xref: /aosp_15_r20/external/libaom/av1/encoder/bitstream.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdbool.h>
15 #include <stdint.h>
16 #include <stdio.h>
17 #include <string.h>
18 
19 #include "aom/aom_encoder.h"
20 #include "aom_dsp/aom_dsp_common.h"
21 #include "aom_dsp/binary_codes_writer.h"
22 #include "aom_dsp/bitwriter_buffer.h"
23 #include "aom_mem/aom_mem.h"
24 #include "aom_ports/bitops.h"
25 #include "aom_ports/mem_ops.h"
26 #if CONFIG_BITSTREAM_DEBUG
27 #include "aom_util/debug_util.h"
28 #endif  // CONFIG_BITSTREAM_DEBUG
29 
30 #include "av1/common/cdef.h"
31 #include "av1/common/cfl.h"
32 #include "av1/common/debugmodes.h"
33 #include "av1/common/entropy.h"
34 #include "av1/common/entropymode.h"
35 #include "av1/common/entropymv.h"
36 #include "av1/common/mvref_common.h"
37 #include "av1/common/pred_common.h"
38 #include "av1/common/reconinter.h"
39 #include "av1/common/reconintra.h"
40 #include "av1/common/seg_common.h"
41 #include "av1/common/tile_common.h"
42 
43 #include "av1/encoder/bitstream.h"
44 #include "av1/encoder/cost.h"
45 #include "av1/encoder/encodemv.h"
46 #include "av1/encoder/encodetxb.h"
47 #include "av1/encoder/ethread.h"
48 #include "av1/encoder/mcomp.h"
49 #include "av1/encoder/palette.h"
50 #include "av1/encoder/pickrst.h"
51 #include "av1/encoder/segmentation.h"
52 #include "av1/encoder/tokenize.h"
53 
54 #define ENC_MISMATCH_DEBUG 0
55 #define SETUP_TIME_OH_CONST 5     // Setup time overhead constant per worker
56 #define JOB_DISP_TIME_OH_CONST 1  // Job dispatch time overhead per tile
57 
write_uniform(aom_writer * w,int n,int v)58 static inline void write_uniform(aom_writer *w, int n, int v) {
59   const int l = get_unsigned_bits(n);
60   const int m = (1 << l) - n;
61   if (l == 0) return;
62   if (v < m) {
63     aom_write_literal(w, v, l - 1);
64   } else {
65     aom_write_literal(w, m + ((v - m) >> 1), l - 1);
66     aom_write_literal(w, (v - m) & 1, 1);
67   }
68 }
69 
70 #if !CONFIG_REALTIME_ONLY
71 static inline void loop_restoration_write_sb_coeffs(
72     const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
73     aom_writer *const w, int plane, FRAME_COUNTS *counts);
74 #endif
75 
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)76 static inline void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
77                                          const MB_MODE_INFO *mi,
78                                          const MB_MODE_INFO *above_mi,
79                                          const MB_MODE_INFO *left_mi,
80                                          PREDICTION_MODE mode, aom_writer *w) {
81   assert(!is_intrabc_block(mi));
82   (void)mi;
83   aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
84                    INTRA_MODES);
85 }
86 
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)87 static inline void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
88                                     FRAME_CONTEXT *ec_ctx,
89                                     const int16_t mode_ctx) {
90   const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
91 
92   aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
93 
94   if (mode != NEWMV) {
95     const int16_t zeromv_ctx =
96         (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
97     aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
98 
99     if (mode != GLOBALMV) {
100       int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
101       aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
102     }
103   }
104 }
105 
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)106 static inline void write_drl_idx(FRAME_CONTEXT *ec_ctx,
107                                  const MB_MODE_INFO *mbmi,
108                                  const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
109                                  aom_writer *w) {
110   assert(mbmi->ref_mv_idx < 3);
111 
112   const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
113   if (new_mv) {
114     int idx;
115     for (idx = 0; idx < 2; ++idx) {
116       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
117         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
118 
119         aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
120                          2);
121         if (mbmi->ref_mv_idx == idx) return;
122       }
123     }
124     return;
125   }
126 
127   if (have_nearmv_in_inter_mode(mbmi->mode)) {
128     int idx;
129     // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
130     for (idx = 1; idx < 3; ++idx) {
131       if (mbmi_ext_frame->ref_mv_count > idx + 1) {
132         uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
133         aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
134                          ec_ctx->drl_cdf[drl_ctx], 2);
135         if (mbmi->ref_mv_idx == (idx - 1)) return;
136       }
137     }
138     return;
139   }
140 }
141 
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)142 static inline void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
143                                              PREDICTION_MODE mode,
144                                              const int16_t mode_ctx) {
145   assert(is_inter_compound_mode(mode));
146   aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
147                    xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
148                    INTER_COMPOUND_MODES);
149 }
150 
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)151 static inline void write_tx_size_vartx(MACROBLOCKD *xd,
152                                        const MB_MODE_INFO *mbmi,
153                                        TX_SIZE tx_size, int depth, int blk_row,
154                                        int blk_col, aom_writer *w) {
155   FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
156   const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
157   const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
158 
159   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
160 
161   if (depth == MAX_VARTX_DEPTH) {
162     txfm_partition_update(xd->above_txfm_context + blk_col,
163                           xd->left_txfm_context + blk_row, tx_size, tx_size);
164     return;
165   }
166 
167   const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
168                                          xd->left_txfm_context + blk_row,
169                                          mbmi->bsize, tx_size);
170   const int txb_size_index =
171       av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
172   const int write_txfm_partition =
173       tx_size == mbmi->inter_tx_size[txb_size_index];
174   if (write_txfm_partition) {
175     aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
176 
177     txfm_partition_update(xd->above_txfm_context + blk_col,
178                           xd->left_txfm_context + blk_row, tx_size, tx_size);
179     // TODO(yuec): set correct txfm partition update for qttx
180   } else {
181     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
182     const int bsw = tx_size_wide_unit[sub_txs];
183     const int bsh = tx_size_high_unit[sub_txs];
184 
185     aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
186 
187     if (sub_txs == TX_4X4) {
188       txfm_partition_update(xd->above_txfm_context + blk_col,
189                             xd->left_txfm_context + blk_row, sub_txs, tx_size);
190       return;
191     }
192 
193     assert(bsw > 0 && bsh > 0);
194     for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
195       const int offsetr = blk_row + row;
196       for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
197         const int offsetc = blk_col + col;
198         write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
199       }
200     }
201   }
202 }
203 
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)204 static inline void write_selected_tx_size(const MACROBLOCKD *xd,
205                                           aom_writer *w) {
206   const MB_MODE_INFO *const mbmi = xd->mi[0];
207   const BLOCK_SIZE bsize = mbmi->bsize;
208   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
209   if (block_signals_txsize(bsize)) {
210     const TX_SIZE tx_size = mbmi->tx_size;
211     const int tx_size_ctx = get_tx_size_context(xd);
212     const int depth = tx_size_to_depth(tx_size, bsize);
213     const int max_depths = bsize_to_max_depth(bsize);
214     const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
215 
216     assert(depth >= 0 && depth <= max_depths);
217     assert(!is_inter_block(mbmi));
218     assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
219 
220     aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
221                      max_depths + 1);
222   }
223 }
224 
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)225 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
226                       uint8_t segment_id, const MB_MODE_INFO *mi,
227                       aom_writer *w) {
228   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
229     return 1;
230   } else {
231     const int skip_txfm = mi->skip_txfm;
232     const int ctx = av1_get_skip_txfm_context(xd);
233     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
234     aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
235     return skip_txfm;
236   }
237 }
238 
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,const MB_MODE_INFO * mi,aom_writer * w)239 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
240                            uint8_t segment_id, const MB_MODE_INFO *mi,
241                            aom_writer *w) {
242   if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
243   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
244     return 0;
245   }
246   const int skip_mode = mi->skip_mode;
247   if (!is_comp_ref_allowed(mi->bsize)) {
248     assert(!skip_mode);
249     return 0;
250   }
251   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
252       segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
253     // These features imply single-reference mode, while skip mode implies
254     // compound reference. Hence, the two are mutually exclusive.
255     // In other words, skip_mode is implicitly 0 here.
256     assert(!skip_mode);
257     return 0;
258   }
259   const int ctx = av1_get_skip_mode_context(xd);
260   aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
261   return skip_mode;
262 }
263 
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,uint8_t segment_id,aom_writer * w,const int is_inter)264 static inline void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
265                                   uint8_t segment_id, aom_writer *w,
266                                   const int is_inter) {
267   if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
268     if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
269       assert(is_inter);
270       return;
271     }
272     const int ctx = av1_get_intra_inter_context(xd);
273     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
274     aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
275   }
276 }
277 
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)278 static inline void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
279                                      const MB_MODE_INFO *mbmi, aom_writer *w) {
280   MOTION_MODE last_motion_mode_allowed =
281       cm->features.switchable_motion_mode
282           ? motion_mode_allowed(cm->global_motion, xd, mbmi,
283                                 cm->features.allow_warped_motion)
284           : SIMPLE_TRANSLATION;
285   assert(mbmi->motion_mode <= last_motion_mode_allowed);
286   switch (last_motion_mode_allowed) {
287     case SIMPLE_TRANSLATION: break;
288     case OBMC_CAUSAL:
289       aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
290                        xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
291       break;
292     default:
293       aom_write_symbol(w, mbmi->motion_mode,
294                        xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
295                        MOTION_MODES);
296   }
297 }
298 
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)299 static inline void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex,
300                                       aom_writer *w) {
301   int sign = delta_qindex < 0;
302   int abs = sign ? -delta_qindex : delta_qindex;
303   int rem_bits, thr;
304   int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
305   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
306 
307   aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
308                    DELTA_Q_PROBS + 1);
309 
310   if (!smallval) {
311     rem_bits = get_msb(abs - 1);
312     thr = (1 << rem_bits) + 1;
313     aom_write_literal(w, rem_bits - 1, 3);
314     aom_write_literal(w, abs - thr, rem_bits);
315   }
316   if (abs > 0) {
317     aom_write_bit(w, sign);
318   }
319 }
320 
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,int delta_lf_multi,aom_writer * w)321 static inline void write_delta_lflevel(const AV1_COMMON *cm,
322                                        const MACROBLOCKD *xd, int lf_id,
323                                        int delta_lflevel, int delta_lf_multi,
324                                        aom_writer *w) {
325   int sign = delta_lflevel < 0;
326   int abs = sign ? -delta_lflevel : delta_lflevel;
327   int rem_bits, thr;
328   int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
329   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
330   (void)cm;
331 
332   if (delta_lf_multi) {
333     assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
334                                                          : FRAME_LF_COUNT - 2));
335     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
336                      ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
337   } else {
338     aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
339                      DELTA_LF_PROBS + 1);
340   }
341 
342   if (!smallval) {
343     rem_bits = get_msb(abs - 1);
344     thr = (1 << rem_bits) + 1;
345     aom_write_literal(w, rem_bits - 1, 3);
346     aom_write_literal(w, abs - thr, rem_bits);
347   }
348   if (abs > 0) {
349     aom_write_bit(w, sign);
350   }
351 }
352 
pack_map_tokens(aom_writer * w,const TokenExtra ** tp,int n,int num,MapCdf map_pb_cdf)353 static inline void pack_map_tokens(aom_writer *w, const TokenExtra **tp, int n,
354                                    int num, MapCdf map_pb_cdf) {
355   const TokenExtra *p = *tp;
356   const int palette_size_idx = n - PALETTE_MIN_SIZE;
357   write_uniform(w, n, p->token);  // The first color index.
358   ++p;
359   --num;
360   for (int i = 0; i < num; ++i) {
361     assert((p->color_ctx >= 0) &&
362            (p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
363     aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
364     aom_write_symbol(w, p->token, color_map_cdf, n);
365     ++p;
366   }
367   *tp = p;
368 }
369 
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TokenExtra ** tp,const TokenExtra * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)370 static inline void pack_txb_tokens(
371     aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
372     const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
373     int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
374     int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
375   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
376   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
377 
378   if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
379 
380   const struct macroblockd_plane *const pd = &xd->plane[plane];
381   const TX_SIZE plane_tx_size =
382       plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
383                                     pd->subsampling_y)
384             : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
385                                                          blk_col)];
386 
387   if (tx_size == plane_tx_size || plane) {
388     av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
389 #if CONFIG_RD_DEBUG
390     TOKEN_STATS tmp_token_stats;
391     init_token_stats(&tmp_token_stats);
392     token_stats->cost += tmp_token_stats.cost;
393 #endif
394   } else {
395     const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
396     const int bsw = tx_size_wide_unit[sub_txs];
397     const int bsh = tx_size_high_unit[sub_txs];
398     const int step = bsh * bsw;
399     const int row_end =
400         AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
401     const int col_end =
402         AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
403 
404     assert(bsw > 0 && bsh > 0);
405 
406     for (int r = 0; r < row_end; r += bsh) {
407       const int offsetr = blk_row + r;
408       for (int c = 0; c < col_end; c += bsw) {
409         const int offsetc = blk_col + c;
410         pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
411                         bit_depth, block, offsetr, offsetc, sub_txs,
412                         token_stats);
413         block += step;
414       }
415     }
416   }
417 }
418 
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,uint8_t segment_id)419 static inline void set_spatial_segment_id(
420     const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
421     BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
422   const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
423   const int bw = mi_size_wide[bsize];
424   const int bh = mi_size_high[bsize];
425   const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
426   const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
427 
428   const int mi_stride = mi_params->mi_cols;
429 
430   set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
431 }
432 
av1_neg_interleave(int x,int ref,int max)433 int av1_neg_interleave(int x, int ref, int max) {
434   assert(x < max);
435   const int diff = x - ref;
436   if (!ref) return x;
437   if (ref >= (max - 1)) return -x + max - 1;
438   if (2 * ref < max) {
439     if (abs(diff) <= ref) {
440       if (diff > 0)
441         return (diff << 1) - 1;
442       else
443         return ((-diff) << 1);
444     }
445     return x;
446   } else {
447     if (abs(diff) < (max - ref)) {
448       if (diff > 0)
449         return (diff << 1) - 1;
450       else
451         return ((-diff) << 1);
452     }
453     return (max - x) - 1;
454   }
455 }
456 
write_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip_txfm)457 static inline void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
458                                     const MB_MODE_INFO *const mbmi,
459                                     aom_writer *w,
460                                     const struct segmentation *seg,
461                                     struct segmentation_probs *segp,
462                                     int skip_txfm) {
463   if (!seg->enabled || !seg->update_map) return;
464 
465   AV1_COMMON *const cm = &cpi->common;
466   int cdf_num;
467   const uint8_t pred = av1_get_spatial_seg_pred(
468       cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
469   const int mi_row = xd->mi_row;
470   const int mi_col = xd->mi_col;
471 
472   if (skip_txfm) {
473     // Still need to transmit tx size for intra blocks even if skip_txfm is
474     // true. Changing segment_id may make the tx size become invalid, e.g
475     // changing from lossless to lossy.
476     assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
477 
478     set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
479                            mi_row, mi_col, pred);
480     set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
481                            mi_row, mi_col, pred);
482     /* mbmi is read only but we need to update segment_id */
483     ((MB_MODE_INFO *)mbmi)->segment_id = pred;
484     return;
485   }
486 
487   const int coded_id =
488       av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
489   aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
490   aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
491   set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
492                          mi_row, mi_col, mbmi->segment_id);
493 }
494 
495 #define WRITE_REF_BIT(bname, pname) \
496   aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
497 
498 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)499 static inline void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
500                                     aom_writer *w) {
501   const MB_MODE_INFO *const mbmi = xd->mi[0];
502   const int is_compound = has_second_ref(mbmi);
503   const uint8_t segment_id = mbmi->segment_id;
504 
505   // If segment level coding of this signal is disabled...
