all reference
3036 // frames. For all other frame types, we need to write refresh_frame_flags.
3037 if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
3038 current_frame->frame_type == INTER_FRAME ||
3039 current_frame->frame_type == INTRA_ONLY_FRAME)
3040 aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
3041
3042 if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
3043 // Write all ref frame order hints if error_resilient_mode == 1
3044 if (features->error_resilient_mode &&
3045 seq_params->order_hint_info.enable_order_hint) {
3046 for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
3047 aom_wb_write_literal(
3048 wb, cm->ref_frame_map[ref_idx]->order_hint,
3049 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3050 }
3051 }
3052 }
3053
3054 if (current_frame->frame_type == KEY_FRAME) {
3055 write_frame_size(cm, frame_size_override_flag, wb);
3056 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3057 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3058 aom_wb_write_bit(wb, features->allow_intrabc);
3059 } else {
3060 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
3061 write_frame_size(cm, frame_size_override_flag, wb);
3062 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3063 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3064 aom_wb_write_bit(wb, features->allow_intrabc);
3065 } else if (current_frame->frame_type == INTER_FRAME ||
3066 frame_is_sframe(cm)) {
3067 MV_REFERENCE_FRAME ref_frame;
3068
3069 // NOTE: Error resilient mode turns off frame_refs_short_signaling
3070 // automatically.
3071 #define FRAME_REFS_SHORT_SIGNALING 0
3072 #if FRAME_REFS_SHORT_SIGNALING
3073 current_frame->frame_refs_short_signaling =
3074 seq_params->order_hint_info.enable_order_hint;
3075 #endif // FRAME_REFS_SHORT_SIGNALING
3076
3077 if (current_frame->frame_refs_short_signaling) {
3078 // In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
3079 // we turn on frame_refs_short_signaling when the current frame and
3080 // golden frame are in the same order_hint group, and their relative
3081 // distance is <= 64 (in order to be decodable).
3082
3083 // For other cases, an example solution for encoder-side
3084 // implementation on frame_refs_short_signaling is also provided in
3085 // this function, where frame_refs_short_signaling is only turned on
3086 // when the encoder side decision on ref frames is identical to that
3087 // at the decoder side.
3088
3089 current_frame->frame_refs_short_signaling =
3090 check_frame_refs_short_signaling(
3091 cm, cpi->sf.rt_sf.enable_ref_short_signaling);
3092 }
3093
3094 if (seq_params->order_hint_info.enable_order_hint)
3095 aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3096
3097 if (current_frame->frame_refs_short_signaling) {
3098 const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3099 aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3100
3101 const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3102 aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3103 }
3104 int first_ref_map_idx = INVALID_IDX;
3105 if (cpi->ppi->rtc_ref.set_ref_frame_config) {
3106 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3107 if (cpi->ppi->rtc_ref.reference[ref_frame - 1] == 1) {
3108 first_ref_map_idx = cpi->ppi->rtc_ref.ref_idx[ref_frame - 1];
3109 break;
3110 }
3111 }
3112 }
3113 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3114 assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3115 if (!current_frame->frame_refs_short_signaling) {
3116 if (cpi->ppi->rtc_ref.set_ref_frame_config &&
3117 first_ref_map_idx != INVALID_IDX &&
3118 cpi->svc.number_spatial_layers == 1 &&
3119 !seq_params->order_hint_info.enable_order_hint) {
3120 // For the usage of set_ref_frame_config:
3121 // for any reference not used set their ref_map_idx
3122 // to the first used reference.
3123 const int map_idx = cpi->ppi->rtc_ref.reference[ref_frame - 1]
3124 ? get_ref_frame_map_idx(cm, ref_frame)
3125 : first_ref_map_idx;
3126 aom_wb_write_literal(wb, map_idx, REF_FRAMES_LOG2);
3127 } else {
3128 aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3129 REF_FRAMES_LOG2);
3130 }
3131 }
3132 if (seq_params->frame_id_numbers_present_flag) {
3133 int i = get_ref_frame_map_idx(cm, ref_frame);
3134 int frame_id_len = seq_params->frame_id_length;
3135 int diff_len = seq_params->delta_frame_id_length;
3136 int delta_frame_id_minus_1 =
3137 ((cm->current_frame_id - cm->ref_frame_id[i] +
3138 (1 << frame_id_len)) %
3139 (1 << frame_id_len)) -
3140 1;
3141 if (delta_frame_id_minus_1 < 0 ||
3142 delta_frame_id_minus_1 >= (1 << diff_len)) {
3143 aom_internal_error(cm->error, AOM_CODEC_ERROR,
3144 "Invalid delta_frame_id_minus_1");
3145 }
3146 aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3147 }
3148 }
3149
3150 if (!features->error_resilient_mode && frame_size_override_flag) {
3151 write_frame_size_with_refs(cm, wb);
3152 } else {
3153 write_frame_size(cm, frame_size_override_flag, wb);
3154 }
3155
3156 if (!features->cur_frame_force_integer_mv)
3157 aom_wb_write_bit(wb, features->allow_high_precision_mv);
3158 write_frame_interp_filter(features->interp_filter, wb);
3159 aom_wb_write_bit(wb, features->switchable_motion_mode);
3160 if (frame_might_allow_ref_frame_mvs(cm)) {
3161 aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3162 } else {
3163 assert(features->allow_ref_frame_mvs == 0);
3164 }
3165 }
3166 }
3167
3168 const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3169 !(features->disable_cdf_update);
3170 if (cm->tiles.large_scale)
3171 assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3172
3173 if (might_bwd_adapt) {
3174 aom_wb_write_bit(
3175 wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3176 }
3177
3178 write_tile_info(cm, saved_wb, wb);
3179 encode_quantization(quant_params, av1_num_planes(cm),
3180 cm->seq_params->separate_uv_delta_q, wb);
3181 encode_segmentation(cm, wb);
3182
3183 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3184 if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3185 if (quant_params->base_qindex > 0) {
3186 aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3187 if (delta_q_info->delta_q_present_flag) {
3188 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3189 xd->current_base_qindex = quant_params->base_qindex;
3190 if (features->allow_intrabc)
3191 assert(delta_q_info->delta_lf_present_flag == 0);
3192 else
3193 aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3194 if (delta_q_info->delta_lf_present_flag) {
3195 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3196 aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3197 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3198 }
3199 }
3200 }
3201
3202 if (features->all_lossless) {
3203 assert(!av1_superres_scaled(cm));
3204 } else {
3205 if (!features->coded_lossless) {
3206 encode_loopfilter(cm, wb);
3207 encode_cdef(cm, wb);
3208 }
3209 encode_restoration_mode(cm, wb);
3210 }
3211
3212 // Write TX mode
3213 if (features->coded_lossless)
3214 assert(features->tx_mode == ONLY_4X4);
3215 else
3216 aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3217
3218 if (!frame_is_intra_only(cm)) {
3219 const int use_hybrid_pred =
3220 current_frame->reference_mode == REFERENCE_MODE_SELECT;
3221
3222 aom_wb_write_bit(wb, use_hybrid_pred);
3223 }
3224
3225 if (current_frame->skip_mode_info.skip_mode_allowed)
3226 aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3227
3228 if (frame_might_allow_warped_motion(cm))
3229 aom_wb_write_bit(wb, features->allow_warped_motion);
3230 else
3231 assert(!features->allow_warped_motion);
3232
3233 aom_wb_write_bit(wb, features->reduced_tx_set_used);
3234
3235 if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3236
3237 if (seq_params->film_grain_params_present &&
3238 (cm->show_frame || cm->showable_frame))
3239 write_film_grain_params(cpi, wb);
3240
3241 if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3242 }
3243
choose_size_bytes(uint32_t size,int spare_msbs)3244 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3245 // Choose the number of bytes required to represent size, without
3246 // using the 'spare_msbs' number of most significant bits.
