1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13
14 #include "av1/common/cfl.h"
15 #include "av1/common/common.h"
16 #include "av1/common/entropy.h"
17 #include "av1/common/entropymode.h"
18 #include "av1/common/entropymv.h"
19 #include "av1/common/mvref_common.h"
20 #include "av1/common/pred_common.h"
21 #include "av1/common/reconinter.h"
22 #include "av1/common/reconintra.h"
23 #include "av1/common/seg_common.h"
24 #include "av1/common/warped_motion.h"
25
26 #include "av1/decoder/decodeframe.h"
27 #include "av1/decoder/decodemv.h"
28
29 #include "aom_dsp/aom_dsp_common.h"
30
31 #define ACCT_STR __func__
32
33 #define DEC_MISMATCH_DEBUG 0
34
read_intra_mode(aom_reader * r,aom_cdf_prob * cdf)35 static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
36 return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR);
37 }
38
read_cdef(AV1_COMMON * cm,aom_reader * r,MACROBLOCKD * const xd)39 static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) {
40 const int skip_txfm = xd->mi[0]->skip_txfm;
41 if (cm->features.coded_lossless) return;
42 if (cm->features.allow_intrabc) {
43 assert(cm->cdef_info.cdef_bits == 0);
44 return;
45 }
46
47 // At the start of a superblock, mark that we haven't yet read CDEF strengths
48 // for any of the CDEF units contained in this superblock.
49 const int sb_mask = (cm->seq_params->mib_size - 1);
50 const int mi_row_in_sb = (xd->mi_row & sb_mask);
51 const int mi_col_in_sb = (xd->mi_col & sb_mask);
52 if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
53 xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
54 xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
55 }
56
57 // CDEF unit size is 64x64 irrespective of the superblock size.
58 const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
59
60 // Find index of this CDEF unit in this superblock.
61 const int index_mask = cdef_size;
62 const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
63 const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
64 const int index = (cm->seq_params->sb_size == BLOCK_128X128)
65 ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
66 : 0;
67
68 // Read CDEF strength from the first non-skip coding block in this CDEF unit.
69 if (!xd->cdef_transmitted[index] && !skip_txfm) {
70 // CDEF strength for this CDEF unit needs to be read into the MB_MODE_INFO
71 // of the 1st block in this CDEF unit.
72 const int first_block_mask = ~(cdef_size - 1);
73 CommonModeInfoParams *const mi_params = &cm->mi_params;
74 const int grid_idx =
75 get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
76 xd->mi_col & first_block_mask);
77 MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
78 mbmi->cdef_strength =
79 aom_read_literal(r, cm->cdef_info.cdef_bits, ACCT_STR);
80 xd->cdef_transmitted[index] = true;
81 }
82 }
83
read_delta_qindex(AV1_COMMON * cm,const MACROBLOCKD * xd,aom_reader * r,MB_MODE_INFO * const mbmi)84 static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd,
85 aom_reader *r, MB_MODE_INFO *const mbmi) {
86 int sign, abs, reduced_delta_qindex = 0;
87 BLOCK_SIZE bsize = mbmi->bsize;
88 const int b_col = xd->mi_col & (cm->seq_params->mib_size - 1);
89 const int b_row = xd->mi_row & (cm->seq_params->mib_size - 1);
90 const int read_delta_q_flag = (b_col == 0 && b_row == 0);
91 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
92
93 if ((bsize != cm->seq_params->sb_size || mbmi->skip_txfm == 0) &&
94 read_delta_q_flag) {
95 abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR);
96 const int smallval = (abs < DELTA_Q_SMALL);
97
98 if (!smallval) {
99 const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
100 const int thr = (1 << rem_bits) + 1;
101 abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
102 }
103
104 if (abs) {
105 sign = aom_read_bit(r, ACCT_STR);
106 } else {
107 sign = 1;
108 }
109
110 reduced_delta_qindex = sign ? -abs : abs;
111 }
112 return reduced_delta_qindex;
113 }
read_delta_lflevel(const AV1_COMMON * const cm,aom_reader * r,aom_cdf_prob * const cdf,const MB_MODE_INFO * const mbmi,int mi_col,int mi_row)114 static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r,
115 aom_cdf_prob *const cdf,
116 const MB_MODE_INFO *const mbmi, int mi_col,
117 int mi_row) {
118 int reduced_delta_lflevel = 0;
119 const BLOCK_SIZE bsize = mbmi->bsize;
120 const int b_col = mi_col & (cm->seq_params->mib_size - 1);
121 const int b_row = mi_row & (cm->seq_params->mib_size - 1);
122 const int read_delta_lf_flag = (b_col == 0 && b_row == 0);
123
124 if ((bsize != cm->seq_params->sb_size || mbmi->skip_txfm == 0) &&
125 read_delta_lf_flag) {
126 int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR);
127 const int smallval = (abs < DELTA_LF_SMALL);
128 if (!smallval) {
129 const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
130 const int thr = (1 << rem_bits) + 1;
131 abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
132 }
133 const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1;
134 reduced_delta_lflevel = sign ? -abs : abs;
135 }
136 return reduced_delta_lflevel;
137 }
138
read_intra_mode_uv(FRAME_CONTEXT * ec_ctx,aom_reader * r,CFL_ALLOWED_TYPE cfl_allowed,PREDICTION_MODE y_mode)139 static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx,
140 aom_reader *r,
141 CFL_ALLOWED_TYPE cfl_allowed,
142 PREDICTION_MODE y_mode) {
143 const UV_PREDICTION_MODE uv_mode =
144 aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode],
145 UV_INTRA_MODES - !cfl_allowed, ACCT_STR);
146 return uv_mode;
147 }
148
read_cfl_alphas(FRAME_CONTEXT * const ec_ctx,aom_reader * r,int8_t * signs_out)149 static uint8_t read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r,
150 int8_t *signs_out) {
151 const int8_t joint_sign =
152 aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs");
153 uint8_t idx = 0;
154 // Magnitudes are only coded for nonzero values
155 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
156 aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
157 idx = (uint8_t)aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u")
158 << CFL_ALPHABET_SIZE_LOG2;
159 }
160 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
161 aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
162 idx += (uint8_t)aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v");
163 }
164 *signs_out = joint_sign;
165 return idx;
166 }
167
read_interintra_mode(MACROBLOCKD * xd,aom_reader * r,int size_group)168 static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r,
169 int size_group) {
170 const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol(
171 r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES,
172 ACCT_STR);
173 return ii_mode;
174 }
175
read_inter_mode(FRAME_CONTEXT * ec_ctx,aom_reader * r,int16_t ctx)176 static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r,
177 int16_t ctx) {
178 int16_t mode_ctx = ctx & NEWMV_CTX_MASK;
179 int is_newmv, is_zeromv, is_refmv;
180 is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
181 if (is_newmv) return NEWMV;
182
183 mode_ctx = (ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
184 is_zeromv =
185 aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0;
186 if (is_zeromv) return GLOBALMV;
187
188 mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
189 is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
190 if (is_refmv)
191 return NEARESTMV;
192 else
193 return NEARMV;
194 }
195
read_drl_idx(FRAME_CONTEXT * ec_ctx,DecoderCodingBlock * dcb,MB_MODE_INFO * mbmi,aom_reader * r)196 static void read_drl_idx(FRAME_CONTEXT *ec_ctx, DecoderCodingBlock *dcb,
197 MB_MODE_INFO *mbmi, aom_reader *r) {
198 MACROBLOCKD *const xd = &dcb->xd;
199 uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
200 mbmi->ref_mv_idx = 0;
201 if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
202 for (int idx = 0; idx < 2; ++idx) {
203 if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
204 uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
205 int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
206 mbmi->ref_mv_idx = idx + drl_idx;
207 if (!drl_idx) return;
208 }
209 }
210 }
211 if (have_nearmv_in_inter_mode(mbmi->mode)) {
212 // Offset the NEARESTMV mode.
