1 /*
2 * Copyright (c) 2017, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <tmmintrin.h>
13
14 #include "config/av1_rtcd.h"
15
16 #include "av1/common/cfl.h"
17
18 #include "av1/common/x86/cfl_simd.h"
19
20 // Load 32-bit integer from memory into the first element of dst.
_mm_loadh_epi32(__m128i const * mem_addr)21 static inline __m128i _mm_loadh_epi32(__m128i const *mem_addr) {
22 return _mm_cvtsi32_si128(*((int *)mem_addr));
23 }
24
25 // Store 32-bit integer from the first element of a into memory.
_mm_storeh_epi32(__m128i const * mem_addr,__m128i a)26 static inline void _mm_storeh_epi32(__m128i const *mem_addr, __m128i a) {
27 *((int *)mem_addr) = _mm_cvtsi128_si32(a);
28 }
29
30 /**
31 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
32 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
33 *
34 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
35 * active area is specified using width and height.
36 *
37 * Note: We don't need to worry about going over the active area, as long as we
38 * stay inside the CfL prediction buffer.
39 */
cfl_luma_subsampling_420_lbd_ssse3(const uint8_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)40 static inline void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input,
41 int input_stride,
42 uint16_t *pred_buf_q3,
43 int width, int height) {
44 const __m128i twos = _mm_set1_epi8(2);
45 __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
46 const __m128i *end = pred_buf_m128i + (height >> 1) * CFL_BUF_LINE_I128;
47 const int luma_stride = input_stride << 1;
48 do {
49 if (width == 4) {
50 __m128i top = _mm_loadh_epi32((__m128i *)input);
51 top = _mm_maddubs_epi16(top, twos);
52 __m128i bot = _mm_loadh_epi32((__m128i *)(input + input_stride));
53 bot = _mm_maddubs_epi16(bot, twos);
54 const __m128i sum = _mm_add_epi16(top, bot);
55 _mm_storeh_epi32(pred_buf_m128i, sum);
56 } else if (width == 8) {
57 __m128i top = _mm_loadl_epi64((__m128i *)input);
58 top = _mm_maddubs_epi16(top, twos);
59 __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
60 bot = _mm_maddubs_epi16(bot, twos);
61 const __m128i sum = _mm_add_epi16(top, bot);
62 _mm_storel_epi64(pred_buf_m128i, sum);
63 } else {
64 __m128i top = _mm_loadu_si128((__m128i *)input);
65 top = _mm_maddubs_epi16(top, twos);
66 __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
67 bot = _mm_maddubs_epi16(bot, twos);
68 const __m128i sum = _mm_add_epi16(top, bot);
69 _mm_storeu_si128(pred_buf_m128i, sum);
70 if (width == 32) {
71 __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
72 __m128i bot_1 =
73 _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
74 top_1 = _mm_maddubs_epi16(top_1, twos);
75 bot_1 = _mm_maddubs_epi16(bot_1, twos);
76 __m128i sum_1 = _mm_add_epi16(top_1, bot_1);
77 _mm_storeu_si128(pred_buf_m128i + 1, sum_1);
78 }
79 }
80 input += luma_stride;
81 pred_buf_m128i += CFL_BUF_LINE_I128;
82 } while (pred_buf_m128i < end);
83 }
84
85 /**
86 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
87 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
88 *
89 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
90 * active area is specified using width and height.
91 *
92 * Note: We don't need to worry about going over the active area, as long as we
93 * stay inside the CfL prediction buffer.