3247
3248 // Make sure we will fit in 4 bytes to start with..
3249 if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3250
3251 // Normalise to 32 bits
3252 size <<= spare_msbs;
3253
3254 if (size >> 24 != 0)
3255 return 4;
3256 else if (size >> 16 != 0)
3257 return 3;
3258 else if (size >> 8 != 0)
3259 return 2;
3260 else
3261 return 1;
3262 }
3263
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3264 static inline void mem_put_varsize(uint8_t *const dst, const int sz,
3265 const int val) {
3266 switch (sz) {
3267 case 1: dst[0] = (uint8_t)(val & 0xff); break;
3268 case 2: mem_put_le16(dst, val); break;
3269 case 3: mem_put_le24(dst, val); break;
3270 case 4: mem_put_le32(dst, val); break;
3271 default: assert(0 && "Invalid size"); break;
3272 }
3273 }
3274
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3275 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3276 const uint32_t data_size, const uint32_t max_tile_size,
3277 const uint32_t max_tile_col_size,
3278 int *const tile_size_bytes,
3279 int *const tile_col_size_bytes) {
3280 // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3281 int tsb;
3282 int tcsb;
3283
3284 if (tiles->large_scale) {
3285 // The top bit in the tile size field indicates tile copy mode, so we
3286 // have 1 less bit to code the tile size
3287 tsb = choose_size_bytes(max_tile_size, 1);
3288 tcsb = choose_size_bytes(max_tile_col_size, 0);
3289 } else {
3290 tsb = choose_size_bytes(max_tile_size, 0);
3291 tcsb = 4; // This is ignored
3292 (void)max_tile_col_size;
3293 }
3294
3295 assert(tsb > 0);
3296 assert(tcsb > 0);
3297
3298 *tile_size_bytes = tsb;
3299 *tile_col_size_bytes = tcsb;
3300 if (tsb == 4 && tcsb == 4) return data_size;
3301
3302 uint32_t wpos = 0;
3303 uint32_t rpos = 0;
3304
3305 if (tiles->large_scale) {
3306 int tile_row;
3307 int tile_col;
3308
3309 for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3310 // All but the last column has a column header
3311 if (tile_col < tiles->cols - 1) {
3312 uint32_t tile_col_size = mem_get_le32(dst + rpos);
3313 rpos += 4;
3314
3315 // Adjust the tile column size by the number of bytes removed
3316 // from the tile size fields.
3317 tile_col_size -= (4 - tsb) * tiles->rows;
3318
3319 mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3320 wpos += tcsb;
3321 }
3322
3323 for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3324 // All, including the last row has a header
3325 uint32_t tile_header = mem_get_le32(dst + rpos);
3326 rpos += 4;
3327
3328 // If this is a copy tile, we need to shift the MSB to the
3329 // top bit of the new width, and there is no data to copy.
3330 if (tile_header >> 31 != 0) {
3331 if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3332 mem_put_varsize(dst + wpos, tsb, tile_header);
3333 wpos += tsb;
3334 } else {
3335 mem_put_varsize(dst + wpos, tsb, tile_header);
3336 wpos += tsb;
3337
3338 tile_header += AV1_MIN_TILE_SIZE_BYTES;
3339 memmove(dst + wpos, dst + rpos, tile_header);
3340 rpos += tile_header;
3341 wpos += tile_header;
3342 }
3343 }
3344 }
3345
3346 assert(rpos > wpos);
3347 assert(rpos == data_size);
3348
3349 return wpos;
3350 }
3351 const int n_tiles = tiles->cols * tiles->rows;
3352 int n;
3353
3354 for (n = 0; n < n_tiles; n++) {
3355 int tile_size;
3356
3357 if (n == n_tiles - 1) {
3358 tile_size = data_size - rpos;
3359 } else {
3360 tile_size = mem_get_le32(dst + rpos);
3361 rpos += 4;
3362 mem_put_varsize(dst + wpos, tsb, tile_size);
3363 tile_size += AV1_MIN_TILE_SIZE_BYTES;
3364 wpos += tsb;
3365 }
3366
3367 memmove(dst + wpos, dst + rpos, tile_size);
3368
3369 rpos += tile_size;
3370 wpos += tile_size;
3371 }
3372
3373 assert(rpos > wpos);
3374 assert(rpos == data_size);
3375
3376 return wpos;
3377 }
3378
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,bool has_nonzero_operating_point_idc,int obu_extension,uint8_t * const dst)3379 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3380 int *frame_header_count, OBU_TYPE obu_type,
3381 bool has_nonzero_operating_point_idc,
3382 int obu_extension, uint8_t *const dst) {
3383 assert(IMPLIES(!has_nonzero_operating_point_idc, obu_extension == 0));
3384
3385 if (level_params->keep_level_stats &&
3386 (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3387 ++(*frame_header_count);
3388
3389 uint32_t size = 0;
3390
3391 // The AV1 spec Version 1.0.0 with Errata 1 has the following requirements on
3392 // the OBU extension header:
3393 //
3394 // 6.4.1. General sequence header OBU semantics:
3395 // It is a requirement of bitstream conformance that if OperatingPointIdc
3396 // is equal to 0, then obu_extension_flag is equal to 0 for all OBUs that
3397 // follow this sequence header until the next sequence header.