213 // TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV
214 // mode is factored in.
215 for (int idx = 1; idx < 3; ++idx) {
216 if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
217 uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
218 int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
219 mbmi->ref_mv_idx = idx + drl_idx - 1;
220 if (!drl_idx) return;
221 }
222 }
223 }
224 }
225
read_motion_mode(AV1_COMMON * cm,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,aom_reader * r)226 static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
227 MB_MODE_INFO *mbmi, aom_reader *r) {
228 if (cm->features.switchable_motion_mode == 0) return SIMPLE_TRANSLATION;
229 if (mbmi->skip_mode) return SIMPLE_TRANSLATION;
230
231 const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(
232 xd->global_motion, xd, mbmi, cm->features.allow_warped_motion);
233 int motion_mode;
234
235 if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;
236
237 if (last_motion_mode_allowed == OBMC_CAUSAL) {
238 motion_mode =
239 aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->bsize], 2, ACCT_STR);
240 return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
241 } else {
242 motion_mode = aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
243 MOTION_MODES, ACCT_STR);
244 return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
245 }
246 }
247
read_inter_compound_mode(MACROBLOCKD * xd,aom_reader * r,int16_t ctx)248 static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r,
249 int16_t ctx) {
250 const int mode =
251 aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
252 INTER_COMPOUND_MODES, ACCT_STR);
253 assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode));
254 return NEAREST_NEARESTMV + mode;
255 }
256
av1_neg_deinterleave(int diff,int ref,int max)257 int av1_neg_deinterleave(int diff, int ref, int max) {
258 if (!ref) return diff;
259 if (ref >= (max - 1)) return max - diff - 1;
260 if (2 * ref < max) {
261 if (diff <= 2 * ref) {
262 if (diff & 1)
263 return ref + ((diff + 1) >> 1);
264 else
265 return ref - (diff >> 1);
266 }
267 return diff;
268 } else {
269 if (diff <= 2 * (max - ref - 1)) {
270 if (diff & 1)
271 return ref + ((diff + 1) >> 1);
272 else
273 return ref - (diff >> 1);
274 }
275 return max - (diff + 1);
276 }
277 }
278
read_segment_id(AV1_COMMON * const cm,const MACROBLOCKD * const xd,aom_reader * r,int skip)279 static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd,
280 aom_reader *r, int skip) {
281 int cdf_num;
282 const uint8_t pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num, 0);
283 if (skip) return pred;
284
285 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
286 struct segmentation *const seg = &cm->seg;
287 struct segmentation_probs *const segp = &ec_ctx->seg;
288 aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
289 const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR);
290 const int segment_id =
291 av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1);
292
293 if (segment_id < 0 || segment_id > seg->last_active_segid) {
294 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
295 "Corrupted segment_ids");
296 }
297 return segment_id;
298 }
299
dec_get_segment_id(const AV1_COMMON * cm,const uint8_t * segment_ids,int mi_offset,int x_mis,int y_mis)300 static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
301 int mi_offset, int x_mis, int y_mis) {
302 int segment_id = INT_MAX;
303
304 for (int y = 0; y < y_mis; y++)
305 for (int x = 0; x < x_mis; x++)
306 segment_id = AOMMIN(
307 segment_id, segment_ids[mi_offset + y * cm->mi_params.mi_cols + x]);
308
309 assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
310 return segment_id;
311 }
312
read_intra_segment_id(AV1_COMMON * const cm,const MACROBLOCKD * const xd,BLOCK_SIZE bsize,aom_reader * r,int skip)313 static int read_intra_segment_id(AV1_COMMON *const cm,
314 const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
315 aom_reader *r, int skip) {
316 struct segmentation *const seg = &cm->seg;
317 if (!seg->enabled) return 0; // Default for disabled segmentation
318 assert(seg->update_map && !seg->temporal_update);
319
320 const CommonModeInfoParams *const mi_params = &cm->mi_params;
321 const int mi_row = xd->mi_row;
322 const int mi_col = xd->mi_col;
323 const int mi_stride = cm->mi_params.mi_cols;
324 const int mi_offset = mi_row * mi_stride + mi_col;
325 const int bw = mi_size_wide[bsize];
326 const int bh = mi_size_high[bsize];
327 const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
328 const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);
329 const int segment_id = read_segment_id(cm, xd, r, skip);
330 set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride,
331 segment_id);
332 return segment_id;
333 }
334
copy_segment_id(const CommonModeInfoParams * const mi_params,const uint8_t * last_segment_ids,uint8_t * current_segment_ids,int mi_offset,int x_mis,int y_mis)335 static void copy_segment_id(const CommonModeInfoParams *const mi_params,
336 const uint8_t *last_segment_ids,
337 uint8_t *current_segment_ids, int mi_offset,
338 int x_mis, int y_mis) {
339 const int stride = mi_params->mi_cols;
340 if (last_segment_ids) {
341 assert(last_segment_ids != current_segment_ids);
342 for (int y = 0; y < y_mis; y++) {
343 memcpy(¤t_segment_ids[mi_offset + y * stride],
344 &last_segment_ids[mi_offset + y * stride],
345 sizeof(current_segment_ids[0]) * x_mis);
346 }
347 } else {
348 for (int y = 0; y < y_mis; y++) {
349 memset(¤t_segment_ids[mi_offset + y * stride], 0,
350 sizeof(current_segment_ids[0]) * x_mis);
351 }
352 }
353 }
354
get_predicted_segment_id(AV1_COMMON * const cm,int mi_offset,int x_mis,int y_mis)355 static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset,
356 int x_mis, int y_mis) {
357 return cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map,
358 mi_offset, x_mis, y_mis)
359 : 0;
360 }
361
read_inter_segment_id(AV1_COMMON * const cm,MACROBLOCKD * const xd,int preskip,aom_reader * r)362 static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
363 int preskip, aom_reader *r) {
364 struct segmentation *const seg = &cm->seg;
365 const CommonModeInfoParams *const mi_params = &cm->mi_params;
366 MB_MODE_INFO *const mbmi = xd->mi[0];
367 const int mi_row = xd->mi_row;
368 const int mi_col = xd->mi_col;
369 const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
370 const int bw = mi_size_wide[mbmi->bsize];
371 const int bh = mi_size_high[mbmi->bsize];
372
373 // TODO(slavarnway): move x_mis, y_mis into xd ?????
374 const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
375 const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);
376
377 if (!seg->enabled) return 0; // Default for disabled segmentation
378
379 if (!seg->update_map) {
380 copy_segment_id(mi_params, cm->last_frame_seg_map, cm->cur_frame->seg_map,
381 mi_offset, x_mis, y_mis);
382 return get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
383 }
384
385 uint8_t segment_id;
386 const int mi_stride = cm->mi_params.mi_cols;
387 if (preskip) {
388 if (!seg->segid_preskip) return 0;
389 } else {
390 if (mbmi->skip_txfm) {
391 if (seg->temporal_update) {
392 mbmi->seg_id_predicted = 0;
393 }
394 segment_id = read_segment_id(cm, xd, r, 1);
395 set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride,
396 segment_id);
397 return segment_id;
398 }
399 }
400
401 if (seg->temporal_update) {
402 const uint8_t ctx = av1_get_pred_context_seg_id(xd);
403 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
404 struct segmentation_probs *const segp = &ec_ctx->seg;
405 aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx];
406 mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR);
407 if (mbmi->seg_id_predicted) {
408 segment_id = get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
409 } else {
410 segment_id = read_segment_id(cm, xd, r, 0);
411 }
412 } else {
413 segment_id = read_segment_id(cm, xd, r, 0);
414 }
415 set_segment_id(cm->cur_frame->seg_map, mi_offset, x_mis, y_mis, mi_stride,
416 segment_id);
417 return segment_id;
418 }
419
read_skip_mode(AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,aom_reader * r)420 static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
421 aom_reader *r) {
422 if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
423
424 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
425 return 0;
426 }
427
428 if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return 0;
429
430 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
431 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
432 // These features imply single-reference mode, while skip mode implies
433 // compound reference. Hence, the two are mutually exclusive.