94 */
cfl_luma_subsampling_422_lbd_ssse3(const uint8_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)95 static inline void cfl_luma_subsampling_422_lbd_ssse3(const uint8_t *input,
96 int input_stride,
97 uint16_t *pred_buf_q3,
98 int width, int height) {
99 const __m128i fours = _mm_set1_epi8(4);
100 __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
101 const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
102 do {
103 if (width == 4) {
104 __m128i top = _mm_loadh_epi32((__m128i *)input);
105 top = _mm_maddubs_epi16(top, fours);
106 _mm_storeh_epi32(pred_buf_m128i, top);
107 } else if (width == 8) {
108 __m128i top = _mm_loadl_epi64((__m128i *)input);
109 top = _mm_maddubs_epi16(top, fours);
110 _mm_storel_epi64(pred_buf_m128i, top);
111 } else {
112 __m128i top = _mm_loadu_si128((__m128i *)input);
113 top = _mm_maddubs_epi16(top, fours);
114 _mm_storeu_si128(pred_buf_m128i, top);
115 if (width == 32) {
116 __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
117 top_1 = _mm_maddubs_epi16(top_1, fours);
118 _mm_storeu_si128(pred_buf_m128i + 1, top_1);
119 }
120 }
121 input += input_stride;
122 pred_buf_m128i += CFL_BUF_LINE_I128;
123 } while (pred_buf_m128i < end);
124 }
125
126 /**
127 * Multiplies the pixels by 8 (scaling in Q3).
128 *
129 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
130 * active area is specified using width and height.
131 *
132 * Note: We don't need to worry about going over the active area, as long as we
133 * stay inside the CfL prediction buffer.
134 */
cfl_luma_subsampling_444_lbd_ssse3(const uint8_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)135 static inline void cfl_luma_subsampling_444_lbd_ssse3(const uint8_t *input,
136 int input_stride,
137 uint16_t *pred_buf_q3,
138 int width, int height) {
139 const __m128i zeros = _mm_setzero_si128();
140 const int luma_stride = input_stride;
141 __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
142 const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
143 do {
144 if (width == 4) {
145 __m128i row = _mm_loadh_epi32((__m128i *)input);
146 row = _mm_unpacklo_epi8(row, zeros);
147 _mm_storel_epi64(pred_buf_m128i, _mm_slli_epi16(row, 3));
148 } else if (width == 8) {
149 __m128i row = _mm_loadl_epi64((__m128i *)input);
150 row = _mm_unpacklo_epi8(row, zeros);
151 _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row, 3));
152 } else {
153 __m128i row = _mm_loadu_si128((__m128i *)input);
154 const __m128i row_lo = _mm_unpacklo_epi8(row, zeros);
155 const __m128i row_hi = _mm_unpackhi_epi8(row, zeros);
156 _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row_lo, 3));
157 _mm_storeu_si128(pred_buf_m128i + 1, _mm_slli_epi16(row_hi, 3));
158 if (width == 32) {
159 __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
160 const __m128i row_1_lo = _mm_unpacklo_epi8(row_1, zeros);
161 const __m128i row_1_hi = _mm_unpackhi_epi8(row_1, zeros);
162 _mm_storeu_si128(pred_buf_m128i + 2, _mm_slli_epi16(row_1_lo, 3));
163 _mm_storeu_si128(pred_buf_m128i + 3, _mm_slli_epi16(row_1_hi, 3));
164 }
165 }
166 input += luma_stride;
167 pred_buf_m128i += CFL_BUF_LINE_I128;
168 } while (pred_buf_m128i < end);
169 }
170
171 #if CONFIG_AV1_HIGHBITDEPTH
172 /**
173 * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
174 * precise version of a box filter 4:2:0 pixel subsampling in Q3.
175 *
176 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
177 * active area is specified using width and height.
178 *
179 * Note: We don't need to worry about going over the active area, as long as we
180 * stay inside the CfL prediction buffer.