3398 //
3399 // 7.5. Ordering of OBUs:
3400 // If a coded video sequence contains at least one enhancement layer (OBUs
3401 // with spatial_id greater than 0 or temporal_id greater than 0) then all
3402 // frame headers and tile group OBUs associated with base (spatial_id
3403 // equals 0 and temporal_id equals 0) and enhancement layer (spatial_id
3404 // greater than 0 or temporal_id greater than 0) data must include the OBU
3405 // extension header.
3406 //
3407 // Set obu_extension_flag to satisfy these requirements.
3408 int obu_extension_flag = 0;
3409 if (has_nonzero_operating_point_idc) {
3410 obu_extension_flag =
3411 (obu_type == OBU_FRAME_HEADER || obu_type == OBU_TILE_GROUP ||
3412 obu_type == OBU_FRAME || obu_type == OBU_REDUNDANT_FRAME_HEADER);
3413 }
3414 const int obu_has_size_field = 1;
3415
3416 dst[0] = ((int)obu_type << 3) | (obu_extension_flag << 2) |
3417 (obu_has_size_field << 1);
3418 size++;
3419
3420 if (obu_extension_flag) {
3421 dst[1] = obu_extension & 0xFF;
3422 size++;
3423 }
3424
3425 return size;
3426 }
3427
av1_write_uleb_obu_size(size_t obu_payload_size,uint8_t * dest,size_t dest_size)3428 int av1_write_uleb_obu_size(size_t obu_payload_size, uint8_t *dest,
3429 size_t dest_size) {
3430 size_t coded_obu_size = 0;
3431
3432 if (aom_uleb_encode(obu_payload_size, dest_size, dest, &coded_obu_size) !=
3433 0) {
3434 return AOM_CODEC_ERROR;
3435 }
3436 if (coded_obu_size != dest_size) {
3437 return AOM_CODEC_ERROR;
3438 }
3439
3440 return AOM_CODEC_OK;
3441 }
3442
av1_write_uleb_obu_size_unsafe(size_t obu_payload_size,uint8_t * dest)3443 int av1_write_uleb_obu_size_unsafe(size_t obu_payload_size, uint8_t *dest) {
3444 size_t coded_obu_size = 0;
3445
3446 if (aom_uleb_encode(obu_payload_size, sizeof(uint32_t), dest,
3447 &coded_obu_size) != 0) {
3448 return AOM_CODEC_ERROR;
3449 }
3450
3451 return AOM_CODEC_OK;
3452 }
3453
3454 // Returns 0 on failure.
obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data,size_t data_size)3455 static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3456 uint8_t *data, size_t data_size) {
3457 const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3458 const size_t move_dst_offset = obu_header_size + length_field_size;
3459 const size_t move_src_offset = obu_header_size;
3460 const size_t move_size = obu_payload_size;
3461 if (move_size > data_size || move_src_offset > data_size - move_size) {
3462 assert(0 && "obu_memmove: output buffer overflow");
3463 return 0;
3464 }
3465 if (move_dst_offset > data_size - move_size) {
3466 // Buffer full.
3467 return 0;
3468 }
3469 memmove(data + move_dst_offset, data + move_src_offset, move_size);
3470 return length_field_size;
3471 }
3472
3473 // Deprecated. Use obu_memmove() instead.
obu_memmove_unsafe(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3474 static size_t obu_memmove_unsafe(size_t obu_header_size,
3475 size_t obu_payload_size, uint8_t *data) {
3476 const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3477 const size_t move_dst_offset = obu_header_size + length_field_size;
3478 const size_t move_src_offset = obu_header_size;
3479 const size_t move_size = obu_payload_size;
3480 memmove(data + move_dst_offset, data + move_src_offset, move_size);
3481 return length_field_size;
3482 }
3483
add_trailing_bits(struct aom_write_bit_buffer * wb)3484 static inline void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3485 if (aom_wb_is_byte_aligned(wb)) {
3486 aom_wb_write_literal(wb, 0x80, 8);
3487 } else {
3488 // assumes that the other bits are already 0s
3489 aom_wb_write_bit(wb, 1);
3490 }
3491 }
3492
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3493 static inline void write_bitstream_level(AV1_LEVEL seq_level_idx,
3494 struct aom_write_bit_buffer *wb) {
3495 assert(is_valid_seq_level_idx(seq_level_idx));
3496 aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3497 }
3498
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst,size_t dst_size)3499 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3500 uint8_t *const dst, size_t dst_size) {
3501 // TODO: bug 42302568 - Use dst_size.