434 // In other words, skip_mode is implicitly 0 here.
435 return 0;
436 }
437
438 const int ctx = av1_get_skip_mode_context(xd);
439 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
440 const int skip_mode =
441 aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR);
442 return skip_mode;
443 }
444
read_skip_txfm(AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,aom_reader * r)445 static int read_skip_txfm(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
446 aom_reader *r) {
447 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
448 return 1;
449 } else {
450 const int ctx = av1_get_skip_txfm_context(xd);
451 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
452 const int skip_txfm =
453 aom_read_symbol(r, ec_ctx->skip_txfm_cdfs[ctx], 2, ACCT_STR);
454 return skip_txfm;
455 }
456 }
457
458 // Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1])
459 // and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into
460 // one single sorted list(colors[...]).
merge_colors(uint16_t * colors,uint16_t * cached_colors,int n_colors,int n_cached_colors)461 static void merge_colors(uint16_t *colors, uint16_t *cached_colors,
462 int n_colors, int n_cached_colors) {
463 if (n_cached_colors == 0) return;
464 int cache_idx = 0, trans_idx = n_cached_colors;
465 for (int i = 0; i < n_colors; ++i) {
466 if (cache_idx < n_cached_colors &&
467 (trans_idx >= n_colors ||
468 cached_colors[cache_idx] <= colors[trans_idx])) {
469 colors[i] = cached_colors[cache_idx++];
470 } else {
471 assert(trans_idx < n_colors);
472 colors[i] = colors[trans_idx++];
473 }
474 }
475 }
476
read_palette_colors_y(MACROBLOCKD * const xd,int bit_depth,PALETTE_MODE_INFO * const pmi,aom_reader * r)477 static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth,
478 PALETTE_MODE_INFO *const pmi, aom_reader *r) {
479 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
480 uint16_t cached_colors[PALETTE_MAX_SIZE];
481 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
482 const int n = pmi->palette_size[0];
483 int idx = 0;
484 for (int i = 0; i < n_cache && idx < n; ++i)
485 if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
486 if (idx < n) {
487 const int n_cached_colors = idx;
488 pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
489 if (idx < n) {
490 const int min_bits = bit_depth - 3;
491 int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
492 int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
493 for (; idx < n; ++idx) {
494 assert(range >= 0);
495 const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
496 pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
497 0, (1 << bit_depth) - 1);
498 range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
499 bits = AOMMIN(bits, av1_ceil_log2(range));
500 }
501 }
502 merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors);
503 } else {
504 memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0]));
505 }
506 }
507
read_palette_colors_uv(MACROBLOCKD * const xd,int bit_depth,PALETTE_MODE_INFO * const pmi,aom_reader * r)508 static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth,
509 PALETTE_MODE_INFO *const pmi,
510 aom_reader *r) {
511 const int n = pmi->palette_size[1];
512 // U channel colors.
513 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
514 uint16_t cached_colors[PALETTE_MAX_SIZE];
515 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
516 int idx = 0;
517 for (int i = 0; i < n_cache && idx < n; ++i)
518 if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
519 if (idx < n) {
520 const int n_cached_colors = idx;
521 idx += PALETTE_MAX_SIZE;
522 pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
523 if (idx < PALETTE_MAX_SIZE + n) {
524 const int min_bits = bit_depth - 3;
525 int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
526 int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
527 for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
528 assert(range >= 0);
529 const int delta = aom_read_literal(r, bits, ACCT_STR);
530 pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
531 0, (1 << bit_depth) - 1);
532 range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
533 bits = AOMMIN(bits, av1_ceil_log2(range));
534 }
535 }
536 merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n,
537 n_cached_colors);
538 } else {
539 memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors,
540 n * sizeof(cached_colors[0]));
541 }
542
543 // V channel colors.
544 if (aom_read_bit(r, ACCT_STR)) { // Delta encoding.
545 const int min_bits_v = bit_depth - 4;
546 const int max_val = 1 << bit_depth;
547 int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR);
548 pmi->palette_colors[2 * PALETTE_MAX_SIZE] =
549 aom_read_literal(r, bit_depth, ACCT_STR);
550 for (int i = 1; i < n; ++i) {
551 int delta = aom_read_literal(r, bits, ACCT_STR);
552 if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta;
553 int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta;
554 if (val < 0) val += max_val;
555 if (val >= max_val) val -= max_val;
556 pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val;
557 }
558 } else {
559 for (int i = 0; i < n; ++i) {
560 pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
561 aom_read_literal(r, bit_depth, ACCT_STR);
562 }
563 }
564 }
565
read_palette_mode_info(AV1_COMMON * const cm,MACROBLOCKD * const xd,aom_reader * r)566 static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
567 aom_reader *r) {
568 const int num_planes = av1_num_planes(cm);
569 MB_MODE_INFO *const mbmi = xd->mi[0];
570 const BLOCK_SIZE bsize = mbmi->bsize;
571 assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
572 PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
573 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
574
575 if (mbmi->mode == DC_PRED) {
576 const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
577 const int modev = aom_read_symbol(
578 r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2,
579 ACCT_STR);
580 if (modev) {
581 pmi->palette_size[0] =
582 aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
583 PALETTE_SIZES, ACCT_STR) +
584 2;
585 read_palette_colors_y(xd, cm->seq_params->bit_depth, pmi, r);
586 }
587 }
588 if (num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref) {
589 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
590 const int modev = aom_read_symbol(
591 r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR);
592 if (modev) {
593 pmi->palette_size[1] =
594 aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
595 PALETTE_SIZES, ACCT_STR) +
596 2;
597 read_palette_colors_uv(xd, cm->seq_params->bit_depth, pmi, r);
598 }
599 }
600 }
601
read_angle_delta(aom_reader * r,aom_cdf_prob * cdf)602 static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) {
603 const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR);
604 return sym - MAX_ANGLE_DELTA;
605 }
606
read_filter_intra_mode_info(const AV1_COMMON * const cm,MACROBLOCKD * const xd,aom_reader * r)607 static void read_filter_intra_mode_info(const AV1_COMMON *const cm,
608 MACROBLOCKD *const xd, aom_reader *r) {
609 MB_MODE_INFO *const mbmi = xd->mi[0];
610 FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
611 &mbmi->filter_intra_mode_info;
612
613 if (av1_filter_intra_allowed(cm, mbmi)) {
614 filter_intra_mode_info->use_filter_intra = aom_read_symbol(
615 r, xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2, ACCT_STR);
616 if (filter_intra_mode_info->use_filter_intra) {
617 filter_intra_mode_info->filter_intra_mode = aom_read_symbol(
618 r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR);
619 }
620 } else {
621 filter_intra_mode_info->use_filter_intra = 0;
622 }
623 }
624
av1_read_tx_type(const AV1_COMMON * const cm,MACROBLOCKD * xd,int blk_row,int blk_col,TX_SIZE tx_size,aom_reader * r)625 void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row,
626 int blk_col, TX_SIZE tx_size, aom_reader *r) {
627 MB_MODE_INFO *mbmi = xd->mi[0];
628 uint8_t *tx_type =
629 &xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
630 *tx_type = DCT_DCT;
631
632 // No need to read transform type if block is skipped.