506   // or the segment allows multiple reference frame options
507   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
508     assert(!is_compound);
509     assert(mbmi->ref_frame[0] ==
510            get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
511   } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
512              segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
513     assert(!is_compound);
514     assert(mbmi->ref_frame[0] == LAST_FRAME);
515   } else {
516     // does the feature use compound prediction or not
517     // (if not specified at the frame/segment level)
518     if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
519       if (is_comp_ref_allowed(mbmi->bsize))
520         aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
521     } else {
522       assert((!is_compound) ==
523              (cm->current_frame.reference_mode == SINGLE_REFERENCE));
524     }
525 
526     if (is_compound) {
527       const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
528                                                     ? UNIDIR_COMP_REFERENCE
529                                                     : BIDIR_COMP_REFERENCE;
530       aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
531                        2);
532 
533       if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
534         const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
535         WRITE_REF_BIT(bit, uni_comp_ref_p);
536 
537         if (!bit) {
538           assert(mbmi->ref_frame[0] == LAST_FRAME);
539           const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
540                            mbmi->ref_frame[1] == GOLDEN_FRAME;
541           WRITE_REF_BIT(bit1, uni_comp_ref_p1);
542           if (bit1) {
543             const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
544             WRITE_REF_BIT(bit2, uni_comp_ref_p2);
545           }
546         } else {
547           assert(mbmi->ref_frame[1] == ALTREF_FRAME);
548         }
549 
550         return;
551       }
552 
553       assert(comp_ref_type == BIDIR_COMP_REFERENCE);
554 
555       const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
556                        mbmi->ref_frame[0] == LAST3_FRAME);
557       WRITE_REF_BIT(bit, comp_ref_p);
558 
559       if (!bit) {
560         const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
561         WRITE_REF_BIT(bit1, comp_ref_p1);
562       } else {
563         const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
564         WRITE_REF_BIT(bit2, comp_ref_p2);
565       }
566 
567       const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
568       WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
569 
570       if (!bit_bwd) {
571         WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
572       }
573 
574     } else {
575       const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
576                         mbmi->ref_frame[0] >= BWDREF_FRAME);
577       WRITE_REF_BIT(bit0, single_ref_p1);
578 
579       if (bit0) {
580         const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
581         WRITE_REF_BIT(bit1, single_ref_p2);
582 
583         if (!bit1) {
584           WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
585         }
586       } else {
587         const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
588                           mbmi->ref_frame[0] == GOLDEN_FRAME);
589         WRITE_REF_BIT(bit2, single_ref_p3);
590 
591         if (!bit2) {
592           const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
593           WRITE_REF_BIT(bit3, single_ref_p4);
594         } else {
595           const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
596           WRITE_REF_BIT(bit4, single_ref_p5);
597         }
598       }
599     }
600   }
601 }
602 
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)603 static inline void write_filter_intra_mode_info(const AV1_COMMON *cm,
604                                                 const MACROBLOCKD *xd,
605                                                 const MB_MODE_INFO *const mbmi,
606                                                 aom_writer *w) {
607   if (av1_filter_intra_allowed(cm, mbmi)) {
608     aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
609                      xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
610     if (mbmi->filter_intra_mode_info.use_filter_intra) {
611       const FILTER_INTRA_MODE mode =
612           mbmi->filter_intra_mode_info.filter_intra_mode;
613       aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
614                        FILTER_INTRA_MODES);
615     }
616   }
617 }
618 
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)619 static inline void write_angle_delta(aom_writer *w, int angle_delta,
620                                      aom_cdf_prob *cdf) {
621   aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
622                    2 * MAX_ANGLE_DELTA + 1);
623 }
624 
write_mb_interp_filter(AV1_COMMON * const cm,ThreadData * td,aom_writer * w)625 static inline void write_mb_interp_filter(AV1_COMMON *const cm, ThreadData *td,
626                                           aom_writer *w) {
627   const MACROBLOCKD *xd = &td->mb.e_mbd;
628   const MB_MODE_INFO *const mbmi = xd->mi[0];
629   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
630 
631   if (!av1_is_interp_needed(xd)) {
632     int_interpfilters filters = av1_broadcast_interp_filter(
633         av1_unswitchable_filter(cm->features.interp_filter));
634     assert(mbmi->interp_filters.as_int == filters.as_int);
635     (void)filters;
636     return;
637   }
638   if (cm->features.interp_filter == SWITCHABLE) {
639     int dir;
640     for (dir = 0; dir < 2; ++dir) {
641       const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
642       InterpFilter filter =
643           av1_extract_interp_filter(mbmi->interp_filters, dir);
644       aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
645                        SWITCHABLE_FILTERS);
646       ++td->interp_filter_selected[filter];
647       if (cm->seq_params->enable_dual_filter == 0) return;
648     }
649   }
650 }
651 
652 // Transmit color values with delta encoding. Write the first value as
653 // literal, and the deltas between each value and the previous one. "min_val" is
654 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)655 static inline void delta_encode_palette_colors(const int *colors, int num,
656                                                int bit_depth, int min_val,
657                                                aom_writer *w) {
658   if (num <= 0) return;
659   assert(colors[0] < (1 << bit_depth));
660   aom_write_literal(w, colors[0], bit_depth);
661   if (num == 1) return;
662   int max_delta = 0;
663   int deltas[PALETTE_MAX_SIZE];
664   memset(deltas, 0, sizeof(deltas));
665   for (int i = 1; i < num; ++i) {
666     assert(colors[i] < (1 << bit_depth));
667     const int delta = colors[i] - colors[i - 1];
668     deltas[i - 1] = delta;
669     assert(delta >= min_val);
670     if (delta > max_delta) max_delta = delta;
671   }
672   const int min_bits = bit_depth - 3;
673   int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
674   assert(bits <= bit_depth);
675   int range = (1 << bit_depth) - colors[0] - min_val;
676   aom_write_literal(w, bits - min_bits, 2);
677   for (int i = 0; i < num - 1; ++i) {
678     aom_write_literal(w, deltas[i] - min_val, bits);
679     range -= deltas[i];
680     bits = AOMMIN(bits, av1_ceil_log2(range));
681   }
682 }
683 
684 // Transmit luma palette color values. First signal if each color in the color
685 // cache is used. Those colors that are not in the cache are transmitted with
686 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)687 static inline void write_palette_colors_y(const MACROBLOCKD *const xd,
688                                           const PALETTE_MODE_INFO *const pmi,
689                                           int bit_depth, aom_writer *w) {
690   const int n = pmi->palette_size[0];
691   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
692   const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
693   int out_cache_colors[PALETTE_MAX_SIZE];
694   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
695   const int n_out_cache =
696       av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
697                             cache_color_found, out_cache_colors);
698   int n_in_cache = 0;
699   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
700     const int found = cache_color_found[i];
701     aom_write_bit(w, found);
702     n_in_cache += found;
703   }
704   assert(n_in_cache + n_out_cache == n);
705   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
706 }
707 
708 // Write chroma palette color values. U channel is handled similarly to the luma
709 // channel. For v channel, either use delta encoding or transmit raw values
710 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)711 static inline void write_palette_colors_uv(const MACROBLOCKD *const xd,
712                                            const PALETTE_MODE_INFO *const pmi,
713                                            int bit_depth, aom_writer *w) {
714   const int n = pmi->palette_size[1];
715   const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
716   const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
717   // U channel colors.
718   uint16_t color_cache[2 * PALETTE_MAX_SIZE];
719   const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
720   int out_cache_colors[PALETTE_MAX_SIZE];
721   uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
722   const int n_out_cache = av1_index_color_cache(
723       color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
724   int n_in_cache = 0;
725   for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
726     const int found = cache_color_found[i];
727     aom_write_bit(w, found);
728     n_in_cache += found;
729   }
730   delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
731 
732   // V channel colors. Don't use color cache as the colors are not sorted.
733   const int max_val = 1 << bit_depth;
734   int zero_count = 0, min_bits_v = 0;
735   int bits_v =
736       av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
737   const int rate_using_delta =
738       2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
739   const int rate_using_raw = bit_depth * n;
740   if (rate_using_delta < rate_using_raw) {  // delta encoding
741     assert(colors_v[0] < (1 << bit_depth));
742     aom_write_bit(w, 1);
743     aom_write_literal(w, bits_v - min_bits_v, 2);
744     aom_write_literal(w, colors_v[0], bit_depth);
745     for (int i = 1; i < n; ++i) {
746       assert(colors_v[i] < (1 << bit_depth));
747       if (colors_v[i] == colors_v[i - 1]) {  // No need to signal sign bit.
748         aom_write_literal(w, 0, bits_v);
749         continue;
750       }
751       const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
752       const int sign_bit = colors_v[i] < colors_v[i - 1];
753       if (delta <= max_val - delta) {
754         aom_write_literal(w, delta, bits_v);
755         aom_write_bit(w, sign_bit);
756       } else {
757         aom_write_literal(w, max_val - delta, bits_v);
758         aom_write_bit(w, !sign_bit);
759       }
760     }
761   } else {  // Transmit raw values.
762     aom_write_bit(w, 0);
763     for (int i = 0; i < n; ++i) {
764       assert(colors_v[i] < (1 << bit_depth));
765       aom_write_literal(w, colors_v[i], bit_depth);
766     }
767   }
768 }
769 
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)770 static inline void write_palette_mode_info(const AV1_COMMON *cm,
771                                            const MACROBLOCKD *xd,
772                                            const MB_MODE_INFO *const mbmi,
773                                            aom_writer *w) {
774   const int num_planes = av1_num_planes(cm);
775   const BLOCK_SIZE bsize = mbmi->bsize;
776   assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
777   const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
778   const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
779 
780   if (mbmi->mode == DC_PRED) {
781     const int n = pmi->palette_size[0];
782     const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
783     aom_write_symbol(
784         w, n > 0,
785         xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
786     if (n > 0) {
787       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
788                        xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
789                        PALETTE_SIZES);
790       write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
791     }
792   }
793 
794   const int uv_dc_pred =
795       num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
796   if (uv_dc_pred) {
797     const int n = pmi->palette_size[1];
798     const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
799     aom_write_symbol(w, n > 0,
800                      xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
801     if (n > 0) {
802       aom_write_symbol(w, n - PALETTE_MIN_SIZE,
803                        xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
804                        PALETTE_SIZES);
805       write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
806     }
807   }
808 }
809 
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)810 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
811                        TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
812   MB_MODE_INFO *mbmi = xd->mi[0];
813   const FeatureFlags *const features = &cm->features;
814   const int is_inter = is_inter_block(mbmi);
815   if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
816       ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
817        (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
818       !mbmi->skip_txfm &&
819       !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
820     FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
821     const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
822     const TxSetType tx_set_type = av1_get_ext_tx_set_type(
823         tx_size, is_inter, features->reduced_tx_set_used);
824     const int eset =
825         get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
826     // eset == 0 should correspond to a set with only DCT_DCT and there
827     // is no need to send the tx_type
828     assert(eset > 0);
829     assert(av1_ext_tx_used[tx_set_type][tx_type]);
830     if (is_inter) {
831       aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
832                        ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
833                        av1_num_ext_tx_set[tx_set_type]);
834     } else {
835       PREDICTION_MODE intra_dir;
836       if (mbmi->filter_intra_mode_info.use_filter_intra)
837         intra_dir =
838             fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
839       else
840         intra_dir = mbmi->mode;
841       aom_write_symbol(
842           w, av1_ext_tx_ind[tx_set_type][tx_type],
843           ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
844           av1_num_ext_tx_set[tx_set_type]);
845     }
846   }
847 }
848 
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)849 static inline void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
850                                             BLOCK_SIZE bsize,
851                                             PREDICTION_MODE mode,
852                                             aom_writer *w) {
853   aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
854                    INTRA_MODES);
855 }
856 
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)857 static inline void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
858                                        UV_PREDICTION_MODE uv_mode,
859                                        PREDICTION_MODE y_mode,
860                                        CFL_ALLOWED_TYPE cfl_allowed,
861                                        aom_writer *w) {
862   aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
863                    UV_INTRA_MODES - !cfl_allowed);
864 }
865 
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)866 static inline void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, uint8_t idx,
867                                     int8_t joint_sign, aom_writer *w) {
868   aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
869   // Magnitudes are only signaled for nonzero codes.
870   if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
871     aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
872     aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
873   }
874   if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
875     aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
876     aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
877   }
878 }
879 
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)880 static inline void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
881                               aom_writer *w, int skip) {
882   if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
883 
884   // At the start of a superblock, mark that we haven't yet written CDEF
885   // strengths for any of the CDEF units contained in this superblock.
886   const int sb_mask = (cm->seq_params->mib_size - 1);
887   const int mi_row_in_sb = (xd->mi_row & sb_mask);
888   const int mi_col_in_sb = (xd->mi_col & sb_mask);
889   if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
890     xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
891         xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
892   }
893 
894   // CDEF unit size is 64x64 irrespective of the superblock size.
895   const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
896 
897   // Find index of this CDEF unit in this superblock.
898   const int index_mask = cdef_size;
899   const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
900   const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
901   const int index = (cm->seq_params->sb_size == BLOCK_128X128)
902                         ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
903                         : 0;
904 
905   // Write CDEF strength to the first non-skip coding block in this CDEF unit.
906   if (!xd->cdef_transmitted[index] && !skip) {
907     // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
908     // of the 1st block in this CDEF unit.
909     const int first_block_mask = ~(cdef_size - 1);
910     const CommonModeInfoParams *const mi_params = &cm->mi_params;
911     const int grid_idx =
912         get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
913                         xd->mi_col & first_block_mask);
914     const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
915     aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
916     xd->cdef_transmitted[index] = true;
917   }
918 }
919 
write_inter_segment_id(AV1_COMP * cpi,MACROBLOCKD * const xd,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)920 static inline void write_inter_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
921                                           aom_writer *w,
922                                           const struct segmentation *const seg,
923                                           struct segmentation_probs *const segp,
924                                           int skip, int preskip) {
925   MB_MODE_INFO *const mbmi = xd->mi[0];
926   AV1_COMMON *const cm = &cpi->common;
927   const int mi_row = xd->mi_row;
928   const int mi_col = xd->mi_col;
929 
930   if (seg->update_map) {
931     if (preskip) {
932       if (!seg->segid_preskip) return;
933     } else {
934       if (seg->segid_preskip) return;
935       if (skip) {
936         write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
937         if (seg->temporal_update) mbmi->seg_id_predicted = 0;
938         return;
939       }
940     }
941     if (seg->temporal_update) {
942       const int pred_flag = mbmi->seg_id_predicted;
943       aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
944       aom_write_symbol(w, pred_flag, pred_cdf, 2);
945       if (!pred_flag) {
946         write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
947       }
948       if (pred_flag) {
949         set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
950                                mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
951       }
952     } else {
953       write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
954     }
955   }
956 }
957 
958 // If delta q is present, writes delta_q index.
959 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,int skip,aom_writer * w)960 static inline void write_delta_q_params(AV1_COMMON *const cm,
961                                         MACROBLOCKD *const xd, int skip,
962                                         aom_writer *w) {
963   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
964 
965   if (delta_q_info->delta_q_present_flag) {
966     const MB_MODE_INFO *const mbmi = xd->mi[0];
967     const BLOCK_SIZE bsize = mbmi->bsize;
968     const int super_block_upper_left =
969         ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
970         ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
971 
972     if ((bsize != cm->seq_params->sb_size || skip == 0) &&
973         super_block_upper_left) {
974       assert(mbmi->current_qindex > 0);
975       const int reduced_delta_qindex =
976           (mbmi->current_qindex - xd->current_base_qindex) /
977           delta_q_info->delta_q_res;
978       write_delta_qindex(xd, reduced_delta_qindex, w);
979       xd->current_base_qindex = mbmi->current_qindex;
980       if (delta_q_info->delta_lf_present_flag) {
981         if (delta_q_info->delta_lf_multi) {
982           const int frame_lf_count =
983               av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
984           for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
985             int reduced_delta_lflevel =
986                 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
987                 delta_q_info->delta_lf_res;
988             write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
989             xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
990           }
991         } else {
992           int reduced_delta_lflevel =
993               (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
994               delta_q_info->delta_lf_res;
995           write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
996           xd->delta_lf_from_base = mbmi->delta_lf_from_base;
997         }
998       }
999     }
1000   }
1001 }
1002 
write_intra_prediction_modes(const AV1_COMMON * cm,MACROBLOCKD * const xd,int is_keyframe,aom_writer * w)1003 static inline void write_intra_prediction_modes(const AV1_COMMON *cm,
1004                                                 MACROBLOCKD *const xd,
1005                                                 int is_keyframe,
1006                                                 aom_writer *w) {
1007   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1008   const MB_MODE_INFO *const mbmi = xd->mi[0];
1009   const PREDICTION_MODE mode = mbmi->mode;
1010   const BLOCK_SIZE bsize = mbmi->bsize;
1011 
1012   // Y mode.
1013   if (is_keyframe) {
1014     const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1015     const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1016     write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1017   } else {
1018     write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1019   }
1020 
1021   // Y angle delta.
1022   const int use_angle_delta = av1_use_angle_delta(bsize);
1023   if (use_angle_delta && av1_is_directional_mode(mode)) {
1024     write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1025                       ec_ctx->angle_delta_cdf[mode - V_PRED]);
1026   }
1027 
1028   // UV mode and UV angle delta.
1029   if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1030     const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1031     write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1032     if (uv_mode == UV_CFL_PRED)
1033       write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1034     const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
1035     if (use_angle_delta && av1_is_directional_mode(intra_mode)) {
1036       write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1037                         ec_ctx->angle_delta_cdf[intra_mode - V_PRED]);
1038     }
1039   }
1040 
1041   // Palette.
1042   if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1043     write_palette_mode_info(cm, xd, mbmi, w);
1044   }
1045 
1046   // Filter intra.
1047   write_filter_intra_mode_info(cm, xd, mbmi, w);
1048 }
1049 
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1050 static inline int16_t mode_context_analyzer(
1051     const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1052   if (rf[1] <= INTRA_FRAME) return mode_context;
1053 
1054   const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1055   const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1056 
1057   const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1058       newmv_ctx, COMP_NEWMV_CTXS - 1)];
1059   return comp_ctx;
1060 }
1061 
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1062 static inline int_mv get_ref_mv_from_stack(
1063     int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1064     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1065   const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1066   const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1067 
1068   if (ref_frame[1] > INTRA_FRAME) {
1069     assert(ref_idx == 0 || ref_idx == 1);
1070     return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1071                    : curr_ref_mv_stack[ref_mv_idx].this_mv;
1072   }
1073 
1074   assert(ref_idx == 0);
1075   return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1076              ? curr_ref_mv_stack[ref_mv_idx].this_mv
1077              : mbmi_ext_frame->global_mvs[ref_frame_type];
1078 }
1079 
get_ref_mv(const MACROBLOCK * x,int ref_idx)1080 static inline int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1081   const MACROBLOCKD *xd = &x->e_mbd;
1082   const MB_MODE_INFO *mbmi = xd->mi[0];
1083   int ref_mv_idx = mbmi->ref_mv_idx;
1084   if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1085     assert(has_second_ref(mbmi));
1086     ref_mv_idx += 1;
1087   }
1088   return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1089                                x->mbmi_ext_frame);
1090 }
1091 
pack_inter_mode_mvs(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1092 static inline void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
1093                                        aom_writer *w) {
1094   AV1_COMMON *const cm = &cpi->common;
1095   MACROBLOCK *const x = &td->mb;
1096   MACROBLOCKD *const xd = &x->e_mbd;
1097   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1098   const struct segmentation *const seg = &cm->seg;
1099   struct segmentation_probs *const segp = &ec_ctx->seg;
1100   const MB_MODE_INFO *const mbmi = xd->mi[0];
1101   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1102   const PREDICTION_MODE mode = mbmi->mode;
1103   const uint8_t segment_id = mbmi->segment_id;
1104   const BLOCK_SIZE bsize = mbmi->bsize;
1105   const int allow_hp = cm->features.allow_high_precision_mv;
1106   const int is_inter = is_inter_block(mbmi);
1107   const int is_compound = has_second_ref(mbmi);
1108   int ref;
1109 
1110   write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
1111 
1112   write_skip_mode(cm, xd, segment_id, mbmi, w);
1113 
1114   assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
1115   const int skip =
1116       mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1117 
1118   write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
1119 
1120   write_cdef(cm, xd, w, skip);
1121 
1122   write_delta_q_params(cm, xd, skip, w);
1123 
1124   if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1125 
1126   if (mbmi->skip_mode) return;
1127 
1128   if (!is_inter) {
1129     write_intra_prediction_modes(cm, xd, 0, w);
1130   } else {
1131     int16_t mode_ctx;
1132 
1133     av1_collect_neighbors_ref_counts(xd);
1134 
1135     write_ref_frames(cm, xd, w);
1136 
1137     mode_ctx =
1138         mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1139 
1140     // If segment skip is not enabled code the mode.