3502 (void)dst_size;
3503 struct aom_write_bit_buffer wb = { dst, 0 };
3504 uint32_t size = 0;
3505
3506 write_profile(seq_params->profile, &wb);
3507
3508 // Still picture or not
3509 aom_wb_write_bit(&wb, seq_params->still_picture);
3510 assert(IMPLIES(!seq_params->still_picture,
3511 !seq_params->reduced_still_picture_hdr));
3512 // whether to use reduced still picture header
3513 aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3514
3515 if (seq_params->reduced_still_picture_hdr) {
3516 assert(seq_params->timing_info_present == 0);
3517 assert(seq_params->decoder_model_info_present_flag == 0);
3518 assert(seq_params->display_model_info_present_flag == 0);
3519 write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3520 } else {
3521 aom_wb_write_bit(
3522 &wb, seq_params->timing_info_present); // timing info present flag
3523
3524 if (seq_params->timing_info_present) {
3525 // timing_info
3526 write_timing_info_header(&seq_params->timing_info, &wb);
3527 aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3528 if (seq_params->decoder_model_info_present_flag) {
3529 write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3530 }
3531 }
3532 aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3533 aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3534 OP_POINTS_CNT_MINUS_1_BITS);
3535 int i;
3536 for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3537 aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3538 OP_POINTS_IDC_BITS);
3539 write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3540 if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3541 aom_wb_write_bit(&wb, seq_params->tier[i]);
3542 if (seq_params->decoder_model_info_present_flag) {
3543 aom_wb_write_bit(
3544 &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3545 if (seq_params->op_params[i].decoder_model_param_present_flag) {
3546 write_dec_model_op_parameters(
3547 &seq_params->op_params[i],
3548 seq_params->decoder_model_info
3549 .encoder_decoder_buffer_delay_length,
3550 &wb);
3551 }
3552 }
3553 if (seq_params->display_model_info_present_flag) {
3554 aom_wb_write_bit(
3555 &wb, seq_params->op_params[i].display_model_param_present_flag);
3556 if (seq_params->op_params[i].display_model_param_present_flag) {
3557 assert(seq_params->op_params[i].initial_display_delay >= 1);
3558 assert(seq_params->op_params[i].initial_display_delay <= 10);
3559 aom_wb_write_literal(
3560 &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3561 }
3562 }
3563 }
3564 }
3565 write_sequence_header(seq_params, &wb);
3566
3567 write_color_config(seq_params, &wb);
3568
3569 aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3570
3571 add_trailing_bits(&wb);
3572
3573 size = aom_wb_bytes_written(&wb);
3574 return size;
3575 }
3576
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3577 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3578 struct aom_write_bit_buffer *saved_wb,
3579 uint8_t *const dst,
3580 int append_trailing_bits) {
3581 struct aom_write_bit_buffer wb = { dst, 0 };
3582 write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3583 if (append_trailing_bits) add_trailing_bits(&wb);
3584 return aom_wb_bytes_written(&wb);
3585 }
3586
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3587 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3588 int end_tile, int tiles_log2,
3589 int tile_start_and_end_present_flag) {
3590 struct aom_write_bit_buffer wb = { dst, 0 };
3591 uint32_t size = 0;
3592
3593 if (!tiles_log2) return size;
3594
3595 aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3596
3597 if (tile_start_and_end_present_flag) {
3598 aom_wb_write_literal(&wb, start_tile, tiles_log2);
3599 aom_wb_write_literal(&wb, end_tile, tiles_log2);
3600 }
3601
3602 size = aom_wb_bytes_written(&wb);
3603 return size;
3604 }
3605
3606 typedef struct {
3607 uint32_t tg_hdr_size;
3608 uint32_t frame_header_size;
3609 } LargeTileFrameOBU;
3610
3611 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,LargeTileFrameOBU * lst_obu)3612 static uint32_t init_large_scale_tile_obu_header(
3613 AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3614 uint8_t obu_extension_header, LargeTileFrameOBU *lst_obu) {
3615 AV1LevelParams *const level_params = &cpi->ppi->level_params;
3616 CurrentFrame *const current_frame = &cpi->common.current_frame;
3617 // For large_scale_tile case, we always have only one tile group, so it can
3618 // be written as an OBU_FRAME.
3619 const OBU_TYPE obu_type = OBU_FRAME;
3620 lst_obu->tg_hdr_size = av1_write_obu_header(
3621 level_params, &cpi->frame_header_count, obu_type,
3622 cpi->common.seq_params->has_nonzero_operating_point_idc,
3623 obu_extension_header, *data);
3624 *data += lst_obu->tg_hdr_size;
3625
3626 const uint32_t frame_header_size =
3627 write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3628 *data += frame_header_size;
3629 lst_obu->frame_header_size = frame_header_size;
3630 // (yunqing) This test ensures the correctness of large scale tile coding.
3631 if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3632 char fn[20] = "./fh";
3633 fn[4] = current_frame->frame_number / 100 + '0';
3634 fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3635 fn[6] = (current_frame->frame_number % 10) + '0';
3636 fn[7] = '\0';
3637 av1_print_uncompressed_frame_header(*data - frame_header_size,
3638 frame_header_size, fn);
3639 }
3640 return frame_header_size;
3641 }
3642
3643 // Write total buffer size and related information into the OBU header for large
3644 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3645 static void write_large_scale_tile_obu_size(
3646 const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3647 struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3648 int have_tiles, uint32_t *total_size, int max_tile_size,
3649 int max_tile_col_size) {
3650 int tile_size_bytes = 0;
3651 int tile_col_size_bytes = 0;
3652 if (have_tiles) {
3653 *total_size = remux_tiles(
3654 tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3655 max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3656 *total_size += lst_obu->frame_header_size;
3657 }
3658
3659 // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3660 // current tile group size before tile data(include tile column header).
3661 // Tile group size doesn't include the bytes storing tg size.
3662 *total_size += lst_obu->tg_hdr_size;
3663 const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3664 const size_t length_field_size =
3665 obu_memmove_unsafe(lst_obu->tg_hdr_size, obu_payload_size, dst);
3666 if (av1_write_uleb_obu_size_unsafe(
3667 obu_payload_size, dst + lst_obu->tg_hdr_size) != AOM_CODEC_OK)
3668 assert(0);
3669
3670 *total_size += (uint32_t)length_field_size;
3671 saved_wb->bit_buffer += length_field_size;
3672
3673 // Now fill in the gaps in the uncompressed header.
3674 if (have_tiles) {
3675 assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3676 aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3677
3678 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3679 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3680 }
3681 }
3682
3683 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3684 static void write_large_scale_tile_obu(
3685 AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3686 int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3687 unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3688 AV1_COMMON *const cm = &cpi->common;
3689 const CommonTileParams *const tiles = &cm->tiles;
3690
3691 TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3692 const int tile_cols = tiles->cols;
3693 const int tile_rows = tiles->rows;
3694 unsigned int tile_size = 0;
3695
3696 av1_reset_pack_bs_thread_data(&cpi->td);
3697 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3698 TileInfo tile_info;
3699 const int is_last_col = (tile_col == tile_cols - 1);
3700 const uint32_t col_offset = *total_size;
3701
3702 av1_tile_set_col(&tile_info, cm, tile_col);
3703
3704 // The last column does not have a column header
3705 if (!is_last_col) *total_size += 4;
3706
3707 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3708 TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3709 const int data_offset = have_tiles ? 4 : 0;
3710 const int tile_idx = tile_row * tile_cols + tile_col;
3711 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3712 av1_tile_set_row(&tile_info, cm, tile_row);
3713 aom_writer mode_bc;
3714
3715 buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3716
3717 // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3718 // even for the last one, unless no tiling is used at all.