633 if (mbmi->skip_txfm ||
634 segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
635 return;
636
637 // No need to read transform type for lossless mode(qindex==0).
638 const int qindex = xd->qindex[mbmi->segment_id];
639 if (qindex == 0) return;
640
641 const int inter_block = is_inter_block(mbmi);
642 if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) >
643 1) {
644 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
645 tx_size, inter_block, cm->features.reduced_tx_set_used);
646 const int eset =
647 get_ext_tx_set(tx_size, inter_block, cm->features.reduced_tx_set_used);
648 // eset == 0 should correspond to a set with only DCT_DCT and
649 // there is no need to read the tx_type
650 assert(eset != 0);
651
652 const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
653 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
654 if (inter_block) {
655 *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
656 r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
657 av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
658 } else {
659 const PREDICTION_MODE intra_mode =
660 mbmi->filter_intra_mode_info.use_filter_intra
661 ? fimode_to_intradir[mbmi->filter_intra_mode_info
662 .filter_intra_mode]
663 : mbmi->mode;
664 *tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
665 r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode],
666 av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
667 }
668 }
669 }
670
671 static inline void read_mv(aom_reader *r, MV *mv, const MV *ref,
672 nmv_context *ctx, MvSubpelPrecision precision);
673
674 static inline int is_mv_valid(const MV *mv);
675
assign_dv(AV1_COMMON * cm,MACROBLOCKD * xd,int_mv * mv,const int_mv * ref_mv,int mi_row,int mi_col,BLOCK_SIZE bsize,aom_reader * r)676 static inline int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv,
677 const int_mv *ref_mv, int mi_row, int mi_col,
678 BLOCK_SIZE bsize, aom_reader *r) {
679 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
680 read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, MV_SUBPEL_NONE);
681 // DV should not have sub-pel.
682 assert((mv->as_mv.col & 7) == 0);
683 assert((mv->as_mv.row & 7) == 0);
684 mv->as_mv.col = (mv->as_mv.col >> 3) * 8;
685 mv->as_mv.row = (mv->as_mv.row >> 3) * 8;
686 int valid = is_mv_valid(&mv->as_mv) &&
687 av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize,
688 cm->seq_params->mib_size_log2);
689 return valid;
690 }
691
read_intrabc_info(AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * r)692 static void read_intrabc_info(AV1_COMMON *const cm, DecoderCodingBlock *dcb,
693 aom_reader *r) {
694 MACROBLOCKD *const xd = &dcb->xd;
695 MB_MODE_INFO *const mbmi = xd->mi[0];
696 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
697 mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
698 if (mbmi->use_intrabc) {
699 BLOCK_SIZE bsize = mbmi->bsize;
700 mbmi->mode = DC_PRED;
701 mbmi->uv_mode = UV_DC_PRED;
702 mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
703 mbmi->motion_mode = SIMPLE_TRANSLATION;
704
705 int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
706 int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES];
707
708 av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, dcb->ref_mv_count,
709 xd->ref_mv_stack, xd->weight, ref_mvs, /*global_mvs=*/NULL,
710 inter_mode_ctx);
711
712 int_mv nearestmv, nearmv;
713
714 av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0);
715 int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
716 if (dv_ref.as_int == 0)
717 av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params->mib_size, xd->mi_row);
718 // Ref DV should not have sub-pel.
719 int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0;
720 dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8;
721 dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8;
722 valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, xd->mi_row,
723 xd->mi_col, bsize, r);
724 if (!valid_dv) {
725 // Intra bc motion vectors are not valid - signal corrupt frame
726 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
727 "Invalid intrabc dv");
728 }
729 }
730 }
731
732 // If delta q is present, reads delta_q index.
733 // Also reads delta_q loop filter levels, if present.
read_delta_q_params(AV1_COMMON * const cm,MACROBLOCKD * const xd,aom_reader * r)734 static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd,
735 aom_reader *r) {
736 DeltaQInfo *const delta_q_info = &cm->delta_q_info;
737
738 if (delta_q_info->delta_q_present_flag) {
739 MB_MODE_INFO *const mbmi = xd->mi[0];
740 xd->current_base_qindex +=
741 read_delta_qindex(cm, xd, r, mbmi) * delta_q_info->delta_q_res;
742 /* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */
743 xd->current_base_qindex = clamp(xd->current_base_qindex, 1, MAXQ);
744 FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
745 if (delta_q_info->delta_lf_present_flag) {
746 const int mi_row = xd->mi_row;
747 const int mi_col = xd->mi_col;
748 if (delta_q_info->delta_lf_multi) {
749 const int frame_lf_count =
750 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
751 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
752 const int tmp_lvl =
753 xd->delta_lf[lf_id] +
754 read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi,
755 mi_col, mi_row) *
756 delta_q_info->delta_lf_res;
757 mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] =
758 clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
759 }
760 } else {
761 const int tmp_lvl = xd->delta_lf_from_base +
762 read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf,
763 mbmi, mi_col, mi_row) *
764 delta_q_info->delta_lf_res;
765 mbmi->delta_lf_from_base = xd->delta_lf_from_base =
766 clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
767 }
768 }
769 }
770 }
771
read_intra_frame_mode_info(AV1_COMMON * const cm,DecoderCodingBlock * dcb,aom_reader * r)772 static void read_intra_frame_mode_info(AV1_COMMON *const cm,
773 DecoderCodingBlock *dcb, aom_reader *r) {
774 MACROBLOCKD *const xd = &dcb->xd;
775 MB_MODE_INFO *const mbmi = xd->mi[0];
776 const MB_MODE_INFO *above_mi = xd->above_mbmi;
777 const MB_MODE_INFO *left_mi = xd->left_mbmi;
778 const BLOCK_SIZE bsize = mbmi->bsize;
779 struct segmentation *const seg = &cm->seg;
780
781 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
782
783 if (seg->segid_preskip)
784 mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, 0);
785
786 mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);
787
788 if (!seg->segid_preskip)
789 mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, mbmi->skip_txfm);
790
791 read_cdef(cm, r, xd);
792
793 read_delta_q_params(cm, xd, r);
794
795 mbmi->current_qindex = xd->current_base_qindex;
796
797 mbmi->ref_frame[0] = INTRA_FRAME;
798 mbmi->ref_frame[1] = NONE_FRAME;
799 mbmi->palette_mode_info.palette_size[0] = 0;
800 mbmi->palette_mode_info.palette_size[1] = 0;
801 mbmi->filter_intra_mode_info.use_filter_intra = 0;
802
803 const int mi_row = xd->mi_row;
804 const int mi_col = xd->mi_col;