181 */
cfl_luma_subsampling_420_hbd_ssse3(const uint16_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)182 static inline void cfl_luma_subsampling_420_hbd_ssse3(const uint16_t *input,
183 int input_stride,
184 uint16_t *pred_buf_q3,
185 int width, int height) {
186 const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE;
187 const int luma_stride = input_stride << 1;
188 do {
189 if (width == 4) {
190 const __m128i top = _mm_loadl_epi64((__m128i *)input);
191 const __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride));
192 __m128i sum = _mm_add_epi16(top, bot);
193 sum = _mm_hadd_epi16(sum, sum);
194 *((int *)pred_buf_q3) = _mm_cvtsi128_si32(_mm_add_epi16(sum, sum));
195 } else {
196 const __m128i top = _mm_loadu_si128((__m128i *)input);
197 const __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride));
198 __m128i sum = _mm_add_epi16(top, bot);
199 if (width == 8) {
200 sum = _mm_hadd_epi16(sum, sum);
201 _mm_storel_epi64((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
202 } else {
203 const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
204 const __m128i bot_1 =
205 _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1);
206 sum = _mm_hadd_epi16(sum, _mm_add_epi16(top_1, bot_1));
207 _mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum));
208 if (width == 32) {
209 const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
210 const __m128i bot_2 =
211 _mm_loadu_si128(((__m128i *)(input + input_stride)) + 2);
212 const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
213 const __m128i bot_3 =
214 _mm_loadu_si128(((__m128i *)(input + input_stride)) + 3);
215 const __m128i sum_2 = _mm_add_epi16(top_2, bot_2);
216 const __m128i sum_3 = _mm_add_epi16(top_3, bot_3);
217 __m128i next_sum = _mm_hadd_epi16(sum_2, sum_3);
218 _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1,
219 _mm_add_epi16(next_sum, next_sum));
220 }
221 }
222 }
223 input += luma_stride;
224 } while ((pred_buf_q3 += CFL_BUF_LINE) < end);
225 }
226
227 /**
228 * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
229 * precise version of a box filter 4:2:2 pixel subsampling in Q3.
230 *
231 * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
232 * active area is specified using width and height.
233 *
234 * Note: We don't need to worry about going over the active area, as long as we
235 * stay inside the CfL prediction buffer.
236 */
cfl_luma_subsampling_422_hbd_ssse3(const uint16_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)237 static inline void cfl_luma_subsampling_422_hbd_ssse3(const uint16_t *input,
238 int input_stride,
239 uint16_t *pred_buf_q3,
240 int width, int height) {
241 __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3;
242 const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128;
243 do {
244 if (width == 4) {
245 const __m128i top = _mm_loadl_epi64((__m128i *)input);
246 const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
247 _mm_storeh_epi32(pred_buf_m128i, sum);
248 } else {
249 const __m128i top = _mm_loadu_si128((__m128i *)input);
250 if (width == 8) {
251 const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2);
252 _mm_storel_epi64(pred_buf_m128i, sum);
253 } else {
254 const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1);
255 const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top_1), 2);
256 _mm_storeu_si128(pred_buf_m128i, sum);
257 if (width == 32) {
258 const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2);
259 const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3);
260 const __m128i sum_1 = _mm_slli_epi16(_mm_hadd_epi16(top_2, top_3), 2);
261 _mm_storeu_si128(pred_buf_m128i + 1, sum_1);
262 }
263 }
264 }
265 pred_buf_m128i += CFL_BUF_LINE_I128;
266 input += input_stride;
267 } while (pred_buf_m128i < end);
268 }
269
cfl_luma_subsampling_444_hbd_ssse3(const uint16_t * input,int input_stride,uint16_t * pred_buf_q3,int width,int height)270 static inline void cfl_luma_subsampling_444_hbd_ssse3(const uint16_t *input,
271 int input_stride,
272 uint16_t *pred_buf_q3,
273 int width, int height) {
274 const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE;
275 do {
276 if (width == 4) {
277 const __m128i row = _mm_slli_epi16(_mm_loadl_epi64((__m128i *)input), 3);
278 _mm_storel_epi64((__m128i *)pred_buf_q3, row);
279 } else {
280 const __m128i row = _mm_slli_epi16(_mm_loadu_si128((__m128i *)input), 3);
281 _mm_storeu_si128((__m128i *)pred_buf_q3, row);
282 if (width >= 16) {
283 __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1);