3719 *total_size += data_offset;
3720 cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3721 mode_bc.allow_update_cdf = !tiles->large_scale;
3722 mode_bc.allow_update_cdf =
3723 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3724 aom_start_encode(&mode_bc, buf->data + data_offset);
3725 write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3726 if (aom_stop_encode(&mode_bc) < 0) {
3727 aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes");
3728 }
3729 tile_size = mode_bc.pos;
3730 buf->size = tile_size;
3731
3732 // Record the maximum tile size we see, so we can compact headers later.
3733 if (tile_size > *max_tile_size) {
3734 *max_tile_size = tile_size;
3735 *largest_tile_id = tile_cols * tile_row + tile_col;
3736 }
3737
3738 if (have_tiles) {
3739 // tile header: size of this tile, or copy offset
3740 uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3741 const int tile_copy_mode =
3742 ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3743 : 0;
3744
3745 // If tile_copy_mode = 1, check if this tile is a copy tile.
3746 // Very low chances to have copy tiles on the key frames, so don't
3747 // search on key frames to reduce unnecessary search.
3748 if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3749 const int identical_tile_offset =
3750 find_identical_tile(tile_row, tile_col, tile_buffers);
3751
3752 // Indicate a copy-tile by setting the most significant bit.
3753 // The row-offset to copy from is stored in the highest byte.
3754 // remux_tiles will move these around later
3755 if (identical_tile_offset > 0) {
3756 tile_size = 0;
3757 tile_header = identical_tile_offset | 0x80;
3758 tile_header <<= 24;
3759 }
3760 }
3761
3762 mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
3763 }
3764
3765 *total_size += tile_size;
3766 }
3767 if (!is_last_col) {
3768 uint32_t col_size = *total_size - col_offset - 4;
3769 mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3770
3771 // Record the maximum tile column size we see.
3772 *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3773 }
3774 }
3775 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3776 }
3777
3778 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,int * const largest_tile_id)3779 static inline uint32_t pack_large_scale_tiles_in_tg_obus(
3780 AV1_COMP *const cpi, uint8_t *const dst,
3781 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
3782 int *const largest_tile_id) {
3783 AV1_COMMON *const cm = &cpi->common;
3784 const CommonTileParams *const tiles = &cm->tiles;
3785 uint32_t total_size = 0;
3786 unsigned int max_tile_size = 0;
3787 unsigned int max_tile_col_size = 0;
3788 const int have_tiles = tiles->cols * tiles->rows > 1;
3789 uint8_t *data = dst;
3790
3791 LargeTileFrameOBU lst_obu;
3792
3793 total_size += init_large_scale_tile_obu_header(
3794 cpi, &data, saved_wb, obu_extension_header, &lst_obu);
3795
3796 write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3797 have_tiles, &max_tile_size, &max_tile_col_size);
3798
3799 write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3800 have_tiles, &total_size, max_tile_size,
3801 max_tile_col_size);
3802
3803 return total_size;
3804 }
3805
3806 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3807 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3808 PackBSParams *const pack_bs_params,
3809 const int tile_idx) {
3810 AV1_COMMON *const cm = &cpi->common;
3811 const CommonTileParams *const tiles = &cm->tiles;
3812 int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3813 const int tg_size =
3814 (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3815
3816 // Write Tile group, frame and OBU header
3817 // A new tile group begins at this tile. Write the obu header and
3818 // tile group header
3819 const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3820 *curr_tg_hdr_size = av1_write_obu_header(
3821 &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3822 cm->seq_params->has_nonzero_operating_point_idc,
3823 pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3824 pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3825
3826 if (cpi->num_tg == 1)
3827 *curr_tg_hdr_size += write_frame_header_obu(
3828 cpi, xd, pack_bs_params->saved_wb,
3829 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3830 *curr_tg_hdr_size += write_tile_group_header(
3831 pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3832 AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3833 (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3834 *pack_bs_params->total_size += *curr_tg_hdr_size;
3835 }
3836
3837 // Pack tile data in the bitstream with tile_group, frame
3838 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3839 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3840 PackBSParams *const pack_bs_params) {
3841 aom_writer mode_bc;
3842 AV1_COMMON *const cm = &cpi->common;
3843 int tile_row = pack_bs_params->tile_row;
3844 int tile_col = pack_bs_params->tile_col;
3845 uint32_t *const total_size = pack_bs_params->total_size;
3846 TileInfo tile_info;
3847 av1_tile_set_col(&tile_info, cm, tile_col);
3848 av1_tile_set_row(&tile_info, cm, tile_row);
3849 mode_bc.allow_update_cdf = 1;
3850 mode_bc.allow_update_cdf =
3851 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3852
3853 unsigned int tile_size;
3854
3855 const int num_planes = av1_num_planes(cm);
3856 av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3857
3858 pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3859
3860 // The last tile of the tile group does not have a header.
3861 if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3862
3863 // Pack tile data
3864 aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3865 write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3866 if (aom_stop_encode(&mode_bc) < 0) {
3867 aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR,
3868 "Error writing modes");
3869 }
3870 tile_size = mode_bc.pos;
3871 assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3872
3873 pack_bs_params->buf.size = tile_size;
3874
3875 // Write tile size
3876 if (!pack_bs_params->is_last_tile_in_tg) {
3877 // size of this tile
3878 mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3879 }
3880 }
3881
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3882 void av1_write_last_tile_info(
3883 AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3884 struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3885 uint8_t *curr_tg_start, uint32_t *const total_size,
3886 uint8_t **tile_data_start, int *const largest_tile_id,
3887 int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3888 // write current tile group size
3889 const size_t obu_payload_size = *curr_tg_data_size - obu_header_size;
3890 const size_t length_field_size =
3891 obu_memmove_unsafe(obu_header_size, obu_payload_size, curr_tg_start);
3892 if (av1_write_uleb_obu_size_unsafe(
3893 obu_payload_size, curr_tg_start + obu_header_size) != AOM_CODEC_OK) {
3894 aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
3895 "av1_write_last_tile_info: output buffer full");
3896 }
3897 *curr_tg_data_size += length_field_size;
3898 *total_size += (uint32_t)length_field_size;
3899 *tile_data_start += length_field_size;
3900 if (cpi->num_tg == 1) {
3901 // if this tg is combined with the frame header then update saved
3902 // frame header base offset according to length field size
3903 saved_wb->bit_buffer += length_field_size;
3904 }
3905
3906 if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3907 // Make room for a duplicate Frame Header OBU.