805 xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + mi_col;
806 xd->left_txfm_context =
807 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
808
809 if (av1_allow_intrabc(cm)) {
810 read_intrabc_info(cm, dcb, r);
811 if (is_intrabc_block(mbmi)) return;
812 }
813
814 mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi));
815
816 const int use_angle_delta = av1_use_angle_delta(bsize);
817 mbmi->angle_delta[PLANE_TYPE_Y] =
818 (use_angle_delta && av1_is_directional_mode(mbmi->mode))
819 ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
820 : 0;
821
822 if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
823 mbmi->uv_mode =
824 read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
825 if (mbmi->uv_mode == UV_CFL_PRED) {
826 mbmi->cfl_alpha_idx = read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs);
827 }
828 const PREDICTION_MODE intra_mode = get_uv_mode(mbmi->uv_mode);
829 mbmi->angle_delta[PLANE_TYPE_UV] =
830 (use_angle_delta && av1_is_directional_mode(intra_mode))
831 ? read_angle_delta(r, ec_ctx->angle_delta_cdf[intra_mode - V_PRED])
832 : 0;
833 } else {
834 // Avoid decoding angle_info if there is no chroma prediction
835 mbmi->uv_mode = UV_DC_PRED;
836 }
837 xd->cfl.store_y = store_cfl_required(cm, xd);
838
839 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
840 read_palette_mode_info(cm, xd, r);
841
842 read_filter_intra_mode_info(cm, xd, r);
843 }
844
read_mv_component(aom_reader * r,nmv_component * mvcomp,int use_subpel,int usehp)845 static int read_mv_component(aom_reader *r, nmv_component *mvcomp,
846 int use_subpel, int usehp) {
847 int mag, d, fr, hp;
848 const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR);
849 const int mv_class =
850 aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR);
851 const int class0 = mv_class == MV_CLASS_0;
852
853 // Integer part
854 if (class0) {
855 d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR);
856 mag = 0;
857 } else {
858 const int n = mv_class + CLASS0_BITS - 1; // number of bits
859 d = 0;
860 for (int i = 0; i < n; ++i)
861 d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i;
862 mag = CLASS0_SIZE << (mv_class + 2);
863 }
864
865 if (use_subpel) {
866 // Fractional part
867 fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
868 MV_FP_SIZE, ACCT_STR);
869
870 // High precision part (if hp is not used, the default value of the hp is 1)
871 hp = usehp ? aom_read_symbol(
872 r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2,
873 ACCT_STR)
874 : 1;
875 } else {
876 fr = 3;
877 hp = 1;
878 }
879
880 // Result
881 mag += ((d << 3) | (fr << 1) | hp) + 1;
882 return sign ? -mag : mag;
883 }
884
read_mv(aom_reader * r,MV * mv,const MV * ref,nmv_context * ctx,MvSubpelPrecision precision)885 static inline void read_mv(aom_reader *r, MV *mv, const MV *ref,
886 nmv_context *ctx, MvSubpelPrecision precision) {
887 MV diff = kZeroMv;
888 const MV_JOINT_TYPE joint_type =
889 (MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf, MV_JOINTS, ACCT_STR);
890
891 if (mv_joint_vertical(joint_type))
892 diff.row = read_mv_component(r, &ctx->comps[0], precision > MV_SUBPEL_NONE,
893 precision > MV_SUBPEL_LOW_PRECISION);
894
895 if (mv_joint_horizontal(joint_type))
896 diff.col = read_mv_component(r, &ctx->comps[1], precision > MV_SUBPEL_NONE,
897 precision > MV_SUBPEL_LOW_PRECISION);
898
899 mv->row = ref->row + diff.row;
900 mv->col = ref->col + diff.col;
901 }
902
read_block_reference_mode(AV1_COMMON * cm,const MACROBLOCKD * xd,aom_reader * r)903 static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
904 const MACROBLOCKD *xd,
905 aom_reader *r) {
906 if (!is_comp_ref_allowed(xd->mi[0]->bsize)) return SINGLE_REFERENCE;
907 if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
908 const int ctx = av1_get_reference_mode_context(xd);
909 const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol(
910 r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR);
911 return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
912 } else {
913 assert(cm->current_frame.reference_mode == SINGLE_REFERENCE);
914 return cm->current_frame.reference_mode;
915 }
916 }
917
918 #define READ_REF_BIT(pname) \
919 aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR)
920
read_comp_reference_type(const MACROBLOCKD * xd,aom_reader * r)921 static COMP_REFERENCE_TYPE read_comp_reference_type(const MACROBLOCKD *xd,
922 aom_reader *r) {
923 const int ctx = av1_get_comp_reference_type_context(xd);
924 const COMP_REFERENCE_TYPE comp_ref_type =
925 (COMP_REFERENCE_TYPE)aom_read_symbol(
926 r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR);
927 return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE
928 }
929
set_ref_frames_for_skip_mode(AV1_COMMON * const cm,MV_REFERENCE_FRAME ref_frame[2])930 static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm,
931 MV_REFERENCE_FRAME ref_frame[2]) {
932 ref_frame[0] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_0;
933 ref_frame[1] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_1;
934 }
935
936 // Read the referncence frame
read_ref_frames(AV1_COMMON * const cm,MACROBLOCKD * const xd,aom_reader * r,int segment_id,MV_REFERENCE_FRAME ref_frame[2])937 static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
938 aom_reader *r, int segment_id,
939 MV_REFERENCE_FRAME ref_frame[2]) {
940 if (xd->mi[0]->skip_mode) {
941 set_ref_frames_for_skip_mode(cm, ref_frame);
942 return;
943 }
944
945 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
946 ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
947 SEG_LVL_REF_FRAME);
948 ref_frame[1] = NONE_FRAME;
949 } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
950 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
951 ref_frame[0] = LAST_FRAME;
952 ref_frame[1] = NONE_FRAME;
953 } else {
954 const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
955
956 if (mode == COMPOUND_REFERENCE) {
957 const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(xd, r);
958
959 if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
960 const int bit = READ_REF_BIT(uni_comp_ref_p);
961 if (bit) {
962 ref_frame[0] = BWDREF_FRAME;
963 ref_frame[1] = ALTREF_FRAME;
964 } else {
965 const int bit1 = READ_REF_BIT(uni_comp_ref_p1);
966 if (bit1) {
967 const int bit2 = READ_REF_BIT(uni_comp_ref_p2);
968 if (bit2) {
969 ref_frame[0] = LAST_FRAME;
970 ref_frame[1] = GOLDEN_FRAME;
971 } else {
972 ref_frame[0] = LAST_FRAME;
973 ref_frame[1] = LAST3_FRAME;
974 }
975 } else {
976 ref_frame[0] = LAST_FRAME;
977 ref_frame[1] = LAST2_FRAME;
978 }
979 }
980
981 return;
982 }
983
984 assert(comp_ref_type == BIDIR_COMP_REFERENCE);
985
986 const int idx = 1;
987 const int bit = READ_REF_BIT(comp_ref_p);
988 // Decode forward references.
989 if (!bit) {
990 const int bit1 = READ_REF_BIT(comp_ref_p1);
991 ref_frame[!idx] = bit1 ? LAST2_FRAME : LAST_FRAME;
992 } else {
993 const int bit2 = READ_REF_BIT(comp_ref_p2);
994 ref_frame[!idx] = bit2 ? GOLDEN_FRAME : LAST3_FRAME;
995 }
996
997 // Decode backward references.