1141     if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1142       if (is_inter_compound_mode(mode))
1143         write_inter_compound_mode(xd, w, mode, mode_ctx);
1144       else if (is_inter_singleref_mode(mode))
1145         write_inter_mode(w, mode, ec_ctx, mode_ctx);
1146 
1147       if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1148         write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1149       else
1150         assert(mbmi->ref_mv_idx == 0);
1151     }
1152 
1153     if (mode == NEWMV || mode == NEW_NEWMV) {
1154       for (ref = 0; ref < 1 + is_compound; ++ref) {
1155         nmv_context *nmvc = &ec_ctx->nmvc;
1156         const int_mv ref_mv = get_ref_mv(x, ref);
1157         av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1158                       allow_hp);
1159       }
1160     } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1161       nmv_context *nmvc = &ec_ctx->nmvc;
1162       const int_mv ref_mv = get_ref_mv(x, 1);
1163       av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
1164                     allow_hp);
1165     } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1166       nmv_context *nmvc = &ec_ctx->nmvc;
1167       const int_mv ref_mv = get_ref_mv(x, 0);
1168       av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
1169                     allow_hp);
1170     }
1171 
1172     if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1173         cpi->common.seq_params->enable_interintra_compound &&
1174         is_interintra_allowed(mbmi)) {
1175       const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1176       const int bsize_group = size_group_lookup[bsize];
1177       aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1178       if (interintra) {
1179         aom_write_symbol(w, mbmi->interintra_mode,
1180                          ec_ctx->interintra_mode_cdf[bsize_group],
1181                          INTERINTRA_MODES);
1182         if (av1_is_wedge_used(bsize)) {
1183           aom_write_symbol(w, mbmi->use_wedge_interintra,
1184                            ec_ctx->wedge_interintra_cdf[bsize], 2);
1185           if (mbmi->use_wedge_interintra) {
1186             aom_write_symbol(w, mbmi->interintra_wedge_index,
1187                              ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1188           }
1189         }
1190       }
1191     }
1192 
1193     if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1194 
1195     // First write idx to indicate current compound inter prediction mode group
1196     // Group A (0): dist_wtd_comp, compound_average
1197     // Group B (1): interintra, compound_diffwtd, wedge
1198     if (has_second_ref(mbmi)) {
1199       const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1200                                        cm->seq_params->enable_masked_compound;
1201 
1202       if (masked_compound_used) {
1203         const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1204         aom_write_symbol(w, mbmi->comp_group_idx,
1205                          ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1206       } else {
1207         assert(mbmi->comp_group_idx == 0);
1208       }
1209 
1210       if (mbmi->comp_group_idx == 0) {
1211         if (mbmi->compound_idx)
1212           assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1213 
1214         if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1215           const int comp_index_ctx = get_comp_index_context(cm, xd);
1216           aom_write_symbol(w, mbmi->compound_idx,
1217                            ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1218         } else {
1219           assert(mbmi->compound_idx == 1);
1220         }
1221       } else {
1222         assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1223                is_inter_compound_mode(mbmi->mode) &&
1224                mbmi->motion_mode == SIMPLE_TRANSLATION);
1225         assert(masked_compound_used);
1226         // compound_diffwtd, wedge
1227         assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1228                mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1229 
1230         if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1231           aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1232                            ec_ctx->compound_type_cdf[bsize],
1233                            MASKED_COMPOUND_TYPES);
1234 
1235         if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1236           assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1237           aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1238                            ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1239           aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1240         } else {
1241           assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1242           aom_write_literal(w, mbmi->interinter_comp.mask_type,
1243                             MAX_DIFFWTD_MASK_BITS);
1244         }
1245       }
1246     }
1247     write_mb_interp_filter(cm, td, w);
1248   }
1249 }
1250 
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1251 static inline void write_intrabc_info(
1252     MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1253     aom_writer *w) {
1254   const MB_MODE_INFO *const mbmi = xd->mi[0];
1255   int use_intrabc = is_intrabc_block(mbmi);
1256   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1257   aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1258   if (use_intrabc) {
1259     assert(mbmi->mode == DC_PRED);
1260     assert(mbmi->uv_mode == UV_DC_PRED);
1261     assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1262     int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1263     av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1264   }
1265 }
1266 
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1267 static inline void write_mb_modes_kf(
1268     AV1_COMP *cpi, MACROBLOCKD *xd,
1269     const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1270   AV1_COMMON *const cm = &cpi->common;
1271   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1272   const struct segmentation *const seg = &cm->seg;
1273   struct segmentation_probs *const segp = &ec_ctx->seg;
1274   const MB_MODE_INFO *const mbmi = xd->mi[0];
1275 
1276   if (seg->segid_preskip && seg->update_map)
1277     write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
1278 
1279   const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1280 
1281   if (!seg->segid_preskip && seg->update_map)
1282     write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
1283 
1284   write_cdef(cm, xd, w, skip);
1285 
1286   write_delta_q_params(cm, xd, skip, w);
1287 
1288   if (av1_allow_intrabc(cm)) {
1289     write_intrabc_info(xd, mbmi_ext_frame, w);
1290     if (is_intrabc_block(mbmi)) return;
1291   }
1292 
1293   write_intra_prediction_modes(cm, xd, 1, w);
1294 }
1295 
1296 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1297 static inline void dump_mode_info(MB_MODE_INFO *mi) {
1298   printf("\nmi->mi_row == %d\n", mi->mi_row);
1299   printf("&& mi->mi_col == %d\n", mi->mi_col);
1300   printf("&& mi->bsize == %d\n", mi->bsize);
1301   printf("&& mi->tx_size == %d\n", mi->tx_size);
1302   printf("&& mi->mode == %d\n", mi->mode);
1303 }
1304 
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1305 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1306                                    int plane) {
1307   if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1308     printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1309            plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1310     return 1;
1311   }
1312   return 0;
1313 }
1314 #endif
1315 
1316 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1317 static inline void enc_dump_logs(
1318     const AV1_COMMON *const cm,
1319     const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1320   const MB_MODE_INFO *const mbmi = *(
1321       cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1322   const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1323       mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1324                                                  cm->mi_params.mi_alloc_bsize,
1325                                                  mbmi_ext_info->stride);
1326   if (is_inter_block(mbmi)) {
1327 #define FRAME_TO_CHECK 11
1328     if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1329         cm->show_frame == 1) {
1330       const BLOCK_SIZE bsize = mbmi->bsize;
1331 
1332       int_mv mv[2] = { 0 };
1333       const int is_comp_ref = has_second_ref(mbmi);
1334 
1335       for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1336         mv[ref].as_mv = mbmi->mv[ref].as_mv;
1337 
1338       if (!is_comp_ref) {
1339         mv[1].as_int = 0;
1340       }
1341 
1342       const int16_t mode_ctx =
1343           is_comp_ref ? 0
1344                       : mode_context_analyzer(mbmi_ext_frame->mode_context,
1345                                               mbmi->ref_frame);
1346 
1347       const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1348       int16_t zeromv_ctx = -1;
1349       int16_t refmv_ctx = -1;
1350 
1351       if (mbmi->mode != NEWMV) {
1352         zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1353         if (mbmi->mode != GLOBALMV)
1354           refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1355       }
1356 
1357       printf(
1358           "=== ENCODER ===: "
1359           "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1360           "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1361           "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1362           "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1363           cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1364           mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1365           mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1366           mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1367           zeromv_ctx, refmv_ctx, mbmi->tx_size);
1368     }
1369   }
1370 }
1371 #endif  // ENC_MISMATCH_DEBUG
1372 
write_mbmi_b(AV1_COMP * cpi,ThreadData * const td,aom_writer * w)1373 static inline void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
1374                                 aom_writer *w) {
1375   AV1_COMMON *const cm = &cpi->common;
1376   MACROBLOCKD *const xd = &td->mb.e_mbd;
1377   MB_MODE_INFO *m = xd->mi[0];
1378 
1379   if (frame_is_intra_only(cm)) {
1380     write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
1381   } else {
1382     // has_subpel_mv_component needs the ref frame buffers set up to look
1383     // up if they are scaled. has_subpel_mv_component is in turn needed by
1384     // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1385     set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1386 
1387 #if ENC_MISMATCH_DEBUG
1388     enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1389 #endif  // ENC_MISMATCH_DEBUG
1390 
1391     pack_inter_mode_mvs(cpi, td, w);
1392   }
1393 }
1394 
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1395 static inline void write_inter_txb_coeff(
1396     AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1397     aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
1398     TOKEN_STATS *token_stats, const int row, const int col, int *block,
1399     const int plane) {
1400   MACROBLOCKD *const xd = &x->e_mbd;
1401   const struct macroblockd_plane *const pd = &xd->plane[plane];
1402   const BLOCK_SIZE bsize = mbmi->bsize;
1403   assert(bsize < BLOCK_SIZES_ALL);
1404   const int ss_x = pd->subsampling_x;
1405   const int ss_y = pd->subsampling_y;
1406   const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1407   assert(plane_bsize < BLOCK_SIZES_ALL);
1408   const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1409   const int step =
1410       tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1411   const int bkw = tx_size_wide_unit[max_tx_size];
1412   const int bkh = tx_size_high_unit[max_tx_size];
1413   const BLOCK_SIZE max_unit_bsize =
1414       get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1415   const int num_4x4_w = mi_size_wide[plane_bsize];
1416   const int num_4x4_h = mi_size_high[plane_bsize];
1417   const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1418   const int mu_blocks_high = mi_size_high[max_unit_bsize];
1419   const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1420   const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1421   for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1422     for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1423       pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1424                       cm->seq_params->bit_depth, *block, blk_row, blk_col,
1425                       max_tx_size, token_stats);
1426       *block += step;
1427     }
1428   }
1429 }
1430 
write_tokens_b(AV1_COMP * cpi,MACROBLOCK * const x,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end)1431 static inline void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
1432                                   aom_writer *w, const TokenExtra **tok,
1433                                   const TokenExtra *const tok_end) {
1434   AV1_COMMON *const cm = &cpi->common;
1435   MACROBLOCKD *const xd = &x->e_mbd;
1436   MB_MODE_INFO *const mbmi = xd->mi[0];
1437   const BLOCK_SIZE bsize = mbmi->bsize;
1438 
1439   assert(!mbmi->skip_txfm);
1440 
1441   const int is_inter = is_inter_block(mbmi);
1442   if (!is_inter) {
1443     av1_write_intra_coeffs_mb(cm, x, w, bsize);
1444   } else {
1445     int block[MAX_MB_PLANE] = { 0 };
1446     assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1447                                          xd->plane[0].subsampling_y));
1448     const int num_4x4_w = mi_size_wide[bsize];
1449     const int num_4x4_h = mi_size_high[bsize];
1450     TOKEN_STATS token_stats;
1451     init_token_stats(&token_stats);
1452 
1453     const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1454     assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1455                                                   xd->plane[0].subsampling_x,
1456                                                   xd->plane[0].subsampling_y));
1457     int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1458     int mu_blocks_high = mi_size_high[max_unit_bsize];
1459     mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1460     mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1461 
1462     const int num_planes = av1_num_planes(cm);
1463     for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1464       for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1465         for (int plane = 0; plane < num_planes; ++plane) {
1466           if (plane && !xd->is_chroma_ref) break;
1467           write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1468                                 col, &block[plane], plane);
1469         }
1470       }
1471     }
1472 #if CONFIG_RD_DEBUG
1473     for (int plane = 0; plane < num_planes; ++plane) {
1474       if (mbmi->bsize >= BLOCK_8X8 &&
1475           rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1476         dump_mode_info(mbmi);
1477         assert(0);
1478       }
1479     }
1480 #endif  // CONFIG_RD_DEBUG
1481   }
1482 }
1483 
write_modes_b(AV1_COMP * cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col)1484 static inline void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
1485                                  const TileInfo *const tile, aom_writer *w,
1486                                  const TokenExtra **tok,
1487                                  const TokenExtra *const tok_end, int mi_row,
1488                                  int mi_col) {
1489   const AV1_COMMON *cm = &cpi->common;
1490   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1491   MACROBLOCKD *xd = &td->mb.e_mbd;
1492   FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
1493   const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1494   xd->mi = mi_params->mi_grid_base + grid_idx;
1495   td->mb.mbmi_ext_frame =
1496       cpi->mbmi_ext_info.frame_base +
1497       get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1498                      cpi->mbmi_ext_info.stride);
1499   xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1500   xd->tx_type_map_stride = mi_params->mi_stride;
1501 
1502   const MB_MODE_INFO *mbmi = xd->mi[0];
1503   const BLOCK_SIZE bsize = mbmi->bsize;
1504   assert(bsize <= cm->seq_params->sb_size ||
1505          (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1506 
1507   const int bh = mi_size_high[bsize];
1508   const int bw = mi_size_wide[bsize];
1509   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1510                  mi_params->mi_cols);
1511 
1512   xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1513   xd->left_txfm_context =
1514       xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1515 
1516   write_mbmi_b(cpi, td, w);
1517 
1518   for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1519     const uint8_t palette_size_plane =
1520         mbmi->palette_mode_info.palette_size[plane];
1521     assert(!mbmi->skip_mode || !palette_size_plane);
1522     if (palette_size_plane > 0) {
1523       assert(mbmi->use_intrabc == 0);
1524       assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1525                                mbmi->bsize));
1526       assert(!plane || xd->is_chroma_ref);
1527       int rows, cols;
1528       av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
1529                                &cols);
1530       assert(*tok < tok_end);
1531       MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
1532                                 : tile_ctx->palette_y_color_index_cdf;
1533       pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
1534     }
1535   }
1536 
1537   const int is_inter_tx = is_inter_block(mbmi);
1538   const int skip_txfm = mbmi->skip_txfm;
1539   const uint8_t segment_id = mbmi->segment_id;
1540   if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1541       !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
1542     if (is_inter_tx) {  // This implies skip flag is 0.
1543       const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1544       const int txbh = tx_size_high_unit[max_tx_size];
1545       const int txbw = tx_size_wide_unit[max_tx_size];
1546       const int width = mi_size_wide[bsize];
1547       const int height = mi_size_high[bsize];
1548       for (int idy = 0; idy < height; idy += txbh) {
1549         for (int idx = 0; idx < width; idx += txbw) {
1550           write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1551         }
1552       }
1553     } else {
1554       write_selected_tx_size(xd, w);
1555       set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1556     }
1557   } else {
1558     set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
1559                   skip_txfm && is_inter_tx, xd);
1560   }
1561 
1562   if (!mbmi->skip_txfm) {
1563     int start = aom_tell_size(w);
1564 
1565     write_tokens_b(cpi, &td->mb, w, tok, tok_end);
1566 
1567     const int end = aom_tell_size(w);
1568     td->coefficient_size += end - start;
1569   }
1570 }
1571 
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1572 static inline void write_partition(const AV1_COMMON *const cm,
1573                                    const MACROBLOCKD *const xd, int hbs,
1574                                    int mi_row, int mi_col, PARTITION_TYPE p,
1575                                    BLOCK_SIZE bsize, aom_writer *w) {
1576   const int is_partition_point = bsize >= BLOCK_8X8;
1577 
1578   if (!is_partition_point) return;
1579 
1580   const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1581   const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1582   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1583   FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1584 
1585   if (!has_rows && !has_cols) {
1586     assert(p == PARTITION_SPLIT);
1587     return;
1588   }
1589 
1590   if (has_rows && has_cols) {
1591     aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1592                      partition_cdf_length(bsize));
1593   } else if (!has_rows && has_cols) {
1594     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1595     assert(bsize > BLOCK_8X8);
1596     aom_cdf_prob cdf[2];
1597     partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1598     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1599   } else {
1600     assert(has_rows && !has_cols);
1601     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1602     assert(bsize > BLOCK_8X8);
1603     aom_cdf_prob cdf[2];
1604     partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1605     aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1606   }
1607 }
1608 
write_modes_sb(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,const TokenExtra ** tok,const TokenExtra * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1609 static inline void write_modes_sb(AV1_COMP *const cpi, ThreadData *const td,
1610                                   const TileInfo *const tile,
1611                                   aom_writer *const w, const TokenExtra **tok,
1612                                   const TokenExtra *const tok_end, int mi_row,
1613                                   int mi_col, BLOCK_SIZE bsize) {
1614   const AV1_COMMON *const cm = &cpi->common;
1615   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1616   MACROBLOCKD *const xd = &td->mb.e_mbd;
1617   assert(bsize < BLOCK_SIZES_ALL);
1618   const int hbs = mi_size_wide[bsize] / 2;
1619   const int quarter_step = mi_size_wide[bsize] / 4;
1620   int i;
1621   const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1622   const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1623 
1624   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1625 
1626 #if !CONFIG_REALTIME_ONLY
1627   const int num_planes = av1_num_planes(cm);
1628   for (int plane = 0; plane < num_planes; ++plane) {
1629     int rcol0, rcol1, rrow0, rrow1;
1630 
1631     // Skip some unnecessary work if loop restoration is disabled
1632     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
1633 
1634     if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1635                                            &rcol0, &rcol1, &rrow0, &rrow1)) {
1636       const int rstride = cm->rst_info[plane].horz_units;
1637       for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1638         for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1639           const int runit_idx = rcol + rrow * rstride;
1640           loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane,
1641                                            td->counts);
1642         }
1643       }
1644     }
1645   }
1646 #endif
1647 
1648   write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1649   switch (partition) {
1650     case PARTITION_NONE:
1651       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1652       break;
1653     case PARTITION_HORZ:
1654       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1655       if (mi_row + hbs < mi_params->mi_rows)
1656         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1657       break;
1658     case PARTITION_VERT:
1659       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1660       if (mi_col + hbs < mi_params->mi_cols)
1661         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1662       break;
1663     case PARTITION_SPLIT:
1664       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1665       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
1666                      subsize);
1667       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
1668                      subsize);
1669       write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1670                      subsize);
1671       break;
1672     case PARTITION_HORZ_A:
1673       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1674       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1675       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1676       break;
1677     case PARTITION_HORZ_B:
1678       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1679       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1680       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1681       break;
1682     case PARTITION_VERT_A:
1683       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1684       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1685       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1686       break;
1687     case PARTITION_VERT_B:
1688       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
1689       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1690       write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1691       break;
1692     case PARTITION_HORZ_4:
1693       for (i = 0; i < 4; ++i) {
1694         int this_mi_row = mi_row + i * quarter_step;
1695         if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1696 
1697         write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
1698       }
1699       break;
1700     case PARTITION_VERT_4:
1701       for (i = 0; i < 4; ++i) {
1702         int this_mi_col = mi_col + i * quarter_step;
1703         if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1704 
1705         write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
1706       }
1707       break;
1708     default: assert(0);
1709   }
1710 
1711   // update partition context
1712   update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1713 }
1714 
1715 // Populate token pointers appropriately based on token_info.