3908 memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3909 *curr_tg_data_size);
3910
3911 // Insert a copy of the Frame Header OBU.
3912 memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3913
3914 // Force context update tile to be the first tile in error
3915 // resilient mode as the duplicate frame headers will have
3916 // context_update_tile_id set to 0
3917 *largest_tile_id = 0;
3918
3919 // Rewrite the OBU header to change the OBU type to Redundant Frame
3920 // Header.
3921 av1_write_obu_header(
3922 &cpi->ppi->level_params, &cpi->frame_header_count,
3923 OBU_REDUNDANT_FRAME_HEADER,
3924 cpi->common.seq_params->has_nonzero_operating_point_idc,
3925 obu_extn_header, &curr_tg_start[fh_info->obu_header_byte_offset]);
3926
3927 *curr_tg_data_size += fh_info->total_length;
3928 *total_size += (uint32_t)fh_info->total_length;
3929 }
3930 *is_first_tg = 0;
3931 }
3932
av1_reset_pack_bs_thread_data(ThreadData * const td)3933 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3934 td->coefficient_size = 0;
3935 td->max_mv_magnitude = 0;
3936 av1_zero(td->interp_filter_selected);
3937 }
3938
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3939 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3940 ThreadData const *td) {
3941 int do_max_mv_magnitude_update = 1;
3942 cpi->rc.coefficient_size += td->coefficient_size;
3943
3944 // Disable max_mv_magnitude update for parallel frames based on update flag.
3945 if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3946
3947 if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3948 cpi->mv_search_params.max_mv_magnitude =
3949 AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3950
3951 for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3952 cpi->common.cur_frame->interp_filter_selected[filter] +=
3953 td->interp_filter_selected[filter];
3954 }
3955
3956 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3957 static void write_tile_obu(
3958 AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3959 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3960 const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3961 unsigned int *max_tile_size, uint32_t *const obu_header_size,
3962 uint8_t **tile_data_start) {
3963 AV1_COMMON *const cm = &cpi->common;
3964 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3965 const CommonTileParams *const tiles = &cm->tiles;
3966 const int tile_cols = tiles->cols;
3967 const int tile_rows = tiles->rows;
3968 // Fixed size tile groups for the moment
3969 const int num_tg_hdrs = cpi->num_tg;
3970 const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3971 int tile_count = 0;
3972 size_t curr_tg_data_size = 0;
3973 uint8_t *tile_data_curr = dst;
3974 int new_tg = 1;
3975 int is_first_tg = 1;
3976
3977 av1_reset_pack_bs_thread_data(&cpi->td);
3978 for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3979 for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3980 const int tile_idx = tile_row * tile_cols + tile_col;
3981 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3982
3983 int is_last_tile_in_tg = 0;
3984 if (new_tg) {
3985 tile_data_curr = dst + *total_size;
3986 tile_count = 0;
3987 }
3988 tile_count++;
3989
3990 if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3991 is_last_tile_in_tg = 1;
3992
3993 xd->tile_ctx = &this_tile->tctx;
3994
3995 // PackBSParams stores all parameters required to pack tile and header
3996 // info.
3997 PackBSParams pack_bs_params;
3998 pack_bs_params.dst = dst;
3999 pack_bs_params.curr_tg_hdr_size = 0;
4000 pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
4001 pack_bs_params.new_tg = new_tg;
4002 pack_bs_params.obu_extn_header = obu_extn_header;
4003 pack_bs_params.obu_header_size = 0;
4004 pack_bs_params.saved_wb = saved_wb;
4005 pack_bs_params.tile_col = tile_col;
4006 pack_bs_params.tile_row = tile_row;
4007 pack_bs_params.tile_data_curr = tile_data_curr;
4008 pack_bs_params.total_size = total_size;
4009
4010 if (new_tg)
4011 av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
4012
4013 av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
4014
4015 if (new_tg) {
4016 curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
4017 *tile_data_start += pack_bs_params.curr_tg_hdr_size;
4018 *obu_header_size = pack_bs_params.obu_header_size;
4019 new_tg = 0;
4020 }
4021 if (is_last_tile_in_tg) new_tg = 1;
4022
4023 curr_tg_data_size +=
4024 (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
4025
4026 if (pack_bs_params.buf.size > *max_tile_size) {
4027 *largest_tile_id = tile_idx;
4028 *max_tile_size = (unsigned int)pack_bs_params.buf.size;
4029 }
4030
4031 if (is_last_tile_in_tg)
4032 av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
4033 tile_data_curr, total_size, tile_data_start,
4034 largest_tile_id, &is_first_tg,
4035 *obu_header_size, obu_extn_header);
4036 *total_size += (uint32_t)pack_bs_params.buf.size;
4037 }
4038 }
4039 av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
4040 }
4041
4042 // Write total buffer size and related information into the OBU header for
4043 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)4044 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
4045 struct aom_write_bit_buffer *saved_wb,
4046 int largest_tile_id, uint32_t *const total_size,
4047 unsigned int max_tile_size,
4048 uint32_t obu_header_size,
4049 uint8_t *tile_data_start) {
4050 const CommonTileParams *const tiles = &cpi->common.tiles;
4051
4052 // Fill in context_update_tile_id indicating the tile to use for the
4053 // cdf update. The encoder currently sets it to the largest tile
4054 // (but is up to the encoder)
4055 aom_wb_overwrite_literal(saved_wb, largest_tile_id,
4056 (tiles->log2_cols + tiles->log2_rows));
4057 // If more than one tile group. tile_size_bytes takes the default value 4
4058 // and does not need to be set. For a single tile group it is set in the
4059 // section below.
4060 if (cpi->num_tg != 1) return;
4061 int tile_size_bytes = 4, unused;
4062 const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
4063 const uint32_t tile_data_size = *total_size - tile_data_offset;
4064
4065 *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
4066 max_tile_size, 0, &tile_size_bytes, &unused);
4067 *total_size += tile_data_offset;
4068 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
4069
4070 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
4071
4072 // Update the OBU length if remux_tiles() reduced the size.