998 const int bit_bwd = READ_REF_BIT(comp_bwdref_p);
999 if (!bit_bwd) {
1000 const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1);
1001 ref_frame[idx] = bit1_bwd ? ALTREF2_FRAME : BWDREF_FRAME;
1002 } else {
1003 ref_frame[idx] = ALTREF_FRAME;
1004 }
1005 } else if (mode == SINGLE_REFERENCE) {
1006 const int bit0 = READ_REF_BIT(single_ref_p1);
1007 if (bit0) {
1008 const int bit1 = READ_REF_BIT(single_ref_p2);
1009 if (!bit1) {
1010 const int bit5 = READ_REF_BIT(single_ref_p6);
1011 ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME;
1012 } else {
1013 ref_frame[0] = ALTREF_FRAME;
1014 }
1015 } else {
1016 const int bit2 = READ_REF_BIT(single_ref_p3);
1017 if (bit2) {
1018 const int bit4 = READ_REF_BIT(single_ref_p5);
1019 ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME;
1020 } else {
1021 const int bit3 = READ_REF_BIT(single_ref_p4);
1022 ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME;
1023 }
1024 }
1025
1026 ref_frame[1] = NONE_FRAME;
1027 } else {
1028 assert(0 && "Invalid prediction mode.");
1029 }
1030 }
1031 }
1032
read_mb_interp_filter(const MACROBLOCKD * const xd,InterpFilter interp_filter,bool enable_dual_filter,MB_MODE_INFO * const mbmi,aom_reader * r)1033 static inline void read_mb_interp_filter(const MACROBLOCKD *const xd,
1034 InterpFilter interp_filter,
1035 bool enable_dual_filter,
1036 MB_MODE_INFO *const mbmi,
1037 aom_reader *r) {
1038 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1039
1040 if (!av1_is_interp_needed(xd)) {
1041 set_default_interp_filters(mbmi, interp_filter);
1042 return;
1043 }
1044
1045 if (interp_filter != SWITCHABLE) {
1046 mbmi->interp_filters = av1_broadcast_interp_filter(interp_filter);
1047 } else {
1048 InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
1049 for (int dir = 0; dir < 2; ++dir) {
1050 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
1051 ref0_filter[dir] = (InterpFilter)aom_read_symbol(
1052 r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
1053 if (!enable_dual_filter) {
1054 ref0_filter[1] = ref0_filter[0];
1055 break;
1056 }
1057 }
1058 // The index system works as: (0, 1) -> (vertical, horizontal) filter types
1059 mbmi->interp_filters.as_filters.x_filter = ref0_filter[1];
1060 mbmi->interp_filters.as_filters.y_filter = ref0_filter[0];
1061 }
1062 }
1063
read_intra_block_mode_info(AV1_COMMON * const cm,MACROBLOCKD * const xd,MB_MODE_INFO * const mbmi,aom_reader * r)1064 static void read_intra_block_mode_info(AV1_COMMON *const cm,
1065 MACROBLOCKD *const xd,
1066 MB_MODE_INFO *const mbmi,
1067 aom_reader *r) {
1068 const BLOCK_SIZE bsize = mbmi->bsize;
1069 const int use_angle_delta = av1_use_angle_delta(bsize);
1070
1071 mbmi->ref_frame[0] = INTRA_FRAME;
1072 mbmi->ref_frame[1] = NONE_FRAME;
1073
1074 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1075
1076 mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]);
1077
1078 mbmi->angle_delta[PLANE_TYPE_Y] =
1079 use_angle_delta && av1_is_directional_mode(mbmi->mode)
1080 ? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
1081 : 0;
1082 if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
1083 mbmi->uv_mode =
1084 read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
1085 if (mbmi->uv_mode == UV_CFL_PRED) {
1086 mbmi->cfl_alpha_idx =
1087 read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs);
1088 }
1089 const PREDICTION_MODE intra_mode = get_uv_mode(mbmi->uv_mode);
1090 mbmi->angle_delta[PLANE_TYPE_UV] =
1091 use_angle_delta && av1_is_directional_mode(intra_mode)
1092 ? read_angle_delta(r, ec_ctx->angle_delta_cdf[intra_mode - V_PRED])
1093 : 0;
1094 } else {
1095 // Avoid decoding angle_info if there is no chroma prediction
1096 mbmi->uv_mode = UV_DC_PRED;
1097 }
1098 xd->cfl.store_y = store_cfl_required(cm, xd);
1099
1100 mbmi->palette_mode_info.palette_size[0] = 0;
1101 mbmi->palette_mode_info.palette_size[1] = 0;
1102 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
1103 read_palette_mode_info(cm, xd, r);
1104
1105 read_filter_intra_mode_info(cm, xd, r);
1106 }
1107
is_mv_valid(const MV * mv)1108 static inline int is_mv_valid(const MV *mv) {
1109 return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
1110 mv->col < MV_UPP;
1111 }
1112
assign_mv(AV1_COMMON * cm,MACROBLOCKD * xd,PREDICTION_MODE mode,MV_REFERENCE_FRAME ref_frame[2],int_mv mv[2],int_mv ref_mv[2],int_mv nearest_mv[2],int_mv near_mv[2],int is_compound,int allow_hp,aom_reader * r)1113 static inline int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
1114 PREDICTION_MODE mode,
1115 MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2],
1116 int_mv ref_mv[2], int_mv nearest_mv[2],
1117 int_mv near_mv[2], int is_compound, int allow_hp,
1118 aom_reader *r) {
1119 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1120 MB_MODE_INFO *mbmi = xd->mi[0];
1121 BLOCK_SIZE bsize = mbmi->bsize;
1122 FeatureFlags *const features = &cm->features;
1123 if (features->cur_frame_force_integer_mv) {
1124 allow_hp = MV_SUBPEL_NONE;
1125 }
1126 switch (mode) {
1127 case NEWMV: {
1128 nmv_context *const nmvc = &ec_ctx->nmvc;
1129 read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
1130 break;
1131 }
1132 case NEARESTMV: {
1133 mv[0].as_int = nearest_mv[0].as_int;
1134 break;
1135 }
1136 case NEARMV: {
1137 mv[0].as_int = near_mv[0].as_int;
1138 break;
1139 }
1140 case GLOBALMV: {
1141 mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
1142 features->allow_high_precision_mv,
1143 bsize, xd->mi_col, xd->mi_row,
1144 features->cur_frame_force_integer_mv)
1145 .as_int;
1146 break;
1147 }
1148 case NEW_NEWMV: {
1149 assert(is_compound);
1150 for (int i = 0; i < 2; ++i) {
1151 nmv_context *const nmvc = &ec_ctx->nmvc;
1152 read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, allow_hp);
1153 }
1154 break;
1155 }
1156 case NEAREST_NEARESTMV: {
1157 assert(is_compound);
1158 mv[0].as_int = nearest_mv[0].as_int;
1159 mv[1].as_int = nearest_mv[1].as_int;
1160 break;
1161 }
1162 case NEAR_NEARMV: {
1163 assert(is_compound);
1164 mv[0].as_int = near_mv[0].as_int;
1165 mv[1].as_int = near_mv[1].as_int;
1166 break;
1167 }
1168 case NEW_NEARESTMV: {
1169 nmv_context *const nmvc = &ec_ctx->nmvc;
1170 read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
1171 assert(is_compound);
1172 mv[1].as_int = nearest_mv[1].as_int;
1173 break;
1174 }
1175 case NEAREST_NEWMV: {
1176 nmv_context *const nmvc = &ec_ctx->nmvc;
1177 mv[0].as_int = nearest_mv[0].as_int;
1178 read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
1179 assert(is_compound);
1180 break;
1181 }
1182 case NEAR_NEWMV: {
1183 nmv_context *const nmvc = &ec_ctx->nmvc;
1184 mv[0].as_int = near_mv[0].as_int;
1185 read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
1186 assert(is_compound);
1187 break;
1188 }
1189 case NEW_NEARMV: {
1190 nmv_context *const nmvc = &ec_ctx->nmvc;