get_token_pointers(const TokenInfo * token_info,const int tile_row,int tile_col,const int sb_row_in_tile,const TokenExtra ** tok,const TokenExtra ** tok_end)1716 static inline void get_token_pointers(const TokenInfo *token_info,
1717                                       const int tile_row, int tile_col,
1718                                       const int sb_row_in_tile,
1719                                       const TokenExtra **tok,
1720                                       const TokenExtra **tok_end) {
1721   if (!is_token_info_allocated(token_info)) {
1722     *tok = NULL;
1723     *tok_end = NULL;
1724     return;
1725   }
1726   *tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
1727   *tok_end =
1728       *tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
1729 }
1730 
write_modes(AV1_COMP * const cpi,ThreadData * const td,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1731 static inline void write_modes(AV1_COMP *const cpi, ThreadData *const td,
1732                                const TileInfo *const tile, aom_writer *const w,
1733                                int tile_row, int tile_col) {
1734   AV1_COMMON *const cm = &cpi->common;
1735   MACROBLOCKD *const xd = &td->mb.e_mbd;
1736   const int mi_row_start = tile->mi_row_start;
1737   const int mi_row_end = tile->mi_row_end;
1738   const int mi_col_start = tile->mi_col_start;
1739   const int mi_col_end = tile->mi_col_end;
1740   const int num_planes = av1_num_planes(cm);
1741 
1742   av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1743   av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1744 
1745   if (cpi->common.delta_q_info.delta_q_present_flag) {
1746     xd->current_base_qindex = cpi->common.quant_params.base_qindex;
1747     if (cpi->common.delta_q_info.delta_lf_present_flag) {
1748       av1_reset_loop_filter_delta(xd, num_planes);
1749     }
1750   }
1751 
1752   for (int mi_row = mi_row_start; mi_row < mi_row_end;
1753        mi_row += cm->seq_params->mib_size) {
1754     const int sb_row_in_tile =
1755         (mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
1756     const TokenInfo *token_info = &cpi->token_info;
1757     const TokenExtra *tok;
1758     const TokenExtra *tok_end;
1759     get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
1760                        &tok_end);
1761 
1762     av1_zero_left_context(xd);
1763 
1764     for (int mi_col = mi_col_start; mi_col < mi_col_end;
1765          mi_col += cm->seq_params->mib_size) {
1766       td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1767       write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
1768                      cm->seq_params->sb_size);
1769     }
1770     assert(tok == tok_end);
1771   }
1772 }
1773 
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1774 static inline void encode_restoration_mode(AV1_COMMON *cm,
1775                                            struct aom_write_bit_buffer *wb) {
1776   assert(!cm->features.all_lossless);
1777   if (!cm->seq_params->enable_restoration) return;
1778   if (cm->features.allow_intrabc) return;
1779   const int num_planes = av1_num_planes(cm);
1780   int all_none = 1, chroma_none = 1;
1781   for (int p = 0; p < num_planes; ++p) {
1782     RestorationInfo *rsi = &cm->rst_info[p];
1783     if (rsi->frame_restoration_type != RESTORE_NONE) {
1784       all_none = 0;
1785       chroma_none &= p == 0;
1786     }
1787     switch (rsi->frame_restoration_type) {
1788       case RESTORE_NONE:
1789         aom_wb_write_bit(wb, 0);
1790         aom_wb_write_bit(wb, 0);
1791         break;
1792       case RESTORE_WIENER:
1793         aom_wb_write_bit(wb, 1);
1794         aom_wb_write_bit(wb, 0);
1795         break;
1796       case RESTORE_SGRPROJ:
1797         aom_wb_write_bit(wb, 1);
1798         aom_wb_write_bit(wb, 1);
1799         break;
1800       case RESTORE_SWITCHABLE:
1801         aom_wb_write_bit(wb, 0);
1802         aom_wb_write_bit(wb, 1);
1803         break;
1804       default: assert(0);
1805     }
1806   }
1807   if (!all_none) {
1808     assert(cm->seq_params->sb_size == BLOCK_64X64 ||
1809            cm->seq_params->sb_size == BLOCK_128X128);
1810     const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
1811 
1812     RestorationInfo *rsi = &cm->rst_info[0];
1813 
1814     assert(rsi->restoration_unit_size >= sb_size);
1815     assert(RESTORATION_UNITSIZE_MAX == 256);
1816 
1817     if (sb_size == 64) {
1818       aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1819     }
1820     if (rsi->restoration_unit_size > 64) {
1821       aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1822     }
1823   }
1824 
1825   if (num_planes > 1) {
1826     int s =
1827         AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
1828     if (s && !chroma_none) {
1829       aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1830                                cm->rst_info[0].restoration_unit_size);
1831       assert(cm->rst_info[1].restoration_unit_size ==
1832                  cm->rst_info[0].restoration_unit_size ||
1833              cm->rst_info[1].restoration_unit_size ==
1834                  (cm->rst_info[0].restoration_unit_size >> s));
1835       assert(cm->rst_info[2].restoration_unit_size ==
1836              cm->rst_info[1].restoration_unit_size);
1837     } else if (!s) {
1838       assert(cm->rst_info[1].restoration_unit_size ==
1839              cm->rst_info[0].restoration_unit_size);
1840       assert(cm->rst_info[2].restoration_unit_size ==
1841              cm->rst_info[1].restoration_unit_size);
1842     }
1843   }
1844 }
1845 
1846 #if !CONFIG_REALTIME_ONLY
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1847 static inline void write_wiener_filter(int wiener_win,
1848                                        const WienerInfo *wiener_info,
1849                                        WienerInfo *ref_wiener_info,
1850                                        aom_writer *wb) {
1851   if (wiener_win == WIENER_WIN)
1852     aom_write_primitive_refsubexpfin(
1853         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1854         WIENER_FILT_TAP0_SUBEXP_K,
1855         ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1856         wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1857   else
1858     assert(wiener_info->vfilter[0] == 0 &&
1859            wiener_info->vfilter[WIENER_WIN - 1] == 0);
1860   aom_write_primitive_refsubexpfin(
1861       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1862       WIENER_FILT_TAP1_SUBEXP_K,
1863       ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1864       wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1865   aom_write_primitive_refsubexpfin(
1866       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1867       WIENER_FILT_TAP2_SUBEXP_K,
1868       ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1869       wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1870   if (wiener_win == WIENER_WIN)
1871     aom_write_primitive_refsubexpfin(
1872         wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1873         WIENER_FILT_TAP0_SUBEXP_K,
1874         ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1875         wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1876   else
1877     assert(wiener_info->hfilter[0] == 0 &&
1878            wiener_info->hfilter[WIENER_WIN - 1] == 0);
1879   aom_write_primitive_refsubexpfin(
1880       wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1881       WIENER_FILT_TAP1_SUBEXP_K,
1882       ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1883       wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1884   aom_write_primitive_refsubexpfin(
1885       wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1886       WIENER_FILT_TAP2_SUBEXP_K,
1887       ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1888       wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1889   memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1890 }
1891 
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1892 static inline void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1893                                         SgrprojInfo *ref_sgrproj_info,
1894                                         aom_writer *wb) {
1895   aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1896   const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1897 
1898   if (params->r[0] == 0) {
1899     assert(sgrproj_info->xqd[0] == 0);
1900     aom_write_primitive_refsubexpfin(
1901         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1902         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1903         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1904   } else if (params->r[1] == 0) {
1905     aom_write_primitive_refsubexpfin(
1906         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1907         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1908         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1909   } else {
1910     aom_write_primitive_refsubexpfin(
1911         wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1912         ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1913         sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1914     aom_write_primitive_refsubexpfin(
1915         wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1916         ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1917         sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1918   }
1919 
1920   memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1921 }
1922 
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,int runit_idx,aom_writer * const w,int plane,FRAME_COUNTS * counts)1923 static inline void loop_restoration_write_sb_coeffs(
1924     const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
1925     aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1926   const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx];
1927   const RestorationInfo *rsi = cm->rst_info + plane;
1928   RestorationType frame_rtype = rsi->frame_restoration_type;
1929   assert(frame_rtype != RESTORE_NONE);
1930 
1931   (void)counts;
1932   assert(!cm->features.all_lossless);
1933 
1934   const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1935   WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1936   SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1937   RestorationType unit_rtype = rui->restoration_type;
1938 
1939   if (frame_rtype == RESTORE_SWITCHABLE) {
1940     aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1941                      RESTORE_SWITCHABLE_TYPES);
1942 #if CONFIG_ENTROPY_STATS
1943     ++counts->switchable_restore[unit_rtype];
1944 #endif
1945     switch (unit_rtype) {
1946       case RESTORE_WIENER:
1947 #if DEBUG_LR_COSTING
1948         assert(!memcmp(
1949             ref_wiener_info,
1950             &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info,
1951             sizeof(*ref_wiener_info)));
1952 #endif
1953         write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1954         break;
1955       case RESTORE_SGRPROJ:
1956 #if DEBUG_LR_COSTING
1957         assert(!memcmp(&ref_sgrproj_info->xqd,
1958                        &lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx]
1959                             .sgrproj_info.xqd,
1960                        sizeof(ref_sgrproj_info->xqd)));
1961 #endif
1962         write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1963         break;
1964       default: assert(unit_rtype == RESTORE_NONE); break;
1965     }
1966   } else if (frame_rtype == RESTORE_WIENER) {
1967     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1968                      xd->tile_ctx->wiener_restore_cdf, 2);
1969 #if CONFIG_ENTROPY_STATS
1970     ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1971 #endif
1972     if (unit_rtype != RESTORE_NONE) {
1973 #if DEBUG_LR_COSTING
1974       assert(
1975           !memcmp(ref_wiener_info,
1976                   &lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info,
1977                   sizeof(*ref_wiener_info)));
1978 #endif
1979       write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1980     }
1981   } else if (frame_rtype == RESTORE_SGRPROJ) {
1982     aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1983                      xd->tile_ctx->sgrproj_restore_cdf, 2);
1984 #if CONFIG_ENTROPY_STATS
1985     ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1986 #endif
1987     if (unit_rtype != RESTORE_NONE) {
1988 #if DEBUG_LR_COSTING
1989       assert(!memcmp(
1990           &ref_sgrproj_info->xqd,
1991           &lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd,
1992           sizeof(ref_sgrproj_info->xqd)));
1993 #endif
1994       write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1995     }
1996   }
1997 }
1998 #endif  // !CONFIG_REALTIME_ONLY
1999 
2000 // Only write out the ref delta section if any of the elements
2001 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)2002 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
2003   struct loopfilter *lf = &cm->lf;
2004   if (!lf->mode_ref_delta_update) {
2005     return 0;
2006   }
2007   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2008   int8_t last_ref_deltas[REF_FRAMES];
2009   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2010   if (buf == NULL) {
2011     av1_set_default_ref_deltas(last_ref_deltas);
2012     av1_set_default_mode_deltas(last_mode_deltas);
2013   } else {
2014     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2015     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2016   }
2017   for (int i = 0; i < REF_FRAMES; i++) {
2018     if (lf->ref_deltas[i] != last_ref_deltas[i]) {
2019       return true;
2020     }
2021   }
2022   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2023     if (lf->mode_deltas[i] != last_mode_deltas[i]) {
2024       return true;
2025     }
2026   }
2027   return false;
2028 }
2029 
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2030 static inline void encode_loopfilter(AV1_COMMON *cm,
2031                                      struct aom_write_bit_buffer *wb) {
2032   assert(!cm->features.coded_lossless);
2033   if (cm->features.allow_intrabc) return;
2034   const int num_planes = av1_num_planes(cm);
2035   struct loopfilter *lf = &cm->lf;
2036 
2037   // Encode the loop filter level and type
2038   aom_wb_write_literal(wb, lf->filter_level[0], 6);
2039   aom_wb_write_literal(wb, lf->filter_level[1], 6);
2040   if (num_planes > 1) {
2041     if (lf->filter_level[0] || lf->filter_level[1]) {
2042       aom_wb_write_literal(wb, lf->filter_level_u, 6);
2043       aom_wb_write_literal(wb, lf->filter_level_v, 6);
2044     }
2045   }
2046   aom_wb_write_literal(wb, lf->sharpness_level, 3);
2047 
2048   aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
2049 
2050   // Write out loop filter deltas applied at the MB level based on mode or
2051   // ref frame (if they are enabled), only if there is information to write.
2052   int meaningful = is_mode_ref_delta_meaningful(cm);
2053   aom_wb_write_bit(wb, meaningful);
2054   if (!meaningful) {
2055     return;
2056   }
2057 
2058   const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
2059   int8_t last_ref_deltas[REF_FRAMES];
2060   int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
2061   if (buf == NULL) {
2062     av1_set_default_ref_deltas(last_ref_deltas);
2063     av1_set_default_mode_deltas(last_mode_deltas);
2064   } else {
2065     memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2066     memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2067   }
2068   for (int i = 0; i < REF_FRAMES; i++) {
2069     const int delta = lf->ref_deltas[i];
2070     const int changed = delta != last_ref_deltas[i];
2071     aom_wb_write_bit(wb, changed);
2072     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2073   }
2074   for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2075     const int delta = lf->mode_deltas[i];
2076     const int changed = delta != last_mode_deltas[i];
2077     aom_wb_write_bit(wb, changed);
2078     if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2079   }
2080 }
2081 
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2082 static inline void encode_cdef(const AV1_COMMON *cm,
2083                                struct aom_write_bit_buffer *wb) {
2084   assert(!cm->features.coded_lossless);
2085   if (!cm->seq_params->enable_cdef) return;
2086   if (cm->features.allow_intrabc) return;
2087   const int num_planes = av1_num_planes(cm);
2088   int i;
2089   aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2090   aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2091   for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2092     aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2093                          CDEF_STRENGTH_BITS);
2094     if (num_planes > 1)
2095       aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2096                            CDEF_STRENGTH_BITS);
2097   }
2098 }
2099 
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2100 static inline void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
2101   if (delta_q != 0) {
2102     aom_wb_write_bit(wb, 1);
2103     aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2104   } else {
2105     aom_wb_write_bit(wb, 0);
2106   }
2107 }
2108 
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2109 static inline void encode_quantization(
2110     const CommonQuantParams *const quant_params, int num_planes,
2111     bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2112   aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2113   write_delta_q(wb, quant_params->y_dc_delta_q);
2114   if (num_planes > 1) {
2115     int diff_uv_delta =
2116         (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2117         (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2118     if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2119     write_delta_q(wb, quant_params->u_dc_delta_q);
2120     write_delta_q(wb, quant_params->u_ac_delta_q);
2121     if (diff_uv_delta) {
2122       write_delta_q(wb, quant_params->v_dc_delta_q);
2123       write_delta_q(wb, quant_params->v_ac_delta_q);
2124     }
2125   }
2126   aom_wb_write_bit(wb, quant_params->using_qmatrix);
2127   if (quant_params->using_qmatrix) {
2128     aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2129     aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2130     if (!separate_uv_delta_q)
2131       assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2132     else
2133       aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2134   }
2135 }
2136 
encode_segmentation(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2137 static inline void encode_segmentation(AV1_COMMON *cm,
2138                                        struct aom_write_bit_buffer *wb) {
2139   int i, j;
2140   struct segmentation *seg = &cm->seg;
2141 
2142   aom_wb_write_bit(wb, seg->enabled);
2143   if (!seg->enabled) return;
2144 
2145   // Write update flags
2146   if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
2147     aom_wb_write_bit(wb, seg->update_map);
2148     if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
2149     aom_wb_write_bit(wb, seg->update_data);
2150   }
2151 
2152   // Segmentation data
2153   if (seg->update_data) {
2154     for (i = 0; i < MAX_SEGMENTS; i++) {
2155       for (j = 0; j < SEG_LVL_MAX; j++) {
2156         const int active = segfeature_active(seg, i, j);
2157         aom_wb_write_bit(wb, active);
2158         if (active) {
2159           const int data_max = av1_seg_feature_data_max(j);
2160           const int data_min = -data_max;
2161           const int ubits = get_unsigned_bits(data_max);
2162           const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2163 
2164           if (av1_is_segfeature_signed(j)) {
2165             aom_wb_write_inv_signed_literal(wb, data, ubits);
2166           } else {
2167             aom_wb_write_literal(wb, data, ubits);
2168           }
2169         }
2170       }
2171     }
2172   }
2173 }
2174 
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2175 static inline void write_frame_interp_filter(InterpFilter filter,
2176                                              struct aom_write_bit_buffer *wb) {
2177   aom_wb_write_bit(wb, filter == SWITCHABLE);
2178   if (filter != SWITCHABLE)
2179     aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2180 }
2181 
2182 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2183 static inline void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2184                                     int v) {
2185   const int l = get_unsigned_bits(n);
2186   const int m = (1 << l) - n;
2187   if (l == 0) return;
2188   if (v < m) {
2189     aom_wb_write_literal(wb, v, l - 1);
2190   } else {
2191     aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2192     aom_wb_write_literal(wb, (v - m) & 1, 1);
2193   }
2194 }
2195 
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2196 static inline void write_tile_info_max_tile(const AV1_COMMON *const cm,
2197                                             struct aom_write_bit_buffer *wb) {
2198   int width_sb =
2199       CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
2200   int height_sb =
2201       CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
2202   int size_sb, i;
2203   const CommonTileParams *const tiles = &cm->tiles;
2204 
2205   aom_wb_write_bit(wb, tiles->uniform_spacing);
2206 
2207   if (tiles->uniform_spacing) {
2208     int ones = tiles->log2_cols - tiles->min_log2_cols;
2209     while (ones--) {
2210       aom_wb_write_bit(wb, 1);
2211     }
2212     if (tiles->log2_cols < tiles->max_log2_cols) {
2213       aom_wb_write_bit(wb, 0);
2214     }
2215 
2216     // rows
2217     ones = tiles->log2_rows - tiles->min_log2_rows;
2218     while (ones--) {
2219       aom_wb_write_bit(wb, 1);
2220     }
2221     if (tiles->log2_rows < tiles->max_log2_rows) {
2222       aom_wb_write_bit(wb, 0);
2223     }
2224   } else {
2225     // Explicit tiles with configurable tile widths and heights
2226     // columns
2227     for (i = 0; i < tiles->cols; i++) {
2228       size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2229       wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2230       width_sb -= size_sb;
2231     }
2232     assert(width_sb == 0);
2233 
2234     // rows
2235     for (i = 0; i < tiles->rows; i++) {
2236       size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2237       wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2238                        size_sb - 1);
2239       height_sb -= size_sb;
2240     }
2241     assert(height_sb == 0);
2242   }
2243 }
2244 
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2245 static inline void write_tile_info(const AV1_COMMON *const cm,
2246                                    struct aom_write_bit_buffer *saved_wb,
2247                                    struct aom_write_bit_buffer *wb) {
2248   write_tile_info_max_tile(cm, wb);
2249 
2250   *saved_wb = *wb;
2251   if (cm->tiles.rows * cm->tiles.cols > 1) {
2252     // tile id used for cdf update
2253     aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2254     // Number of bytes in tile size - 1
2255     aom_wb_write_literal(wb, 3, 2);
2256   }
2257 }
2258 
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2259 static inline void write_ext_tile_info(const AV1_COMMON *const cm,
2260                                        struct aom_write_bit_buffer *saved_wb,
2261                                        struct aom_write_bit_buffer *wb) {
2262   // This information is stored as a separate byte.
2263   int mod = wb->bit_offset % CHAR_BIT;
2264   if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2265   assert(aom_wb_is_byte_aligned(wb));
2266 
2267   *saved_wb = *wb;
2268   if (cm->tiles.rows * cm->tiles.cols > 1) {
2269     // Note that the last item in the uncompressed header is the data
2270     // describing tile configuration.
2271     // Number of bytes in tile column size - 1
2272     aom_wb_write_literal(wb, 0, 2);
2273     // Number of bytes in tile size - 1
2274     aom_wb_write_literal(wb, 0, 2);
2275   }
2276 }
2277 
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2278 static inline int find_identical_tile(
2279     const int tile_row, const int tile_col,
2280     TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2281   const MV32 candidate_offset[1] = { { 1, 0 } };
2282   const uint8_t *const cur_tile_data =
2283       tile_buffers[tile_row][tile_col].data + 4;
2284   const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2285 
2286   int i;
2287 
2288   if (tile_row == 0) return 0;
2289 
2290   // (TODO: yunqingwang) For now, only above tile is checked and used.
2291   // More candidates such as left tile can be added later.
2292   for (i = 0; i < 1; i++) {
2293     int row_offset = candidate_offset[0].row;
2294     int col_offset = candidate_offset[0].col;
2295     int row = tile_row - row_offset;
2296     int col = tile_col - col_offset;
2297     const uint8_t *tile_data;
2298     TileBufferEnc *candidate;
2299 
2300     if (row < 0 || col < 0) continue;
2301 
2302     const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2303 
2304     // Read out tile-copy-mode bit:
2305     if ((tile_hdr >> 31) == 1) {
2306       // The candidate is a copy tile itself: the offset is stored in bits
2307       // 30 through 24 inclusive.