4073 uint64_t payload_size;
4074 size_t length_field_size;
4075 int res =
4076 aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
4077 &payload_size, &length_field_size);
4078 assert(res == 0);
4079 (void)res;
4080
4081 const uint64_t new_payload_size =
4082 *total_size - obu_header_size - length_field_size;
4083 if (new_payload_size != payload_size) {
4084 size_t new_length_field_size;
4085 res = aom_uleb_encode(new_payload_size, length_field_size,
4086 dst + obu_header_size, &new_length_field_size);
4087 assert(res == 0);
4088 if (new_length_field_size < length_field_size) {
4089 const size_t src_offset = obu_header_size + length_field_size;
4090 const size_t dst_offset = obu_header_size + new_length_field_size;
4091 memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
4092 *total_size -= (int)(length_field_size - new_length_field_size);
4093 }
4094 }
4095 }
4096
4097 // As per the experiments, single-thread bitstream packing is better for
4098 // frames with a smaller bitstream size. This behavior is due to setup time
4099 // overhead of multithread function would be more than that of time required
4100 // to pack the smaller bitstream of such frames. This function computes the
4101 // number of required number of workers based on setup time overhead and job
4102 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers,bool pack_bs_mt_enabled)4103 static int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
4104 int avail_workers, bool pack_bs_mt_enabled) {
4105 if (!pack_bs_mt_enabled) return 1;
4106
4107 uint64_t frame_abs_sum_level = 0;
4108
4109 for (int idx = 0; idx < num_tiles; idx++)
4110 frame_abs_sum_level += tile_data[idx].abs_sum_level;
4111
4112 int ideal_num_workers = 1;
4113 const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
4114 float max_sum = 0.0;
4115
4116 for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
4117 const float fas_per_worker_const =
4118 ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
4119 const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
4120 const float this_sum = fas_per_worker_const - setup_time_const -
4121 job_disp_time_const / num_workers;
4122
4123 if (this_sum > max_sum) {
4124 max_sum = this_sum;
4125 ideal_num_workers = num_workers;
4126 }
4127 }
4128 return ideal_num_workers;
4129 }
4130
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4131 static inline uint32_t pack_tiles_in_tg_obus(
4132 AV1_COMP *const cpi, uint8_t *const dst,
4133 struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
4134 const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
4135 const CommonTileParams *const tiles = &cpi->common.tiles;
4136 uint32_t total_size = 0;
4137 unsigned int max_tile_size = 0;
4138 uint32_t obu_header_size = 0;
4139 uint8_t *tile_data_start = dst;
4140 const int tile_cols = tiles->cols;
4141 const int tile_rows = tiles->rows;
4142 const int num_tiles = tile_rows * tile_cols;
4143
4144 const int num_workers = calc_pack_bs_mt_workers(
4145 cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
4146 cpi->mt_info.pack_bs_mt_enabled);
4147
4148 if (num_workers > 1) {
4149 av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
4150 fh_info, largest_tile_id, &max_tile_size,
4151 &obu_header_size, &tile_data_start, num_workers);
4152 } else {
4153 write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
4154 fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
4155 &tile_data_start);
4156 }
4157
4158 if (num_tiles > 1)
4159 write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
4160 max_tile_size, obu_header_size, tile_data_start);
4161 return total_size;
4162 }
4163
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,size_t dst_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4164 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
4165 size_t dst_size,
4166 struct aom_write_bit_buffer *saved_wb,
4167 uint8_t obu_extension_header,
4168 const FrameHeaderInfo *fh_info,
4169 int *const largest_tile_id) {
4170 // TODO: bug 42302568 - Use dst_size.
4171 (void)dst_size;
4172 AV1_COMMON *const cm = &cpi->common;
4173 const CommonTileParams *const tiles = &cm->tiles;
4174 *largest_tile_id = 0;
4175
4176 // Select the coding strategy (temporal or spatial)
4177 if (cm->seg.enabled && cm->seg.update_map) {
4178 if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
4179 cm->seg.temporal_update = 0;
4180 } else {
4181 cm->seg.temporal_update = 1;
4182 if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
4183 cpi->td.rd_counts.seg_tmp_pred_cost[1])
4184 cm->seg.temporal_update = 0;
4185 }
4186 }
4187
4188 if (tiles->large_scale)
4189 return pack_large_scale_tiles_in_tg_obus(
4190 cpi, dst, saved_wb, obu_extension_header, largest_tile_id);
4191
4192 return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4193 fh_info, largest_tile_id);
4194 }
4195
4196 // Returns the number of bytes written on success. Returns 0 on failure.
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst,size_t dst_size)4197 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4198 uint8_t *const dst, size_t dst_size) {
4199 size_t coded_metadata_size = 0;
4200 const uint64_t metadata_type = (uint64_t)metadata->type;
4201 if (aom_uleb_encode(metadata_type, dst_size, dst, &coded_metadata_size) !=
4202 0) {
4203 return 0;
4204 }
4205 if (coded_metadata_size + metadata->sz + 1 > dst_size) {
4206 return 0;
4207 }
4208 memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4209 // Add trailing bits.
4210 dst[coded_metadata_size + metadata->sz] = 0x80;
4211 return coded_metadata_size + metadata->sz + 1;
4212 }
4213
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst,size_t dst_size)4214 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst,
4215 size_t dst_size) {
4216 if (!cpi->source) return 0;
4217 AV1_COMMON *const cm = &cpi->common;
4218 aom_metadata_array_t *arr = cpi->source->metadata;
4219 if (!arr) return 0;
4220 size_t obu_header_size = 0;
4221 size_t obu_payload_size = 0;
4222 size_t total_bytes_written = 0;
4223 size_t length_field_size = 0;
4224 for (size_t i = 0; i < arr->sz; i++) {
4225 aom_metadata_t *current_metadata = arr->metadata_array[i];
4226 if (current_metadata && current_metadata->payload) {
4227 if ((cm->current_frame.frame_type == KEY_FRAME &&
4228 current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4229 (cm->current_frame.frame_type != KEY_FRAME &&
4230 current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4231 current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4232 // OBU header is either one or two bytes.