284 row_1 = _mm_slli_epi16(row_1, 3);
285 _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, row_1);
286 if (width == 32) {
287 __m128i row_2 = _mm_loadu_si128(((__m128i *)input) + 2);
288 row_2 = _mm_slli_epi16(row_2, 3);
289 _mm_storeu_si128(((__m128i *)pred_buf_q3) + 2, row_2);
290 __m128i row_3 = _mm_loadu_si128(((__m128i *)input) + 3);
291 row_3 = _mm_slli_epi16(row_3, 3);
292 _mm_storeu_si128(((__m128i *)pred_buf_q3) + 3, row_3);
293 }
294 }
295 }
296 input += input_stride;
297 pred_buf_q3 += CFL_BUF_LINE;
298 } while (pred_buf_q3 < end);
299 }
300 #endif // CONFIG_AV1_HIGHBITDEPTH
301
CFL_GET_SUBSAMPLE_FUNCTION(ssse3)302 CFL_GET_SUBSAMPLE_FUNCTION(ssse3)
303
304 static inline __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12,
305 __m128i alpha_sign, __m128i dc_q0) {
306 __m128i ac_q3 = _mm_loadu_si128(input);
307 __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3);
308 __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12);
309 scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign);
310 return _mm_add_epi16(scaled_luma_q0, dc_q0);
311 }
312
cfl_predict_lbd_ssse3(const int16_t * pred_buf_q3,uint8_t * dst,int dst_stride,int alpha_q3,int width,int height)313 static inline void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3,
314 uint8_t *dst, int dst_stride,
315 int alpha_q3, int width, int height) {
316 const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
317 const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
318 const __m128i dc_q0 = _mm_set1_epi16(*dst);
319 __m128i *row = (__m128i *)pred_buf_q3;
320 const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
321 do {
322 __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
323 if (width < 16) {
324 res = _mm_packus_epi16(res, res);
325 if (width == 4)
326 _mm_storeh_epi32((__m128i *)dst, res);
327 else
328 _mm_storel_epi64((__m128i *)dst, res);
329 } else {
330 __m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
331 res = _mm_packus_epi16(res, next);
332 _mm_storeu_si128((__m128i *)dst, res);
333 if (width == 32) {
334 res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
335 next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
336 res = _mm_packus_epi16(res, next);
337 _mm_storeu_si128((__m128i *)(dst + 16), res);
338 }
339 }
340 dst += dst_stride;
341 } while ((row += CFL_BUF_LINE_I128) < row_end);
342 }
343
CFL_PREDICT_FN(ssse3,lbd)344 CFL_PREDICT_FN(ssse3, lbd)
345
346 #if CONFIG_AV1_HIGHBITDEPTH
347 static inline __m128i highbd_max_epi16(int bd) {
348 const __m128i neg_one = _mm_set1_epi16(-1);
349 // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
350 return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one);
351 }
352
highbd_clamp_epi16(__m128i u,__m128i zero,__m128i max)353 static inline __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) {
354 return _mm_max_epi16(_mm_min_epi16(u, max), zero);
355 }
356
cfl_predict_hbd_ssse3(const int16_t * pred_buf_q3,uint16_t * dst,int dst_stride,int alpha_q3,int bd,int width,int height)357 static inline void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3,
358 uint16_t *dst, int dst_stride,
359 int alpha_q3, int bd, int width,
360 int height) {
361 const __m128i alpha_sign = _mm_set1_epi16(alpha_q3);
362 const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9);
363 const __m128i dc_q0 = _mm_set1_epi16(*dst);
364 const __m128i max = highbd_max_epi16(bd);
365 const __m128i zeros = _mm_setzero_si128();
366 __m128i *row = (__m128i *)pred_buf_q3;
367 const __m128i *row_end = row + height * CFL_BUF_LINE_I128;
368 do {
369 __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
370 res = highbd_clamp_epi16(res, zeros, max);
371 if (width == 4) {
372 _mm_storel_epi64((__m128i *)dst, res);
373 } else {
374 _mm_storeu_si128((__m128i *)dst, res);
375 }
376 if (width >= 16) {
377 const __m128i res_1 =
378 predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
379 _mm_storeu_si128(((__m128i *)dst) + 1,
380 highbd_clamp_epi16(res_1, zeros, max));
381 }
382 if (width == 32) {
383 const __m128i res_2 =
384 predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0);
385 _mm_storeu_si128((__m128i *)(dst + 16),
386 highbd_clamp_epi16(res_2, zeros, max));
387 const __m128i res_3 =
388 predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0);
389 _mm_storeu_si128((__m128i *)(dst + 24),
390 highbd_clamp_epi16(res_3, zeros, max));
391 }
392 dst += dst_stride;
393 } while ((row += CFL_BUF_LINE_I128) < row_end);
394 }
395
396 CFL_PREDICT_FN(ssse3, hbd)
397 #endif // CONFIG_AV1_HIGHBITDEPTH
398