2308       row_offset += (tile_hdr >> 24) & 0x7f;
2309       row = tile_row - row_offset;
2310     }
2311 
2312     candidate = &tile_buffers[row][col];
2313 
2314     if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2315 
2316     tile_data = candidate->data + 4;
2317 
2318     if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2319 
2320     // Identical tile found
2321     assert(row_offset > 0);
2322     return row_offset;
2323   }
2324 
2325   // No identical tile found
2326   return 0;
2327 }
2328 
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2329 static inline void write_render_size(const AV1_COMMON *cm,
2330                                      struct aom_write_bit_buffer *wb) {
2331   const int scaling_active = av1_resize_scaled(cm);
2332   aom_wb_write_bit(wb, scaling_active);
2333   if (scaling_active) {
2334     aom_wb_write_literal(wb, cm->render_width - 1, 16);
2335     aom_wb_write_literal(wb, cm->render_height - 1, 16);
2336   }
2337 }
2338 
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2339 static inline void write_superres_scale(const AV1_COMMON *const cm,
2340                                         struct aom_write_bit_buffer *wb) {
2341   const SequenceHeader *const seq_params = cm->seq_params;
2342   if (!seq_params->enable_superres) {
2343     assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2344     return;
2345   }
2346 
2347   // First bit is whether to to scale or not
2348   if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2349     aom_wb_write_bit(wb, 0);  // no scaling
2350   } else {
2351     aom_wb_write_bit(wb, 1);  // scaling, write scale factor
2352     assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2353     assert(cm->superres_scale_denominator <
2354            SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2355     aom_wb_write_literal(
2356         wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2357         SUPERRES_SCALE_BITS);
2358   }
2359 }
2360 
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2361 static inline void write_frame_size(const AV1_COMMON *cm,
2362                                     int frame_size_override,
2363                                     struct aom_write_bit_buffer *wb) {
2364   const int coded_width = cm->superres_upscaled_width - 1;
2365   const int coded_height = cm->superres_upscaled_height - 1;
2366 
2367   if (frame_size_override) {
2368     const SequenceHeader *seq_params = cm->seq_params;
2369     int num_bits_width = seq_params->num_bits_width;
2370     int num_bits_height = seq_params->num_bits_height;
2371     aom_wb_write_literal(wb, coded_width, num_bits_width);
2372     aom_wb_write_literal(wb, coded_height, num_bits_height);
2373   }
2374 
2375   write_superres_scale(cm, wb);
2376   write_render_size(cm, wb);
2377 }
2378 
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2379 static inline void write_frame_size_with_refs(const AV1_COMMON *const cm,
2380                                               struct aom_write_bit_buffer *wb) {
2381   int found = 0;
2382 
2383   MV_REFERENCE_FRAME ref_frame;
2384   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2385     const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2386 
2387     if (cfg != NULL) {
2388       found = cm->superres_upscaled_width == cfg->y_crop_width &&
2389               cm->superres_upscaled_height == cfg->y_crop_height;
2390       found &= cm->render_width == cfg->render_width &&
2391                cm->render_height == cfg->render_height;
2392     }
2393     aom_wb_write_bit(wb, found);
2394     if (found) {
2395       write_superres_scale(cm, wb);
2396       break;
2397     }
2398   }
2399 
2400   if (!found) {
2401     int frame_size_override = 1;  // Always equal to 1 in this function
2402     write_frame_size(cm, frame_size_override, wb);
2403   }
2404 }
2405 
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2406 static inline void write_profile(BITSTREAM_PROFILE profile,
2407                                  struct aom_write_bit_buffer *wb) {
2408   assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2409   aom_wb_write_literal(wb, profile, PROFILE_BITS);
2410 }
2411 
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2412 static inline void write_bitdepth(const SequenceHeader *const seq_params,
2413                                   struct aom_write_bit_buffer *wb) {
2414   // Profile 0/1: [0] for 8 bit, [1]  10-bit
2415   // Profile   2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2416   aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2417   if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2418     aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2419   }
2420 }
2421 
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2422 static inline void write_color_config(const SequenceHeader *const seq_params,
2423                                       struct aom_write_bit_buffer *wb) {
2424   write_bitdepth(seq_params, wb);
2425   const int is_monochrome = seq_params->monochrome;
2426   // monochrome bit
2427   if (seq_params->profile != PROFILE_1)
2428     aom_wb_write_bit(wb, is_monochrome);
2429   else
2430     assert(!is_monochrome);
2431   if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2432       seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2433       seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2434     aom_wb_write_bit(wb, 0);  // No color description present
2435   } else {
2436     aom_wb_write_bit(wb, 1);  // Color description present
2437     aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2438     aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2439     aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2440   }
2441   if (is_monochrome) {
2442     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2443     aom_wb_write_bit(wb, seq_params->color_range);
2444     return;
2445   }
2446   if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2447       seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2448       seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2449     assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2450     assert(seq_params->profile == PROFILE_1 ||
2451            (seq_params->profile == PROFILE_2 &&
2452             seq_params->bit_depth == AOM_BITS_12));
2453   } else {
2454     // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2455     aom_wb_write_bit(wb, seq_params->color_range);
2456     if (seq_params->profile == PROFILE_0) {
2457       // 420 only
2458       assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2459     } else if (seq_params->profile == PROFILE_1) {
2460       // 444 only
2461       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2462     } else if (seq_params->profile == PROFILE_2) {
2463       if (seq_params->bit_depth == AOM_BITS_12) {
2464         // 420, 444 or 422
2465         aom_wb_write_bit(wb, seq_params->subsampling_x);
2466         if (seq_params->subsampling_x == 0) {
2467           assert(seq_params->subsampling_y == 0 &&
2468                  "4:4:0 subsampling not allowed in AV1");
2469         } else {
2470           aom_wb_write_bit(wb, seq_params->subsampling_y);
2471         }
2472       } else {
2473         // 422 only
2474         assert(seq_params->subsampling_x == 1 &&
2475                seq_params->subsampling_y == 0);
2476       }
2477     }
2478     if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2479       assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2480     }
2481     if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2482       aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2483     }
2484   }
2485   aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2486 }
2487 
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2488 static inline void write_timing_info_header(
2489     const aom_timing_info_t *const timing_info,
2490     struct aom_write_bit_buffer *wb) {
2491   aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2492   aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2493   aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2494   if (timing_info->equal_picture_interval) {
2495     aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2496   }
2497 }
2498 
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2499 static inline void write_decoder_model_info(
2500     const aom_dec_model_info_t *const decoder_model_info,
2501     struct aom_write_bit_buffer *wb) {
2502   aom_wb_write_literal(
2503       wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2504   aom_wb_write_unsigned_literal(
2505       wb, decoder_model_info->num_units_in_decoding_tick, 32);
2506   aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2507                        5);
2508   aom_wb_write_literal(
2509       wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2510 }
2511 
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2512 static inline void write_dec_model_op_parameters(
2513     const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2514     struct aom_write_bit_buffer *wb) {
2515   aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2516                                 buffer_delay_length);
2517   aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2518                                 buffer_delay_length);
2519   aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2520 }
2521 
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2522 static inline void write_tu_pts_info(AV1_COMMON *const cm,
2523                                      struct aom_write_bit_buffer *wb) {
2524   aom_wb_write_unsigned_literal(
2525       wb, cm->frame_presentation_time,
2526       cm->seq_params->decoder_model_info.frame_presentation_time_length);
2527 }
2528 
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2529 static inline void write_film_grain_params(const AV1_COMP *const cpi,
2530                                            struct aom_write_bit_buffer *wb) {
2531   const AV1_COMMON *const cm = &cpi->common;
2532   const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2533   aom_wb_write_bit(wb, pars->apply_grain);
2534   if (!pars->apply_grain) return;
2535 
2536   aom_wb_write_literal(wb, pars->random_seed, 16);
2537 
2538   if (cm->current_frame.frame_type == INTER_FRAME)
2539     aom_wb_write_bit(wb, pars->update_parameters);
2540 
2541   if (!pars->update_parameters) {
2542     int ref_frame, ref_idx;
2543     for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2544       ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2545       assert(ref_idx != INVALID_IDX);
2546       const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2547       if (buf->film_grain_params_present &&
2548           aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2549         break;
2550       }
2551     }
2552     assert(ref_frame < REF_FRAMES);
2553     aom_wb_write_literal(wb, ref_idx, 3);
2554     return;
2555   }
2556 
2557   // Scaling functions parameters
2558   aom_wb_write_literal(wb, pars->num_y_points, 4);  // max 14
2559   for (int i = 0; i < pars->num_y_points; i++) {
2560     aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2561     aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2562   }
2563 
2564   if (!cm->seq_params->monochrome) {
2565     aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2566   } else {
2567     assert(!pars->chroma_scaling_from_luma);
2568   }
2569 
2570   if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
2571       ((cm->seq_params->subsampling_x == 1) &&
2572        (cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
2573     assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2574   } else {
2575     aom_wb_write_literal(wb, pars->num_cb_points, 4);  // max 10
2576     for (int i = 0; i < pars->num_cb_points; i++) {
2577       aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2578       aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2579     }
2580 
2581     aom_wb_write_literal(wb, pars->num_cr_points, 4);  // max 10
2582     for (int i = 0; i < pars->num_cr_points; i++) {
2583       aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2584       aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2585     }
2586   }
2587 
2588   aom_wb_write_literal(wb, pars->scaling_shift - 8, 2);  // 8 + value
2589 
2590   // AR coefficients
2591   // Only sent if the corresponsing scaling function has
2592   // more than 0 points
2593 
2594   aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2595 
2596   int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2597   int num_pos_chroma = num_pos_luma;
2598   if (pars->num_y_points > 0) ++num_pos_chroma;
2599 
2600   if (pars->num_y_points)
2601     for (int i = 0; i < num_pos_luma; i++)
2602       aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2603 
2604   if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2605     for (int i = 0; i < num_pos_chroma; i++)
2606       aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2607 
2608   if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2609     for (int i = 0; i < num_pos_chroma; i++)
2610       aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2611 
2612   aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2);  // 8 + value
2613 
2614   aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2615 
2616   if (pars->num_cb_points) {
2617     aom_wb_write_literal(wb, pars->cb_mult, 8);
2618     aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2619     aom_wb_write_literal(wb, pars->cb_offset, 9);
2620   }
2621 
2622   if (pars->num_cr_points) {
2623     aom_wb_write_literal(wb, pars->cr_mult, 8);
2624     aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2625     aom_wb_write_literal(wb, pars->cr_offset, 9);
2626   }
2627 
2628   aom_wb_write_bit(wb, pars->overlap_flag);
2629 
2630   aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2631 }
2632 
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2633 static inline void write_sb_size(const SequenceHeader *const seq_params,
2634                                  struct aom_write_bit_buffer *wb) {
2635   (void)seq_params;
2636   (void)wb;
2637   assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2638   assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2639   assert(seq_params->sb_size == BLOCK_128X128 ||
2640          seq_params->sb_size == BLOCK_64X64);
2641   aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2642 }
2643 
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2644 static inline void write_sequence_header(const SequenceHeader *const seq_params,
2645                                          struct aom_write_bit_buffer *wb) {
2646   aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2647   aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2648   aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2649                        seq_params->num_bits_width);
2650   aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2651                        seq_params->num_bits_height);
2652 
2653   if (!seq_params->reduced_still_picture_hdr) {
2654     aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2655     if (seq_params->frame_id_numbers_present_flag) {
2656       // We must always have delta_frame_id_length < frame_id_length,
2657       // in order for a frame to be referenced with a unique delta.
2658       // Avoid wasting bits by using a coding that enforces this restriction.
2659       aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2660       aom_wb_write_literal(
2661           wb,
2662           seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2663           3);
2664     }
2665   }
2666 
2667   write_sb_size(seq_params, wb);
2668 
2669   aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2670   aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2671 
2672   if (!seq_params->reduced_still_picture_hdr) {
2673     aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2674     aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2675     aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2676     aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2677 
2678     aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2679 
2680     if (seq_params->order_hint_info.enable_order_hint) {
2681       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2682       aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2683     }
2684     if (seq_params->force_screen_content_tools == 2) {
2685       aom_wb_write_bit(wb, 1);
2686     } else {
2687       aom_wb_write_bit(wb, 0);
2688       aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2689     }
2690     if (seq_params->force_screen_content_tools > 0) {
2691       if (seq_params->force_integer_mv == 2) {
2692         aom_wb_write_bit(wb, 1);
2693       } else {
2694         aom_wb_write_bit(wb, 0);
2695         aom_wb_write_bit(wb, seq_params->force_integer_mv);
2696       }
2697     } else {
2698       assert(seq_params->force_integer_mv == 2);
2699     }
2700     if (seq_params->order_hint_info.enable_order_hint)
2701       aom_wb_write_literal(
2702           wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2703   }
2704 
2705   aom_wb_write_bit(wb, seq_params->enable_superres);
2706   aom_wb_write_bit(wb, seq_params->enable_cdef);
2707   aom_wb_write_bit(wb, seq_params->enable_restoration);
2708 }
2709 
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2710 static inline void write_global_motion_params(
2711     const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2712     struct aom_write_bit_buffer *wb, int allow_hp) {
2713   const TransformationType type = params->wmtype;
2714 
2715   // As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
2716   // type models. Check here that we don't accidentally pick one somehow.
2717   // See comments in gm_get_motion_vector() for details on the bug we're
2718   // working around here
2719   assert(type != TRANSLATION);
2720 
2721   aom_wb_write_bit(wb, type != IDENTITY);
2722   if (type != IDENTITY) {
2723     aom_wb_write_bit(wb, type == ROTZOOM);
2724     if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2725   }
2726 
2727   if (type >= ROTZOOM) {
2728     aom_wb_write_signed_primitive_refsubexpfin(
2729         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2730         (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2731             (1 << GM_ALPHA_PREC_BITS),
2732         (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2733     aom_wb_write_signed_primitive_refsubexpfin(
2734         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2735         (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2736         (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2737   }
2738 
2739   if (type >= AFFINE) {
2740     aom_wb_write_signed_primitive_refsubexpfin(
2741         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2742         (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2743         (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2744     aom_wb_write_signed_primitive_refsubexpfin(
2745         wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2746         (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2747             (1 << GM_ALPHA_PREC_BITS),
2748         (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2749   }
2750 
2751   if (type >= TRANSLATION) {
2752     const int trans_bits = (type == TRANSLATION)
2753                                ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2754                                : GM_ABS_TRANS_BITS;
2755     const int trans_prec_diff = (type == TRANSLATION)
2756                                     ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2757                                     : GM_TRANS_PREC_DIFF;
2758     aom_wb_write_signed_primitive_refsubexpfin(
2759         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2760         (ref_params->wmmat[0] >> trans_prec_diff),
2761         (params->wmmat[0] >> trans_prec_diff));
2762     aom_wb_write_signed_primitive_refsubexpfin(
2763         wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2764         (ref_params->wmmat[1] >> trans_prec_diff),
2765         (params->wmmat[1] >> trans_prec_diff));
2766   }
2767 }
2768 
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2769 static inline void write_global_motion(AV1_COMP *cpi,
2770                                        struct aom_write_bit_buffer *wb) {
2771   AV1_COMMON *const cm = &cpi->common;
2772   int frame;
2773   for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2774     const WarpedMotionParams *ref_params =
2775         cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2776                        : &default_warp_params;
2777     write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2778                                cm->features.allow_high_precision_mv);
2779     // TODO(sarahparker, debargha): The logic in the commented out code below
2780     // does not work currently and causes mismatches when resize is on.
2781     // Fix it before turning the optimization back on.
2782     /*
2783     YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2784     if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2785         cpi->source->y_crop_height == ref_buf->y_crop_height) {
2786       write_global_motion_params(&cm->global_motion[frame],
2787                                  &cm->prev_frame->global_motion[frame], wb,
2788                                  cm->features.allow_high_precision_mv);
2789     } else {
2790       assert(cm->global_motion[frame].wmtype == IDENTITY &&
2791              "Invalid warp type for frames of different resolutions");
2792     }
2793     */
2794     /*
2795     printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2796            cm->current_frame.frame_number, cm->show_frame, frame,
2797            cm->global_motion[frame].wmmat[0],
2798            cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2799            cm->global_motion[frame].wmmat[3]);
2800            */
2801   }
2802 }
2803 
check_frame_refs_short_signaling(AV1_COMMON * const cm,bool enable_ref_short_signaling)2804 static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
2805                                             bool enable_ref_short_signaling) {
2806   // In rtc case when res < 360p and speed >= 9, we turn on
2807   // frame_refs_short_signaling if it won't break the decoder.
2808   if (enable_ref_short_signaling) {
2809     const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2810     const int base =
2811         1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2812 
2813     const int order_hint_group_cur =
2814         cm->current_frame.display_order_hint / base;
2815     const int order_hint_group_gld =
2816         cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
2817     const int relative_dist = cm->current_frame.order_hint -
2818                               cm->ref_frame_map[gld_map_idx]->order_hint;
2819 
2820     // If current frame and GOLDEN frame are in the same order_hint group, and
2821     // they are not far apart (i.e., > 64 frames), then return 1.
2822     if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
2823         relative_dist <= 64) {
2824       return 1;
2825     }
2826     return 0;
2827   }
2828 
2829   // Check whether all references are distinct frames.
2830   const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL };
2831   int num_refs = 0;
2832   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2833     const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2834     if (buf != NULL) {
2835       int seen = 0;
2836       for (int i = 0; i < num_refs; i++) {
2837         if (seen_bufs[i] == buf) {
2838           seen = 1;
2839           break;
2840         }
2841       }
2842       if (!seen) seen_bufs[num_refs++] = buf;
2843     }
2844   }
2845 
2846   // We only turn on frame_refs_short_signaling when all references are
2847   // distinct.
2848   if (num_refs < INTER_REFS_PER_FRAME) {
2849     // It indicates that there exist more than one reference frame pointing to
2850     // the same reference buffer, i.e. two or more references are duplicate.
2851     return 0;
2852   }
2853 
2854   // Check whether the encoder side ref frame choices are aligned with that to
2855   // be derived at the decoder side.
2856   int remapped_ref_idx_decoder[REF_FRAMES];
2857 
2858   const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2859   const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2860 
2861   // Set up the frame refs mapping indexes according to the
2862   // frame_refs_short_signaling policy.
2863   av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2864 
2865   // We only turn on frame_refs_short_signaling when the encoder side decision
2866   // on ref frames is identical to that at the decoder side.
2867   int frame_refs_short_signaling = 1;
2868   for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2869     // Compare the buffer index between two reference frames indexed
2870     // respectively by the encoder and the decoder side decisions.