4233 if (dst_size < 2) {
4234 aom_internal_error(cm->error, AOM_CODEC_ERROR,
4235 "av1_write_metadata_array: output buffer full");
4236 }
4237 obu_header_size = av1_write_obu_header(
4238 &cpi->ppi->level_params, &cpi->frame_header_count, OBU_METADATA,
4239 cm->seq_params->has_nonzero_operating_point_idc, 0, dst);
4240 assert(obu_header_size <= 2);
4241 obu_payload_size =
4242 av1_write_metadata_obu(current_metadata, dst + obu_header_size,
4243 dst_size - obu_header_size);
4244 if (obu_payload_size == 0) {
4245 aom_internal_error(cm->error, AOM_CODEC_ERROR,
4246 "av1_write_metadata_array: output buffer full");
4247 }
4248 length_field_size =
4249 obu_memmove(obu_header_size, obu_payload_size, dst, dst_size);
4250 if (length_field_size == 0) {
4251 aom_internal_error(cm->error, AOM_CODEC_ERROR,
4252 "av1_write_metadata_array: output buffer full");
4253 }
4254 if (av1_write_uleb_obu_size(obu_payload_size, dst + obu_header_size,
4255 length_field_size) == AOM_CODEC_OK) {
4256 const size_t obu_size =
4257 obu_header_size + length_field_size + obu_payload_size;
4258 dst += obu_size;
4259 dst_size -= obu_size;
4260 total_bytes_written += obu_size;
4261 } else {
4262 aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4263 "av1_write_metadata_array: output buffer full");
4264 }
4265 }
4266 }
4267 }
4268 return total_bytes_written;
4269 }
4270
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t dst_size,size_t * size,int * const largest_tile_id)4271 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t dst_size,
4272 size_t *size, int *const largest_tile_id) {
4273 uint8_t *data = dst;
4274 size_t data_size = dst_size;
4275 AV1_COMMON *const cm = &cpi->common;
4276 AV1LevelParams *const level_params = &cpi->ppi->level_params;
4277 uint32_t obu_header_size = 0;
4278 uint32_t obu_payload_size = 0;
4279 FrameHeaderInfo fh_info = { NULL, 0, 0 };
4280 const uint8_t obu_extension_header =
4281 cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4282
4283 // If no non-zero delta_q has been used, reset delta_q_present_flag
4284 if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4285 cm->delta_q_info.delta_q_present_flag = 0;
4286 }
4287
4288 #if CONFIG_BITSTREAM_DEBUG
4289 bitstream_queue_reset_write();
4290 #endif
4291
4292 cpi->frame_header_count = 0;
4293
4294 // The TD is now written outside the frame encode loop
4295
4296 // write sequence header obu at each key frame or intra_only frame,
4297 // preceded by 4-byte size
4298 if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
4299 cm->current_frame.frame_type == KEY_FRAME) {
4300 // OBU header is either one or two bytes.
4301 if (data_size < 2) {
4302 return AOM_CODEC_ERROR;
4303 }
4304 obu_header_size = av1_write_obu_header(
4305 level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER,
4306 cm->seq_params->has_nonzero_operating_point_idc, 0, data);
4307 assert(obu_header_size <= 2);
4308 obu_payload_size = av1_write_sequence_header_obu(
4309 cm->seq_params, data + obu_header_size, data_size - obu_header_size);
4310 const size_t length_field_size =
4311 obu_memmove(obu_header_size, obu_payload_size, data, data_size);
4312 if (length_field_size == 0) {
4313 return AOM_CODEC_ERROR;
4314 }
4315 if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
4316 length_field_size) != AOM_CODEC_OK) {
4317 return AOM_CODEC_ERROR;
4318 }
4319
4320 const size_t bytes_written =
4321 obu_header_size + length_field_size + obu_payload_size;
4322 data += bytes_written;
4323 data_size -= bytes_written;
4324 }
4325
4326 // write metadata obus before the frame obu that has the show_frame flag set
4327 if (cm->show_frame) {
4328 const size_t bytes_written = av1_write_metadata_array(cpi, data, data_size);
4329 data += bytes_written;
4330 data_size -= bytes_written;
4331 }
4332
4333 const int write_frame_header =
4334 (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4335 struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4336 size_t length_field = 0;
4337 if (write_frame_header) {
4338 // Write Frame Header OBU.
4339 fh_info.frame_header = data;
4340 // OBU header is either one or two bytes.
4341 if (data_size < 2) {
4342 return AOM_CODEC_ERROR;
4343 }
4344 obu_header_size = av1_write_obu_header(
4345 level_params, &cpi->frame_header_count, OBU_FRAME_HEADER,
4346 cm->seq_params->has_nonzero_operating_point_idc, obu_extension_header,
4347 data);
4348 // TODO: bug 42302568 - Pass data_size - obu_header_size to
4349 // write_frame_header_obu().
4350 obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4351 data + obu_header_size, 1);
4352
4353 length_field =
4354 obu_memmove(obu_header_size, obu_payload_size, data, data_size);
4355 if (length_field == 0) {
4356 return AOM_CODEC_ERROR;
4357 }
4358 if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
4359 length_field) != AOM_CODEC_OK) {
4360 return AOM_CODEC_ERROR;
4361 }
4362
4363 fh_info.obu_header_byte_offset = 0;
4364 fh_info.total_length = obu_header_size + length_field + obu_payload_size;
4365 // Make sure it is safe to cast fh_info.total_length to uint32_t.
4366 if (fh_info.total_length > UINT32_MAX) {
4367 return AOM_CODEC_ERROR;
4368 }
4369 data += fh_info.total_length;
4370 data_size -= fh_info.total_length;
4371 }
4372
4373 if (!encode_show_existing_frame(cm)) {
4374 // Since length_field is determined adaptively after frame header
4375 // encoding, saved_wb must be adjusted accordingly.
4376 if (saved_wb.bit_buffer != NULL) {
4377 saved_wb.bit_buffer += length_field;
4378 }
4379
4380 // Each tile group obu will be preceded by 4-byte size of the tile group
4381 // obu
4382 const size_t bytes_written =
4383 write_tiles_in_tg_obus(cpi, data, data_size, &saved_wb,
4384 obu_extension_header, &fh_info, largest_tile_id);
4385 data += bytes_written;
4386 data_size -= bytes_written;
4387 }
4388 *size = data - dst;
4389 (void)data_size;
4390 return AOM_CODEC_OK;
4391 }
4392