1191 read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
1192 assert(is_compound);
1193 mv[1].as_int = near_mv[1].as_int;
1194 break;
1195 }
1196 case GLOBAL_GLOBALMV: {
1197 assert(is_compound);
1198 mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
1199 features->allow_high_precision_mv,
1200 bsize, xd->mi_col, xd->mi_row,
1201 features->cur_frame_force_integer_mv)
1202 .as_int;
1203 mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
1204 features->allow_high_precision_mv,
1205 bsize, xd->mi_col, xd->mi_row,
1206 features->cur_frame_force_integer_mv)
1207 .as_int;
1208 break;
1209 }
1210 default: {
1211 return 0;
1212 }
1213 }
1214
1215 int ret = is_mv_valid(&mv[0].as_mv);
1216 if (is_compound) {
1217 ret = ret && is_mv_valid(&mv[1].as_mv);
1218 }
1219 return ret;
1220 }
1221
read_is_inter_block(AV1_COMMON * const cm,MACROBLOCKD * const xd,int segment_id,aom_reader * r)1222 static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
1223 int segment_id, aom_reader *r) {
1224 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
1225 const int frame = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
1226 if (frame < LAST_FRAME) return 0;
1227 return frame != INTRA_FRAME;
1228 }
1229 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
1230 return 1;
1231 }
1232 const int ctx = av1_get_intra_inter_context(xd);
1233 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1234 const int is_inter =
1235 aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR);
1236 return is_inter;
1237 }
1238
1239 #if DEC_MISMATCH_DEBUG
dec_dump_logs(AV1_COMMON * cm,MB_MODE_INFO * const mbmi,int mi_row,int mi_col,int16_t mode_ctx)1240 static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row,
1241 int mi_col, int16_t mode_ctx) {
1242 int_mv mv[2] = { { 0 } };
1243 for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref)
1244 mv[ref].as_mv = mbmi->mv[ref].as_mv;
1245
1246 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1247 int16_t zeromv_ctx = -1;
1248 int16_t refmv_ctx = -1;
1249 if (mbmi->mode != NEWMV) {
1250 zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1251 if (mbmi->mode != GLOBALMV)
1252 refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1253 }
1254
1255 #define FRAME_TO_CHECK 11
1256 if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) {
1257 printf(
1258 "=== DECODER ===: "
1259 "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1260 "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1261 "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1262 "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1263 cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1264 mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row,
1265 mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1266 mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx,
1267 refmv_ctx, mbmi->tx_size);
1268 }
1269 }
1270 #endif // DEC_MISMATCH_DEBUG
1271
read_inter_block_mode_info(AV1Decoder * const pbi,DecoderCodingBlock * dcb,MB_MODE_INFO * const mbmi,aom_reader * r)1272 static void read_inter_block_mode_info(AV1Decoder *const pbi,
1273 DecoderCodingBlock *dcb,
1274 MB_MODE_INFO *const mbmi,
1275 aom_reader *r) {
1276 AV1_COMMON *const cm = &pbi->common;
1277 FeatureFlags *const features = &cm->features;
1278 const BLOCK_SIZE bsize = mbmi->bsize;
1279 const int allow_hp = features->allow_high_precision_mv;
1280 int_mv nearestmv[2], nearmv[2];
1281 int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } };
1282 int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
1283 int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
1284 MACROBLOCKD *const xd = &dcb->xd;
1285 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1286
1287 mbmi->uv_mode = UV_DC_PRED;
1288 mbmi->palette_mode_info.palette_size[0] = 0;
1289 mbmi->palette_mode_info.palette_size[1] = 0;
1290
1291 av1_collect_neighbors_ref_counts(xd);
1292
1293 read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
1294 const int is_compound = has_second_ref(mbmi);
1295
1296 const MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
1297 av1_find_mv_refs(cm, xd, mbmi, ref_frame, dcb->ref_mv_count, xd->ref_mv_stack,
1298 xd->weight, ref_mvs, /*global_mvs=*/NULL, inter_mode_ctx);
1299
1300 mbmi->ref_mv_idx = 0;
1301
1302 if (mbmi->skip_mode) {
1303 assert(is_compound);
1304 mbmi->mode = NEAREST_NEARESTMV;
1305 } else {
1306 if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
1307 segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_GLOBALMV)) {
1308 mbmi->mode = GLOBALMV;
1309 } else {
1310 const int mode_ctx =
1311 av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame);
1312 if (is_compound)
1313 mbmi->mode = read_inter_compound_mode(xd, r, mode_ctx);
1314 else
1315 mbmi->mode = read_inter_mode(ec_ctx, r, mode_ctx);
1316 if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV ||
1317 have_nearmv_in_inter_mode(mbmi->mode))
1318 read_drl_idx(ec_ctx, dcb, mbmi, r);
1319 }
1320 }
1321
1322 if (is_compound != is_inter_compound_mode(mbmi->mode)) {
1323 aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1324 "Prediction mode %d invalid with ref frame %d %d",
1325 mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
1326 }
1327
1328 if (!is_compound && mbmi->mode != GLOBALMV) {
1329 av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[0]], &nearestmv[0],
1330 &nearmv[0], features->cur_frame_force_integer_mv);
1331 }
1332
1333 if (is_compound && mbmi->mode != GLOBAL_GLOBALMV) {
1334 const int ref_mv_idx = mbmi->ref_mv_idx + 1;
1335 nearestmv[0] = xd->ref_mv_stack[ref_frame][0].this_mv;
1336 nearestmv[1] = xd->ref_mv_stack[ref_frame][0].comp_mv;
1337 nearmv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;
1338 nearmv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
1339 lower_mv_precision(&nearestmv[0].as_mv, allow_hp,
1340 features->cur_frame_force_integer_mv);
1341 lower_mv_precision(&nearestmv[1].as_mv, allow_hp,
1342 features->cur_frame_force_integer_mv);
1343 lower_mv_precision(&nearmv[0].as_mv, allow_hp,
1344 features->cur_frame_force_integer_mv);
1345 lower_mv_precision(&nearmv[1].as_mv, allow_hp,
1346 features->cur_frame_force_integer_mv);
1347 } else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) {
1348 nearmv[0] =
1349 xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv;
1350 }
1351
1352 int_mv ref_mv[2] = { nearestmv[0], nearestmv[1] };
1353
1354 if (is_compound) {
1355 int ref_mv_idx = mbmi->ref_mv_idx;
1356 // Special case: NEAR_NEWMV and NEW_NEARMV modes use
1357 // 1 + mbmi->ref_mv_idx (like NEARMV) instead of
1358 // mbmi->ref_mv_idx (like NEWMV)
1359 if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV)
1360 ref_mv_idx = 1 + mbmi->ref_mv_idx;
1361
1362 // TODO(jingning, yunqing): Do we need a lower_mv_precision() call here?