2871     RefCntBuffer *ref_frame_buf_new = NULL;
2872     if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2873       ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2874     }
2875     if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2876       frame_refs_short_signaling = 0;
2877       break;
2878     }
2879   }
2880 
2881 #if 0   // For debug
2882   printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2883   printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2884   for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2885     printf("enc_ref(map_idx=%d)=%d, vs. "
2886         "dec_ref(map_idx=%d)=%d\n",
2887         get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2888         cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2889         ref_frame);
2890   }
2891 #endif  // 0
2892 
2893   return frame_refs_short_signaling;
2894 }
2895 
2896 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2897 static inline void write_uncompressed_header_obu(
2898     AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
2899     struct aom_write_bit_buffer *wb) {
2900   AV1_COMMON *const cm = &cpi->common;
2901   const SequenceHeader *const seq_params = cm->seq_params;
2902   const CommonQuantParams *quant_params = &cm->quant_params;
2903   CurrentFrame *const current_frame = &cm->current_frame;
2904   FeatureFlags *const features = &cm->features;
2905 
2906   if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
2907       !seq_params->order_hint_info.enable_order_hint ||
2908       seq_params->order_hint_info.enable_ref_frame_mvs) {
2909     current_frame->frame_refs_short_signaling = 0;
2910   } else {
2911     current_frame->frame_refs_short_signaling = 1;
2912   }
2913 
2914   if (seq_params->still_picture) {
2915     assert(cm->show_existing_frame == 0);
2916     assert(cm->show_frame == 1);
2917     assert(current_frame->frame_type == KEY_FRAME);
2918   }
2919   if (!seq_params->reduced_still_picture_hdr) {
2920     if (encode_show_existing_frame(cm)) {
2921       aom_wb_write_bit(wb, 1);  // show_existing_frame
2922       aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2923 
2924       if (seq_params->decoder_model_info_present_flag &&
2925           seq_params->timing_info.equal_picture_interval == 0) {
2926         write_tu_pts_info(cm, wb);
2927       }
2928       if (seq_params->frame_id_numbers_present_flag) {
2929         int frame_id_len = seq_params->frame_id_length;
2930         int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2931         aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2932       }
2933       return;
2934     } else {
2935       aom_wb_write_bit(wb, 0);  // show_existing_frame
2936     }
2937 
2938     aom_wb_write_literal(wb, current_frame->frame_type, 2);
2939 
2940     aom_wb_write_bit(wb, cm->show_frame);
2941     if (cm->show_frame) {
2942       if (seq_params->decoder_model_info_present_flag &&
2943           seq_params->timing_info.equal_picture_interval == 0)
2944         write_tu_pts_info(cm, wb);
2945     } else {
2946       aom_wb_write_bit(wb, cm->showable_frame);
2947     }
2948     if (frame_is_sframe(cm)) {
2949       assert(features->error_resilient_mode);
2950     } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2951       aom_wb_write_bit(wb, features->error_resilient_mode);
2952     }
2953   }
2954   aom_wb_write_bit(wb, features->disable_cdf_update);
2955 
2956   if (seq_params->force_screen_content_tools == 2) {
2957     aom_wb_write_bit(wb, features->allow_screen_content_tools);
2958   } else {
2959     assert(features->allow_screen_content_tools ==
2960            seq_params->force_screen_content_tools);
2961   }
2962 
2963   if (features->allow_screen_content_tools) {
2964     if (seq_params->force_integer_mv == 2) {
2965       aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2966     } else {
2967       assert(features->cur_frame_force_integer_mv ==
2968              seq_params->force_integer_mv);
2969     }
2970   } else {
2971     assert(features->cur_frame_force_integer_mv == 0);
2972   }
2973 
2974   int frame_size_override_flag = 0;
2975 
2976   if (seq_params->reduced_still_picture_hdr) {
2977     assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2978            cm->superres_upscaled_height == seq_params->max_frame_height);
2979   } else {
2980     if (seq_params->frame_id_numbers_present_flag) {
2981       int frame_id_len = seq_params->frame_id_length;
2982       aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2983     }
2984 
2985     if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2986         cm->superres_upscaled_height > seq_params->max_frame_height) {
2987       aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2988                          "Frame dimensions are larger than the maximum values");
2989     }
2990 
2991     frame_size_override_flag =
2992         frame_is_sframe(cm)
2993             ? 1
2994             : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2995                cm->superres_upscaled_height != seq_params->max_frame_height);
2996     if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2997 
2998     if (seq_params->order_hint_info.enable_order_hint)
2999       aom_wb_write_literal(
3000           wb, current_frame->order_hint,
3001           seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3002 
3003     if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
3004       aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
3005     }
3006   }
3007 
3008   if (seq_params->decoder_model_info_present_flag) {
3009     aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
3010     if (cpi->ppi->buffer_removal_time_present) {
3011       for (int op_num = 0;
3012            op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
3013         if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
3014           if (seq_params->operating_point_idc[op_num] == 0 ||
3015               ((seq_params->operating_point_idc[op_num] >>
3016                 cm->temporal_layer_id) &
3017                    0x1 &&
3018                (seq_params->operating_point_idc[op_num] >>
3019                 (cm->spatial_layer_id + 8)) &
3020                    0x1)) {
3021             aom_wb_write_unsigned_literal(
3022                 wb, cm->buffer_removal_times[op_num],
3023                 seq_params->decoder_model_info.buffer_removal_time_length);
3024             cm->buffer_removal_times[op_num]++;
3025             if (cm->buffer_removal_times[op_num] == 0) {
3026               aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
3027                                  "buffer_removal_time overflowed");
3028             }
3029           }
3030         }
3031       }
3032     }
3033   }
3034 
3035   // Shown keyframes and switch-frames automatically refreshes all reference
3036   // frames.  For all other frame types, we need to write refresh_frame_flags.
3037   if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
3038       current_frame->frame_type == INTER_FRAME ||
3039       current_frame->frame_type == INTRA_ONLY_FRAME)
3040     aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
3041 
3042   if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
3043     // Write all ref frame order hints if error_resilient_mode == 1
3044     if (features->error_resilient_mode &&
3045         seq_params->order_hint_info.enable_order_hint) {
3046       for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
3047         aom_wb_write_literal(
3048             wb, cm->ref_frame_map[ref_idx]->order_hint,
3049             seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
3050       }
3051     }
3052   }
3053 
3054   if (current_frame->frame_type == KEY_FRAME) {
3055     write_frame_size(cm, frame_size_override_flag, wb);
3056     assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3057     if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3058       aom_wb_write_bit(wb, features->allow_intrabc);
3059   } else {
3060     if (current_frame->frame_type == INTRA_ONLY_FRAME) {
3061       write_frame_size(cm, frame_size_override_flag, wb);
3062       assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
3063       if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
3064         aom_wb_write_bit(wb, features->allow_intrabc);
3065     } else if (current_frame->frame_type == INTER_FRAME ||
3066                frame_is_sframe(cm)) {
3067       MV_REFERENCE_FRAME ref_frame;
3068 
3069       // NOTE: Error resilient mode turns off frame_refs_short_signaling
3070       //       automatically.
3071 #define FRAME_REFS_SHORT_SIGNALING 0
3072 #if FRAME_REFS_SHORT_SIGNALING
3073       current_frame->frame_refs_short_signaling =
3074           seq_params->order_hint_info.enable_order_hint;
3075 #endif  // FRAME_REFS_SHORT_SIGNALING
3076 
3077       if (current_frame->frame_refs_short_signaling) {
3078         //    In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
3079         //    we turn on frame_refs_short_signaling when the current frame and
3080         //    golden frame are in the same order_hint group, and their relative
3081         //    distance is <= 64 (in order to be decodable).
3082 
3083         //    For other cases, an example solution for encoder-side
3084         //    implementation on frame_refs_short_signaling is also provided in
3085         //    this function, where frame_refs_short_signaling is only turned on
3086         //    when the encoder side decision on ref frames is identical to that
3087         //    at the decoder side.
3088 
3089         current_frame->frame_refs_short_signaling =
3090             check_frame_refs_short_signaling(
3091                 cm, cpi->sf.rt_sf.enable_ref_short_signaling);
3092       }
3093 
3094       if (seq_params->order_hint_info.enable_order_hint)
3095         aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3096 
3097       if (current_frame->frame_refs_short_signaling) {
3098         const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3099         aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3100 
3101         const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3102         aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3103       }
3104       int first_ref_map_idx = INVALID_IDX;
3105       if (cpi->ppi->rtc_ref.set_ref_frame_config) {
3106         for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3107           if (cpi->ppi->rtc_ref.reference[ref_frame - 1] == 1) {
3108             first_ref_map_idx = cpi->ppi->rtc_ref.ref_idx[ref_frame - 1];
3109             break;
3110           }
3111         }
3112       }
3113       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3114         assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3115         if (!current_frame->frame_refs_short_signaling) {
3116           if (cpi->ppi->rtc_ref.set_ref_frame_config &&
3117               first_ref_map_idx != INVALID_IDX &&
3118               cpi->svc.number_spatial_layers == 1 &&
3119               !seq_params->order_hint_info.enable_order_hint) {
3120             // For the usage of set_ref_frame_config:
3121             // for any reference not used set their ref_map_idx
3122             // to the first used reference.
3123             const int map_idx = cpi->ppi->rtc_ref.reference[ref_frame - 1]
3124                                     ? get_ref_frame_map_idx(cm, ref_frame)
3125                                     : first_ref_map_idx;
3126             aom_wb_write_literal(wb, map_idx, REF_FRAMES_LOG2);
3127           } else {
3128             aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3129                                  REF_FRAMES_LOG2);
3130           }
3131         }
3132         if (seq_params->frame_id_numbers_present_flag) {
3133           int i = get_ref_frame_map_idx(cm, ref_frame);
3134           int frame_id_len = seq_params->frame_id_length;
3135           int diff_len = seq_params->delta_frame_id_length;
3136           int delta_frame_id_minus_1 =
3137               ((cm->current_frame_id - cm->ref_frame_id[i] +
3138                 (1 << frame_id_len)) %
3139                (1 << frame_id_len)) -
3140               1;
3141           if (delta_frame_id_minus_1 < 0 ||
3142               delta_frame_id_minus_1 >= (1 << diff_len)) {
3143             aom_internal_error(cm->error, AOM_CODEC_ERROR,
3144                                "Invalid delta_frame_id_minus_1");
3145           }
3146           aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3147         }
3148       }
3149 
3150       if (!features->error_resilient_mode && frame_size_override_flag) {
3151         write_frame_size_with_refs(cm, wb);
3152       } else {
3153         write_frame_size(cm, frame_size_override_flag, wb);
3154       }
3155 
3156       if (!features->cur_frame_force_integer_mv)
3157         aom_wb_write_bit(wb, features->allow_high_precision_mv);
3158       write_frame_interp_filter(features->interp_filter, wb);
3159       aom_wb_write_bit(wb, features->switchable_motion_mode);
3160       if (frame_might_allow_ref_frame_mvs(cm)) {
3161         aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3162       } else {
3163         assert(features->allow_ref_frame_mvs == 0);
3164       }
3165     }
3166   }
3167 
3168   const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3169                               !(features->disable_cdf_update);
3170   if (cm->tiles.large_scale)
3171     assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3172 
3173   if (might_bwd_adapt) {
3174     aom_wb_write_bit(
3175         wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3176   }
3177 
3178   write_tile_info(cm, saved_wb, wb);
3179   encode_quantization(quant_params, av1_num_planes(cm),
3180                       cm->seq_params->separate_uv_delta_q, wb);
3181   encode_segmentation(cm, wb);
3182 
3183   const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3184   if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3185   if (quant_params->base_qindex > 0) {
3186     aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3187     if (delta_q_info->delta_q_present_flag) {
3188       aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3189       xd->current_base_qindex = quant_params->base_qindex;
3190       if (features->allow_intrabc)
3191         assert(delta_q_info->delta_lf_present_flag == 0);
3192       else
3193         aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3194       if (delta_q_info->delta_lf_present_flag) {
3195         aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3196         aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3197         av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3198       }
3199     }
3200   }
3201 
3202   if (features->all_lossless) {
3203     assert(!av1_superres_scaled(cm));
3204   } else {
3205     if (!features->coded_lossless) {
3206       encode_loopfilter(cm, wb);
3207       encode_cdef(cm, wb);
3208     }
3209     encode_restoration_mode(cm, wb);
3210   }
3211 
3212   // Write TX mode
3213   if (features->coded_lossless)
3214     assert(features->tx_mode == ONLY_4X4);
3215   else
3216     aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3217 
3218   if (!frame_is_intra_only(cm)) {
3219     const int use_hybrid_pred =
3220         current_frame->reference_mode == REFERENCE_MODE_SELECT;
3221 
3222     aom_wb_write_bit(wb, use_hybrid_pred);
3223   }
3224 
3225   if (current_frame->skip_mode_info.skip_mode_allowed)
3226     aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3227 
3228   if (frame_might_allow_warped_motion(cm))
3229     aom_wb_write_bit(wb, features->allow_warped_motion);
3230   else
3231     assert(!features->allow_warped_motion);
3232 
3233   aom_wb_write_bit(wb, features->reduced_tx_set_used);
3234 
3235   if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3236 
3237   if (seq_params->film_grain_params_present &&
3238       (cm->show_frame || cm->showable_frame))
3239     write_film_grain_params(cpi, wb);
3240 
3241   if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3242 }
3243 
choose_size_bytes(uint32_t size,int spare_msbs)3244 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3245   // Choose the number of bytes required to represent size, without
3246   // using the 'spare_msbs' number of most significant bits.
3247 
3248   // Make sure we will fit in 4 bytes to start with..
3249   if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3250 
3251   // Normalise to 32 bits
3252   size <<= spare_msbs;
3253 
3254   if (size >> 24 != 0)
3255     return 4;
3256   else if (size >> 16 != 0)
3257     return 3;
3258   else if (size >> 8 != 0)
3259     return 2;
3260   else
3261     return 1;
3262 }
3263 
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3264 static inline void mem_put_varsize(uint8_t *const dst, const int sz,
3265                                    const int val) {
3266   switch (sz) {
3267     case 1: dst[0] = (uint8_t)(val & 0xff); break;
3268     case 2: mem_put_le16(dst, val); break;
3269     case 3: mem_put_le24(dst, val); break;
3270     case 4: mem_put_le32(dst, val); break;
3271     default: assert(0 && "Invalid size"); break;
3272   }
3273 }
3274 
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3275 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3276                        const uint32_t data_size, const uint32_t max_tile_size,
3277                        const uint32_t max_tile_col_size,
3278                        int *const tile_size_bytes,
3279                        int *const tile_col_size_bytes) {
3280   // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3281   int tsb;
3282   int tcsb;
3283 
3284   if (tiles->large_scale) {
3285     // The top bit in the tile size field indicates tile copy mode, so we
3286     // have 1 less bit to code the tile size
3287     tsb = choose_size_bytes(max_tile_size, 1);
3288     tcsb = choose_size_bytes(max_tile_col_size, 0);
3289   } else {
3290     tsb = choose_size_bytes(max_tile_size, 0);
3291     tcsb = 4;  // This is ignored
3292     (void)max_tile_col_size;
3293   }
3294 
3295   assert(tsb > 0);
3296   assert(tcsb > 0);
3297 
3298   *tile_size_bytes = tsb;
3299   *tile_col_size_bytes = tcsb;
3300   if (tsb == 4 && tcsb == 4) return data_size;
3301 
3302   uint32_t wpos = 0;
3303   uint32_t rpos = 0;
3304 
3305   if (tiles->large_scale) {
3306     int tile_row;
3307     int tile_col;
3308 
3309     for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3310       // All but the last column has a column header
3311       if (tile_col < tiles->cols - 1) {
3312         uint32_t tile_col_size = mem_get_le32(dst + rpos);
3313         rpos += 4;
3314 
3315         // Adjust the tile column size by the number of bytes removed
3316         // from the tile size fields.
3317         tile_col_size -= (4 - tsb) * tiles->rows;
3318 
3319         mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3320         wpos += tcsb;
3321       }
3322 
3323       for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3324         // All, including the last row has a header
3325         uint32_t tile_header = mem_get_le32(dst + rpos);
3326         rpos += 4;
3327 
3328         // If this is a copy tile, we need to shift the MSB to the
3329         // top bit of the new width, and there is no data to copy.
3330         if (tile_header >> 31 != 0) {
3331           if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3332           mem_put_varsize(dst + wpos, tsb, tile_header);
3333           wpos += tsb;
3334         } else {
3335           mem_put_varsize(dst + wpos, tsb, tile_header);
3336           wpos += tsb;
3337 
3338           tile_header += AV1_MIN_TILE_SIZE_BYTES;
3339           memmove(dst + wpos, dst + rpos, tile_header);
3340           rpos += tile_header;
3341           wpos += tile_header;
3342         }
3343       }
3344     }
3345 
3346     assert(rpos > wpos);
3347     assert(rpos == data_size);
3348 
3349     return wpos;
3350   }
3351   const int n_tiles = tiles->cols * tiles->rows;
3352   int n;
3353 
3354   for (n = 0; n < n_tiles; n++) {
3355     int tile_size;
3356 
3357     if (n == n_tiles - 1) {
3358       tile_size = data_size - rpos;
3359     } else {
3360       tile_size = mem_get_le32(dst + rpos);
3361       rpos += 4;
3362       mem_put_varsize(dst + wpos, tsb, tile_size);
3363       tile_size += AV1_MIN_TILE_SIZE_BYTES;
3364       wpos += tsb;
3365     }
3366 
3367     memmove(dst + wpos, dst + rpos, tile_size);
3368 
3369     rpos += tile_size;
3370     wpos += tile_size;
3371   }
3372 
3373   assert(rpos > wpos);
3374   assert(rpos == data_size);
3375 
3376   return wpos;
3377 }
3378 
av1_write_obu_header(AV1LevelParams * const level_params,int * frame_header_count,OBU_TYPE obu_type,bool has_nonzero_operating_point_idc,int obu_extension,uint8_t * const dst)3379 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3380                               int *frame_header_count, OBU_TYPE obu_type,
3381                               bool has_nonzero_operating_point_idc,
3382                               int obu_extension, uint8_t *const dst) {
3383   assert(IMPLIES(!has_nonzero_operating_point_idc, obu_extension == 0));
3384 
3385   if (level_params->keep_level_stats &&
3386       (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3387     ++(*frame_header_count);
3388 
3389   uint32_t size = 0;
3390 
3391   // The AV1 spec Version 1.0.0 with Errata 1 has the following requirements on
3392   // the OBU extension header:
3393   //
3394   // 6.4.1. General sequence header OBU semantics:
3395   //   It is a requirement of bitstream conformance that if OperatingPointIdc
3396   //   is equal to 0, then obu_extension_flag is equal to 0 for all OBUs that
3397   //   follow this sequence header until the next sequence header.
3398   //
3399   // 7.5. Ordering of OBUs:
3400   //   If a coded video sequence contains at least one enhancement layer (OBUs
3401   //   with spatial_id greater than 0 or temporal_id greater than 0) then all
3402   //   frame headers and tile group OBUs associated with base (spatial_id
3403   //   equals 0 and temporal_id equals 0) and enhancement layer (spatial_id
3404   //   greater than 0 or temporal_id greater than 0) data must include the OBU
3405   //   extension header.
3406   //
3407   // Set obu_extension_flag to satisfy these requirements.
3408   int obu_extension_flag = 0;
3409   if (has_nonzero_operating_point_idc) {
3410     obu_extension_flag =
3411         (obu_type == OBU_FRAME_HEADER || obu_type == OBU_TILE_GROUP ||
3412          obu_type == OBU_FRAME || obu_type == OBU_REDUNDANT_FRAME_HEADER);
3413   }
3414   const int obu_has_size_field = 1;
3415 
3416   dst[0] = ((int)obu_type << 3) | (obu_extension_flag << 2) |
3417            (obu_has_size_field << 1);
3418   size++;
3419 
3420   if (obu_extension_flag) {
3421     dst[1] = obu_extension & 0xFF;
3422     size++;
3423   }
3424 
3425   return size;
3426 }
3427 
av1_write_uleb_obu_size(size_t obu_payload_size,uint8_t * dest,size_t dest_size)3428 int av1_write_uleb_obu_size(size_t obu_payload_size, uint8_t *dest,
3429                             size_t dest_size) {
3430   size_t coded_obu_size = 0;
3431 
3432   if (aom_uleb_encode(obu_payload_size, dest_size, dest, &coded_obu_size) !=
3433       0) {
3434     return AOM_CODEC_ERROR;
3435   }
3436   if (coded_obu_size != dest_size) {
3437     return AOM_CODEC_ERROR;
3438   }
3439 
3440   return AOM_CODEC_OK;
3441 }
3442 
av1_write_uleb_obu_size_unsafe(size_t obu_payload_size,uint8_t * dest)3443 int av1_write_uleb_obu_size_unsafe(size_t obu_payload_size, uint8_t *dest) {
3444   size_t coded_obu_size = 0;
3445 
3446   if (aom_uleb_encode(obu_payload_size, sizeof(uint32_t), dest,
3447                       &coded_obu_size) != 0) {
3448     return AOM_CODEC_ERROR;
3449   }
3450 
3451   return AOM_CODEC_OK;
3452 }
3453 
3454 // Returns 0 on failure.
obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data,size_t data_size)3455 static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3456                           uint8_t *data, size_t data_size) {
3457   const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3458   const size_t move_dst_offset = obu_header_size + length_field_size;
3459   const size_t move_src_offset = obu_header_size;
3460   const size_t move_size = obu_payload_size;
3461   if (move_size > data_size || move_src_offset > data_size - move_size) {
3462     assert(0 && "obu_memmove: output buffer overflow");
3463     return 0;
3464   }
3465   if (move_dst_offset > data_size - move_size) {
3466     // Buffer full.
3467     return 0;
3468   }
3469   memmove(data + move_dst_offset, data + move_src_offset, move_size);
3470   return length_field_size;
3471 }
3472 
3473 // Deprecated. Use obu_memmove() instead.
obu_memmove_unsafe(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3474 static size_t obu_memmove_unsafe(size_t obu_header_size,
3475                                  size_t obu_payload_size, uint8_t *data) {
3476   const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3477   const size_t move_dst_offset = obu_header_size + length_field_size;
3478   const size_t move_src_offset = obu_header_size;
3479   const size_t move_size = obu_payload_size;
3480   memmove(data + move_dst_offset, data + move_src_offset, move_size);
3481   return length_field_size;
3482 }
3483 
add_trailing_bits(struct aom_write_bit_buffer * wb)3484 static inline void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3485   if (aom_wb_is_byte_aligned(wb)) {
3486     aom_wb_write_literal(wb, 0x80, 8);
3487   } else {
3488     // assumes that the other bits are already 0s
3489     aom_wb_write_bit(wb, 1);
3490   }
3491 }
3492 
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3493 static inline void write_bitstream_level(AV1_LEVEL seq_level_idx,
3494                                          struct aom_write_bit_buffer *wb) {
3495   assert(is_valid_seq_level_idx(seq_level_idx));
3496   aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3497 }
3498 
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst,size_t dst_size)3499 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3500                                        uint8_t *const dst, size_t dst_size) {
3501   // TODO: bug 42302568 - Use dst_size.
3502   (void)dst_size;
3503   struct aom_write_bit_buffer wb = { dst, 0 };
3504   uint32_t size = 0;
3505 
3506   write_profile(seq_params->profile, &wb);
3507 
3508   // Still picture or not
3509   aom_wb_write_bit(&wb, seq_params->still_picture);
3510   assert(IMPLIES(!seq_params->still_picture,
3511                  !seq_params->reduced_still_picture_hdr));
3512   // whether to use reduced still picture header
3513   aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3514 
3515   if (seq_params->reduced_still_picture_hdr) {
3516     assert(seq_params->timing_info_present == 0);
3517     assert(seq_params->decoder_model_info_present_flag == 0);
3518     assert(seq_params->display_model_info_present_flag == 0);
3519     write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3520   } else {
3521     aom_wb_write_bit(
3522         &wb, seq_params->timing_info_present);  // timing info present flag
3523 
3524     if (seq_params->timing_info_present) {
3525       // timing_info
3526       write_timing_info_header(&seq_params->timing_info, &wb);
3527       aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3528       if (seq_params->decoder_model_info_present_flag) {
3529         write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3530       }
3531     }
3532     aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3533     aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3534                          OP_POINTS_CNT_MINUS_1_BITS);
3535     int i;
3536     for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3537       aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3538                            OP_POINTS_IDC_BITS);
3539       write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3540       if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3541         aom_wb_write_bit(&wb, seq_params->tier[i]);
3542       if (seq_params->decoder_model_info_present_flag) {
3543         aom_wb_write_bit(
3544             &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3545         if (seq_params->op_params[i].decoder_model_param_present_flag) {
3546           write_dec_model_op_parameters(
3547               &seq_params->op_params[i],
3548               seq_params->decoder_model_info
3549                   .encoder_decoder_buffer_delay_length,
3550               &wb);
3551         }
3552       }
3553       if (seq_params->display_model_info_present_flag) {
3554         aom_wb_write_bit(
3555             &wb, seq_params->op_params[i].display_model_param_present_flag);
3556         if (seq_params->op_params[i].display_model_param_present_flag) {
3557           assert(seq_params->op_params[i].initial_display_delay >= 1);
3558           assert(seq_params->op_params[i].initial_display_delay <= 10);
3559           aom_wb_write_literal(
3560               &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3561         }
3562       }
3563     }
3564   }
3565   write_sequence_header(seq_params, &wb);
3566 
3567   write_color_config(seq_params, &wb);
3568 
3569   aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3570 
3571   add_trailing_bits(&wb);
3572 
3573   size = aom_wb_bytes_written(&wb);
3574   return size;
3575 }
3576 
write_frame_header_obu(AV1_COMP * cpi,MACROBLOCKD * const xd,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3577 static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
3578                                        struct aom_write_bit_buffer *saved_wb,
3579                                        uint8_t *const dst,
3580                                        int append_trailing_bits) {
3581   struct aom_write_bit_buffer wb = { dst, 0 };
3582   write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
3583   if (append_trailing_bits) add_trailing_bits(&wb);
3584   return aom_wb_bytes_written(&wb);
3585 }
3586 
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3587 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3588                                         int end_tile, int tiles_log2,
3589                                         int tile_start_and_end_present_flag) {
3590   struct aom_write_bit_buffer wb = { dst, 0 };
3591   uint32_t size = 0;
3592 
3593   if (!tiles_log2) return size;
3594 
3595   aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3596 
3597   if (tile_start_and_end_present_flag) {
3598     aom_wb_write_literal(&wb, start_tile, tiles_log2);
3599     aom_wb_write_literal(&wb, end_tile, tiles_log2);
3600   }
3601 
3602   size = aom_wb_bytes_written(&wb);
3603   return size;
3604 }
3605 
3606 typedef struct {
3607   uint32_t tg_hdr_size;
3608   uint32_t frame_header_size;
3609 } LargeTileFrameOBU;
3610 
3611 // Initialize OBU header for large scale tile case.
init_large_scale_tile_obu_header(AV1_COMP * const cpi,uint8_t ** data,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,LargeTileFrameOBU * lst_obu)3612 static uint32_t init_large_scale_tile_obu_header(
3613     AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
3614     uint8_t obu_extension_header, LargeTileFrameOBU *lst_obu) {
3615   AV1LevelParams *const level_params = &cpi->ppi->level_params;
3616   CurrentFrame *const current_frame = &cpi->common.current_frame;
3617   // For large_scale_tile case, we always have only one tile group, so it can
3618   // be written as an OBU_FRAME.
3619   const OBU_TYPE obu_type = OBU_FRAME;
3620   lst_obu->tg_hdr_size = av1_write_obu_header(
3621       level_params, &cpi->frame_header_count, obu_type,
3622       cpi->common.seq_params->has_nonzero_operating_point_idc,
3623       obu_extension_header, *data);
3624   *data += lst_obu->tg_hdr_size;
3625 
3626   const uint32_t frame_header_size =
3627       write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
3628   *data += frame_header_size;
3629   lst_obu->frame_header_size = frame_header_size;
3630   // (yunqing) This test ensures the correctness of large scale tile coding.
3631   if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
3632     char fn[20] = "./fh";
3633     fn[4] = current_frame->frame_number / 100 + '0';
3634     fn[5] = (current_frame->frame_number % 100) / 10 + '0';
3635     fn[6] = (current_frame->frame_number % 10) + '0';
3636     fn[7] = '\0';
3637     av1_print_uncompressed_frame_header(*data - frame_header_size,
3638                                         frame_header_size, fn);
3639   }
3640   return frame_header_size;
3641 }
3642 
3643 // Write total buffer size and related information into the OBU header for large
3644 // scale tile case.
write_large_scale_tile_obu_size(const CommonTileParams * const tiles,uint8_t * const dst,uint8_t * data,struct aom_write_bit_buffer * saved_wb,LargeTileFrameOBU * const lst_obu,int have_tiles,uint32_t * total_size,int max_tile_size,int max_tile_col_size)3645 static void write_large_scale_tile_obu_size(
3646     const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
3647     struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
3648     int have_tiles, uint32_t *total_size, int max_tile_size,
3649     int max_tile_col_size) {
3650   int tile_size_bytes = 0;
3651   int tile_col_size_bytes = 0;
3652   if (have_tiles) {
3653     *total_size = remux_tiles(
3654         tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
3655         max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
3656     *total_size += lst_obu->frame_header_size;
3657   }
3658 
3659   // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3660   // current tile group size before tile data(include tile column header).
3661   // Tile group size doesn't include the bytes storing tg size.
3662   *total_size += lst_obu->tg_hdr_size;
3663   const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
3664   const size_t length_field_size =
3665       obu_memmove_unsafe(lst_obu->tg_hdr_size, obu_payload_size, dst);
3666   if (av1_write_uleb_obu_size_unsafe(
3667           obu_payload_size, dst + lst_obu->tg_hdr_size) != AOM_CODEC_OK)
3668     assert(0);
3669 
3670   *total_size += (uint32_t)length_field_size;
3671   saved_wb->bit_buffer += length_field_size;
3672 
3673   // Now fill in the gaps in the uncompressed header.
3674   if (have_tiles) {
3675     assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3676     aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3677 
3678     assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3679     aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3680   }
3681 }
3682 
3683 // Store information on each large scale tile in the OBU header.
write_large_scale_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,LargeTileFrameOBU * const lst_obu,int * const largest_tile_id,uint32_t * total_size,const int have_tiles,unsigned int * const max_tile_size,unsigned int * const max_tile_col_size)3684 static void write_large_scale_tile_obu(
3685     AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
3686     int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
3687     unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
3688   AV1_COMMON *const cm = &cpi->common;
3689   const CommonTileParams *const tiles = &cm->tiles;
3690 
3691   TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3692   const int tile_cols = tiles->cols;
3693   const int tile_rows = tiles->rows;
3694   unsigned int tile_size = 0;
3695 
3696   av1_reset_pack_bs_thread_data(&cpi->td);
3697   for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3698     TileInfo tile_info;
3699     const int is_last_col = (tile_col == tile_cols - 1);
3700     const uint32_t col_offset = *total_size;
3701 
3702     av1_tile_set_col(&tile_info, cm, tile_col);
3703 
3704     // The last column does not have a column header
3705     if (!is_last_col) *total_size += 4;
3706 
3707     for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3708       TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3709       const int data_offset = have_tiles ? 4 : 0;
3710       const int tile_idx = tile_row * tile_cols + tile_col;
3711       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3712       av1_tile_set_row(&tile_info, cm, tile_row);
3713       aom_writer mode_bc;
3714 
3715       buf->data = dst + *total_size + lst_obu->tg_hdr_size;
3716 
3717       // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3718       // even for the last one, unless no tiling is used at all.
3719       *total_size += data_offset;
3720       cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3721       mode_bc.allow_update_cdf = !tiles->large_scale;
3722       mode_bc.allow_update_cdf =
3723           mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3724       aom_start_encode(&mode_bc, buf->data + data_offset);
3725       write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
3726       if (aom_stop_encode(&mode_bc) < 0) {
3727         aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes");
3728       }
3729       tile_size = mode_bc.pos;
3730       buf->size = tile_size;
3731 
3732       // Record the maximum tile size we see, so we can compact headers later.
3733       if (tile_size > *max_tile_size) {
3734         *max_tile_size = tile_size;
3735         *largest_tile_id = tile_cols * tile_row + tile_col;
3736       }
3737 
3738       if (have_tiles) {
3739         // tile header: size of this tile, or copy offset
3740         uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3741         const int tile_copy_mode =
3742             ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
3743                                                                            : 0;
3744 
3745         // If tile_copy_mode = 1, check if this tile is a copy tile.
3746         // Very low chances to have copy tiles on the key frames, so don't
3747         // search on key frames to reduce unnecessary search.
3748         if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3749           const int identical_tile_offset =
3750               find_identical_tile(tile_row, tile_col, tile_buffers);
3751 
3752           // Indicate a copy-tile by setting the most significant bit.
3753           // The row-offset to copy from is stored in the highest byte.
3754           // remux_tiles will move these around later
3755           if (identical_tile_offset > 0) {
3756             tile_size = 0;
3757             tile_header = identical_tile_offset | 0x80;
3758             tile_header <<= 24;
3759           }
3760         }
3761 
3762         mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
3763       }
3764 
3765       *total_size += tile_size;
3766     }
3767     if (!is_last_col) {
3768       uint32_t col_size = *total_size - col_offset - 4;
3769       mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
3770 
3771       // Record the maximum tile column size we see.
3772       *max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
3773     }
3774   }
3775   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
3776 }
3777 
3778 // Packs information in the obu header for large scale tiles.
pack_large_scale_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,int * const largest_tile_id)3779 static inline uint32_t pack_large_scale_tiles_in_tg_obus(
3780     AV1_COMP *const cpi, uint8_t *const dst,
3781     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
3782     int *const largest_tile_id) {
3783   AV1_COMMON *const cm = &cpi->common;
3784   const CommonTileParams *const tiles = &cm->tiles;
3785   uint32_t total_size = 0;
3786   unsigned int max_tile_size = 0;
3787   unsigned int max_tile_col_size = 0;
3788   const int have_tiles = tiles->cols * tiles->rows > 1;
3789   uint8_t *data = dst;
3790 
3791   LargeTileFrameOBU lst_obu;
3792 
3793   total_size += init_large_scale_tile_obu_header(
3794       cpi, &data, saved_wb, obu_extension_header, &lst_obu);
3795 
3796   write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
3797                              have_tiles, &max_tile_size, &max_tile_col_size);
3798 
3799   write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
3800                                   have_tiles, &total_size, max_tile_size,
3801                                   max_tile_col_size);
3802 
3803   return total_size;
3804 }
3805 
3806 // Writes obu, tile group and uncompressed headers to bitstream.
av1_write_obu_tg_tile_headers(AV1_COMP * const cpi,MACROBLOCKD * const xd,PackBSParams * const pack_bs_params,const int tile_idx)3807 void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
3808                                    PackBSParams *const pack_bs_params,
3809                                    const int tile_idx) {
3810   AV1_COMMON *const cm = &cpi->common;
3811   const CommonTileParams *const tiles = &cm->tiles;
3812   int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
3813   const int tg_size =
3814       (tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
3815 
3816   // Write Tile group, frame and OBU header
3817   // A new tile group begins at this tile.  Write the obu header and
3818   // tile group header
3819   const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3820   *curr_tg_hdr_size = av1_write_obu_header(
3821       &cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
3822       cm->seq_params->has_nonzero_operating_point_idc,
3823       pack_bs_params->obu_extn_header, pack_bs_params->tile_data_curr);
3824   pack_bs_params->obu_header_size = *curr_tg_hdr_size;
3825 
3826   if (cpi->num_tg == 1)
3827     *curr_tg_hdr_size += write_frame_header_obu(
3828         cpi, xd, pack_bs_params->saved_wb,
3829         pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
3830   *curr_tg_hdr_size += write_tile_group_header(
3831       pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
3832       AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
3833       (tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
3834   *pack_bs_params->total_size += *curr_tg_hdr_size;
3835 }
3836 
3837 // Pack tile data in the bitstream with tile_group, frame
3838 // and OBU header.
av1_pack_tile_info(AV1_COMP * const cpi,ThreadData * const td,PackBSParams * const pack_bs_params)3839 void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
3840                         PackBSParams *const pack_bs_params) {
3841   aom_writer mode_bc;
3842   AV1_COMMON *const cm = &cpi->common;
3843   int tile_row = pack_bs_params->tile_row;
3844   int tile_col = pack_bs_params->tile_col;
3845   uint32_t *const total_size = pack_bs_params->total_size;
3846   TileInfo tile_info;
3847   av1_tile_set_col(&tile_info, cm, tile_col);
3848   av1_tile_set_row(&tile_info, cm, tile_row);
3849   mode_bc.allow_update_cdf = 1;
3850   mode_bc.allow_update_cdf =
3851       mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3852 
3853   unsigned int tile_size;
3854 
3855   const int num_planes = av1_num_planes(cm);
3856   av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
3857 
3858   pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
3859 
3860   // The last tile of the tile group does not have a header.
3861   if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
3862 
3863   // Pack tile data
3864   aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
3865   write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
3866   if (aom_stop_encode(&mode_bc) < 0) {
3867     aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR,
3868                        "Error writing modes");
3869   }
3870   tile_size = mode_bc.pos;
3871   assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3872 
3873   pack_bs_params->buf.size = tile_size;
3874 
3875   // Write tile size
3876   if (!pack_bs_params->is_last_tile_in_tg) {
3877     // size of this tile
3878     mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3879   }
3880 }
3881 
av1_write_last_tile_info(AV1_COMP * const cpi,const FrameHeaderInfo * fh_info,struct aom_write_bit_buffer * saved_wb,size_t * curr_tg_data_size,uint8_t * curr_tg_start,uint32_t * const total_size,uint8_t ** tile_data_start,int * const largest_tile_id,int * const is_first_tg,uint32_t obu_header_size,uint8_t obu_extn_header)3882 void av1_write_last_tile_info(
3883     AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
3884     struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
3885     uint8_t *curr_tg_start, uint32_t *const total_size,
3886     uint8_t **tile_data_start, int *const largest_tile_id,
3887     int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
3888   // write current tile group size
3889   const size_t obu_payload_size = *curr_tg_data_size - obu_header_size;
3890   const size_t length_field_size =
3891       obu_memmove_unsafe(obu_header_size, obu_payload_size, curr_tg_start);
3892   if (av1_write_uleb_obu_size_unsafe(
3893           obu_payload_size, curr_tg_start + obu_header_size) != AOM_CODEC_OK) {
3894     aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
3895                        "av1_write_last_tile_info: output buffer full");
3896   }
3897   *curr_tg_data_size += length_field_size;
3898   *total_size += (uint32_t)length_field_size;
3899   *tile_data_start += length_field_size;
3900   if (cpi->num_tg == 1) {
3901     // if this tg is combined with the frame header then update saved
3902     // frame header base offset according to length field size
3903     saved_wb->bit_buffer += length_field_size;
3904   }
3905 
3906   if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
3907     // Make room for a duplicate Frame Header OBU.
3908     memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
3909             *curr_tg_data_size);
3910 
3911     // Insert a copy of the Frame Header OBU.