1363 if (compound_ref0_mode(mbmi->mode) == NEWMV)
1364 ref_mv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;
1365
1366 if (compound_ref1_mode(mbmi->mode) == NEWMV)
1367 ref_mv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
1368 } else {
1369 if (mbmi->mode == NEWMV) {
1370 if (dcb->ref_mv_count[ref_frame] > 1)
1371 ref_mv[0] = xd->ref_mv_stack[ref_frame][mbmi->ref_mv_idx].this_mv;
1372 }
1373 }
1374
1375 if (mbmi->skip_mode) assert(mbmi->mode == NEAREST_NEARESTMV);
1376
1377 const int mv_corrupted_flag =
1378 !assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, mbmi->mv, ref_mv,
1379 nearestmv, nearmv, is_compound, allow_hp, r);
1380 aom_merge_corrupted_flag(&dcb->corrupted, mv_corrupted_flag);
1381
1382 mbmi->use_wedge_interintra = 0;
1383 if (cm->seq_params->enable_interintra_compound && !mbmi->skip_mode &&
1384 is_interintra_allowed(mbmi)) {
1385 const int bsize_group = size_group_lookup[bsize];
1386 const int interintra =
1387 aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR);
1388 assert(mbmi->ref_frame[1] == NONE_FRAME);
1389 if (interintra) {
1390 const INTERINTRA_MODE interintra_mode =
1391 read_interintra_mode(xd, r, bsize_group);
1392 mbmi->ref_frame[1] = INTRA_FRAME;
1393 mbmi->interintra_mode = interintra_mode;
1394 mbmi->angle_delta[PLANE_TYPE_Y] = 0;
1395 mbmi->angle_delta[PLANE_TYPE_UV] = 0;
1396 mbmi->filter_intra_mode_info.use_filter_intra = 0;
1397 if (av1_is_wedge_used(bsize)) {
1398 mbmi->use_wedge_interintra = aom_read_symbol(
1399 r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR);
1400 if (mbmi->use_wedge_interintra) {
1401 mbmi->interintra_wedge_index = (int8_t)aom_read_symbol(
1402 r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
1403 }
1404 }
1405 }
1406 }
1407
1408 for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1409 const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
1410 xd->block_ref_scale_factors[ref] = get_ref_scale_factors_const(cm, frame);
1411 }
1412
1413 mbmi->motion_mode = SIMPLE_TRANSLATION;
1414 if (is_motion_variation_allowed_bsize(mbmi->bsize) && !mbmi->skip_mode &&
1415 !has_second_ref(mbmi)) {
1416 mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
1417 }
1418 av1_count_overlappable_neighbors(cm, xd);
1419
1420 if (mbmi->ref_frame[1] != INTRA_FRAME)
1421 mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r);
1422
1423 // init
1424 mbmi->comp_group_idx = 0;
1425 mbmi->compound_idx = 1;
1426 mbmi->interinter_comp.type = COMPOUND_AVERAGE;
1427
1428 if (has_second_ref(mbmi) && !mbmi->skip_mode) {
1429 // Read idx to indicate current compound inter prediction mode group
1430 const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1431 cm->seq_params->enable_masked_compound;
1432
1433 if (masked_compound_used) {
1434 const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1435 mbmi->comp_group_idx = (uint8_t)aom_read_symbol(
1436 r, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2, ACCT_STR);
1437 }
1438
1439 if (mbmi->comp_group_idx == 0) {
1440 if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
1441 const int comp_index_ctx = get_comp_index_context(cm, xd);
1442 mbmi->compound_idx = (uint8_t)aom_read_symbol(
1443 r, ec_ctx->compound_index_cdf[comp_index_ctx], 2, ACCT_STR);
1444 mbmi->interinter_comp.type =
1445 mbmi->compound_idx ? COMPOUND_AVERAGE : COMPOUND_DISTWTD;
1446 } else {
1447 // Distance-weighted compound is disabled, so always use average
1448 mbmi->compound_idx = 1;
1449 mbmi->interinter_comp.type = COMPOUND_AVERAGE;
1450 }
1451 } else {
1452 assert(cm->current_frame.reference_mode != SINGLE_REFERENCE &&
1453 is_inter_compound_mode(mbmi->mode) &&
1454 mbmi->motion_mode == SIMPLE_TRANSLATION);
1455 assert(masked_compound_used);
1456
1457 // compound_diffwtd, wedge
1458 if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
1459 mbmi->interinter_comp.type =
1460 COMPOUND_WEDGE + aom_read_symbol(r,
1461 ec_ctx->compound_type_cdf[bsize],
1462 MASKED_COMPOUND_TYPES, ACCT_STR);
1463 } else {
1464 mbmi->interinter_comp.type = COMPOUND_DIFFWTD;
1465 }
1466
1467 if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1468 assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1469 mbmi->interinter_comp.wedge_index = (int8_t)aom_read_symbol(
1470 r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
1471 mbmi->interinter_comp.wedge_sign = (int8_t)aom_read_bit(r, ACCT_STR);
1472 } else {
1473 assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1474 mbmi->interinter_comp.mask_type =
1475 aom_read_literal(r, MAX_DIFFWTD_MASK_BITS, ACCT_STR);
1476 }
1477 }
1478 }
1479
1480 read_mb_interp_filter(xd, features->interp_filter,
1481 cm->seq_params->enable_dual_filter, mbmi, r);
1482
1483 if (mbmi->motion_mode == WARPED_CAUSAL) {
1484 const int mi_row = xd->mi_row;
1485 const int mi_col = xd->mi_col;
1486 mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
1487 mbmi->wm_params.invalid = 0;
1488
1489 if (mbmi->num_proj_ref > 1) {
1490 mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
1491 mbmi->num_proj_ref, bsize);
1492 }
1493
1494 if (av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
1495 mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
1496 &mbmi->wm_params, mi_row, mi_col)) {
1497 #if WARPED_MOTION_DEBUG
1498 printf("Warning: unexpected warped model from aomenc\n");
1499 #endif
1500 mbmi->wm_params.invalid = 1;
1501 }
1502 }
1503
1504 xd->cfl.store_y = store_cfl_required(cm, xd);
1505
1506 #if DEC_MISMATCH_DEBUG
1507 dec_dump_logs(cm, mi, mi_row, mi_col, mode_ctx);
1508 #endif // DEC_MISMATCH_DEBUG
1509 }
1510
read_inter_frame_mode_info(AV1Decoder * const pbi,DecoderCodingBlock * dcb,aom_reader * r)1511 static void read_inter_frame_mode_info(AV1Decoder *const pbi,
1512 DecoderCodingBlock *dcb, aom_reader *r) {
1513 AV1_COMMON *const cm = &pbi->common;
1514 MACROBLOCKD *const xd = &dcb->xd;
1515 MB_MODE_INFO *const mbmi = xd->mi[0];
1516 int inter_block = 1;
1517
1518 mbmi->mv[0].as_int = 0;
1519 mbmi->mv[1].as_int = 0;
1520 mbmi->segment_id = read_inter_segment_id(cm, xd, 1, r);
1521
1522 mbmi->skip_mode = read_skip_mode(cm, xd, mbmi->segment_id, r);
1523
1524 if (mbmi->skip_mode)
1525 mbmi->skip_txfm = 1;
1526 else
1527 mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);
1528
1529 if (!cm->seg.segid_preskip)
1530 mbmi->segment_id = read_inter_segment_id(cm, xd, 0, r);
1531
1532 read_cdef(cm, r, xd);
1533
1534 read_delta_q_params(cm, xd, r);
1535
1536 if (!mbmi->skip_mode)
1537 inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
1538
1539 mbmi->current_qindex = xd->current_base_qindex;
1540
1541 xd->above_txfm_context =
1542 cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
1543 xd->left_txfm_context =
1544 xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
1545
1546 if (inter_block)
1547 read_inter_block_mode_info(pbi, dcb, mbmi, r);
1548 else
1549 read_intra_block_mode_info(cm, xd, mbmi, r);
1550 }
1551
intra_copy_frame_mvs(AV1_COMMON * const cm,int mi_row,int mi_col,int x_mis,int y_mis)1552 static void intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col,
1553 int x_mis, int y_mis) {
1554 const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1);
1555 MV_REF *frame_mvs =
1556 cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1);
1557 x_mis = ROUND_POWER_OF_TWO(x_mis, 1);
1558 y_mis = ROUND_POWER_OF_TWO(y_mis, 1);
1559
1560 for (int h = 0; h < y_mis; h++) {
1561 MV_REF *mv = frame_mvs;
1562 for (int w = 0; w < x_mis; w++) {
1563 mv->ref_frame = NONE_FRAME;
1564 mv++;
1565 }
1566 frame_mvs += frame_mvs_stride;
1567 }
1568 }
1569
av1_read_mode_info(AV1Decoder * const pbi,DecoderCodingBlock * dcb,aom_reader * r,int x_mis,int y_mis)1570 void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb,
1571 aom_reader *r, int x_mis, int y_mis) {
1572 AV1_COMMON *const cm = &pbi->common;
1573 MACROBLOCKD *const xd = &dcb->xd;
1574 MB_MODE_INFO *const mi = xd->mi[0];
1575 mi->use_intrabc = 0;
1576
1577 if (frame_is_intra_only(cm)) {
1578 read_intra_frame_mode_info(cm, dcb, r);
1579 if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
1580 intra_copy_frame_mvs(cm, xd->mi_row, xd->mi_col, x_mis, y_mis);
1581 } else {
1582 read_inter_frame_mode_info(pbi, dcb, r);
1583 if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
1584 av1_copy_frame_mvs(cm, mi, xd->mi_row, xd->mi_col, x_mis, y_mis);
1585 }
1586 }
1587