3912     memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
3913 
3914     // Force context update tile to be the first tile in error
3915     // resilient mode as the duplicate frame headers will have
3916     // context_update_tile_id set to 0
3917     *largest_tile_id = 0;
3918 
3919     // Rewrite the OBU header to change the OBU type to Redundant Frame
3920     // Header.
3921     av1_write_obu_header(
3922         &cpi->ppi->level_params, &cpi->frame_header_count,
3923         OBU_REDUNDANT_FRAME_HEADER,
3924         cpi->common.seq_params->has_nonzero_operating_point_idc,
3925         obu_extn_header, &curr_tg_start[fh_info->obu_header_byte_offset]);
3926 
3927     *curr_tg_data_size += fh_info->total_length;
3928     *total_size += (uint32_t)fh_info->total_length;
3929   }
3930   *is_first_tg = 0;
3931 }
3932 
av1_reset_pack_bs_thread_data(ThreadData * const td)3933 void av1_reset_pack_bs_thread_data(ThreadData *const td) {
3934   td->coefficient_size = 0;
3935   td->max_mv_magnitude = 0;
3936   av1_zero(td->interp_filter_selected);
3937 }
3938 
av1_accumulate_pack_bs_thread_data(AV1_COMP * const cpi,ThreadData const * td)3939 void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
3940                                         ThreadData const *td) {
3941   int do_max_mv_magnitude_update = 1;
3942   cpi->rc.coefficient_size += td->coefficient_size;
3943 
3944   // Disable max_mv_magnitude update for parallel frames based on update flag.
3945   if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
3946 
3947   if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
3948     cpi->mv_search_params.max_mv_magnitude =
3949         AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
3950 
3951   for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
3952     cpi->common.cur_frame->interp_filter_selected[filter] +=
3953         td->interp_filter_selected[filter];
3954 }
3955 
3956 // Store information related to each default tile in the OBU header.
write_tile_obu(AV1_COMP * const cpi,uint8_t * const dst,uint32_t * total_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extn_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id,unsigned int * max_tile_size,uint32_t * const obu_header_size,uint8_t ** tile_data_start)3957 static void write_tile_obu(
3958     AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
3959     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
3960     const FrameHeaderInfo *fh_info, int *const largest_tile_id,
3961     unsigned int *max_tile_size, uint32_t *const obu_header_size,
3962     uint8_t **tile_data_start) {
3963   AV1_COMMON *const cm = &cpi->common;
3964   MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
3965   const CommonTileParams *const tiles = &cm->tiles;
3966   const int tile_cols = tiles->cols;
3967   const int tile_rows = tiles->rows;
3968   // Fixed size tile groups for the moment
3969   const int num_tg_hdrs = cpi->num_tg;
3970   const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3971   int tile_count = 0;
3972   size_t curr_tg_data_size = 0;
3973   uint8_t *tile_data_curr = dst;
3974   int new_tg = 1;
3975   int is_first_tg = 1;
3976 
3977   av1_reset_pack_bs_thread_data(&cpi->td);
3978   for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
3979     for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
3980       const int tile_idx = tile_row * tile_cols + tile_col;
3981       TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3982 
3983       int is_last_tile_in_tg = 0;
3984       if (new_tg) {
3985         tile_data_curr = dst + *total_size;
3986         tile_count = 0;
3987       }
3988       tile_count++;
3989 
3990       if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
3991         is_last_tile_in_tg = 1;
3992 
3993       xd->tile_ctx = &this_tile->tctx;
3994 
3995       // PackBSParams stores all parameters required to pack tile and header
3996       // info.
3997       PackBSParams pack_bs_params;
3998       pack_bs_params.dst = dst;
3999       pack_bs_params.curr_tg_hdr_size = 0;
4000       pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
4001       pack_bs_params.new_tg = new_tg;
4002       pack_bs_params.obu_extn_header = obu_extn_header;
4003       pack_bs_params.obu_header_size = 0;
4004       pack_bs_params.saved_wb = saved_wb;
4005       pack_bs_params.tile_col = tile_col;
4006       pack_bs_params.tile_row = tile_row;
4007       pack_bs_params.tile_data_curr = tile_data_curr;
4008       pack_bs_params.total_size = total_size;
4009 
4010       if (new_tg)
4011         av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
4012 
4013       av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
4014 
4015       if (new_tg) {
4016         curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
4017         *tile_data_start += pack_bs_params.curr_tg_hdr_size;
4018         *obu_header_size = pack_bs_params.obu_header_size;
4019         new_tg = 0;
4020       }
4021       if (is_last_tile_in_tg) new_tg = 1;
4022 
4023       curr_tg_data_size +=
4024           (pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
4025 
4026       if (pack_bs_params.buf.size > *max_tile_size) {
4027         *largest_tile_id = tile_idx;
4028         *max_tile_size = (unsigned int)pack_bs_params.buf.size;
4029       }
4030 
4031       if (is_last_tile_in_tg)
4032         av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
4033                                  tile_data_curr, total_size, tile_data_start,
4034                                  largest_tile_id, &is_first_tg,
4035                                  *obu_header_size, obu_extn_header);
4036       *total_size += (uint32_t)pack_bs_params.buf.size;
4037     }
4038   }
4039   av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
4040 }
4041 
4042 // Write total buffer size and related information into the OBU header for
4043 // default tile case.
write_tile_obu_size(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,int largest_tile_id,uint32_t * const total_size,unsigned int max_tile_size,uint32_t obu_header_size,uint8_t * tile_data_start)4044 static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
4045                                 struct aom_write_bit_buffer *saved_wb,
4046                                 int largest_tile_id, uint32_t *const total_size,
4047                                 unsigned int max_tile_size,
4048                                 uint32_t obu_header_size,
4049                                 uint8_t *tile_data_start) {
4050   const CommonTileParams *const tiles = &cpi->common.tiles;
4051 
4052   // Fill in context_update_tile_id indicating the tile to use for the
4053   // cdf update. The encoder currently sets it to the largest tile
4054   // (but is up to the encoder)
4055   aom_wb_overwrite_literal(saved_wb, largest_tile_id,
4056                            (tiles->log2_cols + tiles->log2_rows));
4057   // If more than one tile group. tile_size_bytes takes the default value 4
4058   // and does not need to be set. For a single tile group it is set in the
4059   // section below.
4060   if (cpi->num_tg != 1) return;
4061   int tile_size_bytes = 4, unused;
4062   const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
4063   const uint32_t tile_data_size = *total_size - tile_data_offset;
4064 
4065   *total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
4066                             max_tile_size, 0, &tile_size_bytes, &unused);
4067   *total_size += tile_data_offset;
4068   assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
4069 
4070   aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
4071 
4072   // Update the OBU length if remux_tiles() reduced the size.
4073   uint64_t payload_size;
4074   size_t length_field_size;
4075   int res =
4076       aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
4077                       &payload_size, &length_field_size);
4078   assert(res == 0);
4079   (void)res;
4080 
4081   const uint64_t new_payload_size =
4082       *total_size - obu_header_size - length_field_size;
4083   if (new_payload_size != payload_size) {
4084     size_t new_length_field_size;
4085     res = aom_uleb_encode(new_payload_size, length_field_size,
4086                           dst + obu_header_size, &new_length_field_size);
4087     assert(res == 0);
4088     if (new_length_field_size < length_field_size) {
4089       const size_t src_offset = obu_header_size + length_field_size;
4090       const size_t dst_offset = obu_header_size + new_length_field_size;
4091       memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
4092       *total_size -= (int)(length_field_size - new_length_field_size);
4093     }
4094   }
4095 }
4096 
4097 // As per the experiments, single-thread bitstream packing is better for
4098 // frames with a smaller bitstream size. This behavior is due to setup time
4099 // overhead of multithread function would be more than that of time required
4100 // to pack the smaller bitstream of such frames. This function computes the
4101 // number of required number of workers based on setup time overhead and job
4102 // dispatch time overhead for given tiles and available workers.
calc_pack_bs_mt_workers(const TileDataEnc * tile_data,int num_tiles,int avail_workers,bool pack_bs_mt_enabled)4103 static int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
4104                                    int avail_workers, bool pack_bs_mt_enabled) {
4105   if (!pack_bs_mt_enabled) return 1;
4106 
4107   uint64_t frame_abs_sum_level = 0;
4108 
4109   for (int idx = 0; idx < num_tiles; idx++)
4110     frame_abs_sum_level += tile_data[idx].abs_sum_level;
4111 
4112   int ideal_num_workers = 1;
4113   const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
4114   float max_sum = 0.0;
4115 
4116   for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
4117     const float fas_per_worker_const =
4118         ((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
4119     const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
4120     const float this_sum = fas_per_worker_const - setup_time_const -
4121                            job_disp_time_const / num_workers;
4122 
4123     if (this_sum > max_sum) {
4124       max_sum = this_sum;
4125       ideal_num_workers = num_workers;
4126     }
4127   }
4128   return ideal_num_workers;
4129 }
4130 
pack_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4131 static inline uint32_t pack_tiles_in_tg_obus(
4132     AV1_COMP *const cpi, uint8_t *const dst,
4133     struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
4134     const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
4135   const CommonTileParams *const tiles = &cpi->common.tiles;
4136   uint32_t total_size = 0;
4137   unsigned int max_tile_size = 0;
4138   uint32_t obu_header_size = 0;
4139   uint8_t *tile_data_start = dst;
4140   const int tile_cols = tiles->cols;
4141   const int tile_rows = tiles->rows;
4142   const int num_tiles = tile_rows * tile_cols;
4143 
4144   const int num_workers = calc_pack_bs_mt_workers(
4145       cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
4146       cpi->mt_info.pack_bs_mt_enabled);
4147 
4148   if (num_workers > 1) {
4149     av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
4150                           fh_info, largest_tile_id, &max_tile_size,
4151                           &obu_header_size, &tile_data_start, num_workers);
4152   } else {
4153     write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
4154                    fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
4155                    &tile_data_start);
4156   }
4157 
4158   if (num_tiles > 1)
4159     write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
4160                         max_tile_size, obu_header_size, tile_data_start);
4161   return total_size;
4162 }
4163 
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,size_t dst_size,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)4164 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
4165                                        size_t dst_size,
4166                                        struct aom_write_bit_buffer *saved_wb,
4167                                        uint8_t obu_extension_header,
4168                                        const FrameHeaderInfo *fh_info,
4169                                        int *const largest_tile_id) {
4170   // TODO: bug 42302568 - Use dst_size.
4171   (void)dst_size;
4172   AV1_COMMON *const cm = &cpi->common;
4173   const CommonTileParams *const tiles = &cm->tiles;
4174   *largest_tile_id = 0;
4175 
4176   // Select the coding strategy (temporal or spatial)
4177   if (cm->seg.enabled && cm->seg.update_map) {
4178     if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
4179       cm->seg.temporal_update = 0;
4180     } else {
4181       cm->seg.temporal_update = 1;
4182       if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
4183           cpi->td.rd_counts.seg_tmp_pred_cost[1])
4184         cm->seg.temporal_update = 0;
4185     }
4186   }
4187 
4188   if (tiles->large_scale)
4189     return pack_large_scale_tiles_in_tg_obus(
4190         cpi, dst, saved_wb, obu_extension_header, largest_tile_id);
4191 
4192   return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
4193                                fh_info, largest_tile_id);
4194 }
4195 
4196 // Returns the number of bytes written on success. Returns 0 on failure.
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst,size_t dst_size)4197 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
4198                                      uint8_t *const dst, size_t dst_size) {
4199   size_t coded_metadata_size = 0;
4200   const uint64_t metadata_type = (uint64_t)metadata->type;
4201   if (aom_uleb_encode(metadata_type, dst_size, dst, &coded_metadata_size) !=
4202       0) {
4203     return 0;
4204   }
4205   if (coded_metadata_size + metadata->sz + 1 > dst_size) {
4206     return 0;
4207   }
4208   memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
4209   // Add trailing bits.
4210   dst[coded_metadata_size + metadata->sz] = 0x80;
4211   return coded_metadata_size + metadata->sz + 1;
4212 }
4213 
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst,size_t dst_size)4214 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst,
4215                                        size_t dst_size) {
4216   if (!cpi->source) return 0;
4217   AV1_COMMON *const cm = &cpi->common;
4218   aom_metadata_array_t *arr = cpi->source->metadata;
4219   if (!arr) return 0;
4220   size_t obu_header_size = 0;
4221   size_t obu_payload_size = 0;
4222   size_t total_bytes_written = 0;
4223   size_t length_field_size = 0;
4224   for (size_t i = 0; i < arr->sz; i++) {
4225     aom_metadata_t *current_metadata = arr->metadata_array[i];
4226     if (current_metadata && current_metadata->payload) {
4227       if ((cm->current_frame.frame_type == KEY_FRAME &&
4228            current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
4229           (cm->current_frame.frame_type != KEY_FRAME &&
4230            current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
4231           current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
4232         // OBU header is either one or two bytes.
4233         if (dst_size < 2) {
4234           aom_internal_error(cm->error, AOM_CODEC_ERROR,
4235                              "av1_write_metadata_array: output buffer full");
4236         }
4237         obu_header_size = av1_write_obu_header(
4238             &cpi->ppi->level_params, &cpi->frame_header_count, OBU_METADATA,
4239             cm->seq_params->has_nonzero_operating_point_idc, 0, dst);
4240         assert(obu_header_size <= 2);
4241         obu_payload_size =
4242             av1_write_metadata_obu(current_metadata, dst + obu_header_size,
4243                                    dst_size - obu_header_size);
4244         if (obu_payload_size == 0) {
4245           aom_internal_error(cm->error, AOM_CODEC_ERROR,
4246                              "av1_write_metadata_array: output buffer full");
4247         }
4248         length_field_size =
4249             obu_memmove(obu_header_size, obu_payload_size, dst, dst_size);
4250         if (length_field_size == 0) {
4251           aom_internal_error(cm->error, AOM_CODEC_ERROR,
4252                              "av1_write_metadata_array: output buffer full");
4253         }
4254         if (av1_write_uleb_obu_size(obu_payload_size, dst + obu_header_size,
4255                                     length_field_size) == AOM_CODEC_OK) {
4256           const size_t obu_size =
4257               obu_header_size + length_field_size + obu_payload_size;
4258           dst += obu_size;
4259           dst_size -= obu_size;
4260           total_bytes_written += obu_size;
4261         } else {
4262           aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
4263                              "av1_write_metadata_array: output buffer full");
4264         }
4265       }
4266     }
4267   }
4268   return total_bytes_written;
4269 }
4270 
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t dst_size,size_t * size,int * const largest_tile_id)4271 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t dst_size,
4272                        size_t *size, int *const largest_tile_id) {
4273   uint8_t *data = dst;
4274   size_t data_size = dst_size;
4275   AV1_COMMON *const cm = &cpi->common;
4276   AV1LevelParams *const level_params = &cpi->ppi->level_params;
4277   uint32_t obu_header_size = 0;
4278   uint32_t obu_payload_size = 0;
4279   FrameHeaderInfo fh_info = { NULL, 0, 0 };
4280   const uint8_t obu_extension_header =
4281       cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
4282 
4283   // If no non-zero delta_q has been used, reset delta_q_present_flag
4284   if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
4285     cm->delta_q_info.delta_q_present_flag = 0;
4286   }
4287 
4288 #if CONFIG_BITSTREAM_DEBUG
4289   bitstream_queue_reset_write();
4290 #endif
4291 
4292   cpi->frame_header_count = 0;
4293 
4294   // The TD is now written outside the frame encode loop
4295 
4296   // write sequence header obu at each key frame or intra_only frame,
4297   // preceded by 4-byte size
4298   if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
4299       cm->current_frame.frame_type == KEY_FRAME) {
4300     // OBU header is either one or two bytes.
4301     if (data_size < 2) {
4302       return AOM_CODEC_ERROR;
4303     }
4304     obu_header_size = av1_write_obu_header(
4305         level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER,
4306         cm->seq_params->has_nonzero_operating_point_idc, 0, data);
4307     assert(obu_header_size <= 2);
4308     obu_payload_size = av1_write_sequence_header_obu(
4309         cm->seq_params, data + obu_header_size, data_size - obu_header_size);
4310     const size_t length_field_size =
4311         obu_memmove(obu_header_size, obu_payload_size, data, data_size);
4312     if (length_field_size == 0) {
4313       return AOM_CODEC_ERROR;
4314     }
4315     if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
4316                                 length_field_size) != AOM_CODEC_OK) {
4317       return AOM_CODEC_ERROR;
4318     }
4319 
4320     const size_t bytes_written =
4321         obu_header_size + length_field_size + obu_payload_size;
4322     data += bytes_written;
4323     data_size -= bytes_written;
4324   }
4325 
4326   // write metadata obus before the frame obu that has the show_frame flag set
4327   if (cm->show_frame) {
4328     const size_t bytes_written = av1_write_metadata_array(cpi, data, data_size);
4329     data += bytes_written;
4330     data_size -= bytes_written;
4331   }
4332 
4333   const int write_frame_header =
4334       (cpi->num_tg > 1 || encode_show_existing_frame(cm));
4335   struct aom_write_bit_buffer saved_wb = { NULL, 0 };
4336   size_t length_field = 0;
4337   if (write_frame_header) {
4338     // Write Frame Header OBU.
4339     fh_info.frame_header = data;
4340     // OBU header is either one or two bytes.
4341     if (data_size < 2) {
4342       return AOM_CODEC_ERROR;
4343     }
4344     obu_header_size = av1_write_obu_header(
4345         level_params, &cpi->frame_header_count, OBU_FRAME_HEADER,
4346         cm->seq_params->has_nonzero_operating_point_idc, obu_extension_header,
4347         data);
4348     // TODO: bug 42302568 - Pass data_size - obu_header_size to
4349     // write_frame_header_obu().
4350     obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
4351                                               data + obu_header_size, 1);
4352 
4353     length_field =
4354         obu_memmove(obu_header_size, obu_payload_size, data, data_size);
4355     if (length_field == 0) {
4356       return AOM_CODEC_ERROR;
4357     }
4358     if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
4359                                 length_field) != AOM_CODEC_OK) {
4360       return AOM_CODEC_ERROR;
4361     }
4362 
4363     fh_info.obu_header_byte_offset = 0;
4364     fh_info.total_length = obu_header_size + length_field + obu_payload_size;
4365     // Make sure it is safe to cast fh_info.total_length to uint32_t.
4366     if (fh_info.total_length > UINT32_MAX) {
4367       return AOM_CODEC_ERROR;
4368     }
4369     data += fh_info.total_length;
4370     data_size -= fh_info.total_length;
4371   }
4372 
4373   if (!encode_show_existing_frame(cm)) {
4374     // Since length_field is determined adaptively after frame header
4375     // encoding, saved_wb must be adjusted accordingly.
4376     if (saved_wb.bit_buffer != NULL) {
4377       saved_wb.bit_buffer += length_field;
4378     }
4379 
4380     //  Each tile group obu will be preceded by 4-byte size of the tile group
4381     //  obu
4382     const size_t bytes_written =
4383         write_tiles_in_tg_obus(cpi, data, data_size, &saved_wb,
4384                                obu_extension_header, &fh_info, largest_tile_id);
4385     data += bytes_written;
4386     data_size -= bytes_written;
4387   }
4388   *size = data - dst;
4389   (void)data_size;
4390   return AOM_CODEC_OK;
4391 }
4392