1 /*
2 * Copyright (c) 2024, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <math.h>
14 #include <smmintrin.h>
15
16 #include "aom_dsp/aom_dsp_common.h"
17 #include "aom_dsp/flow_estimation/disflow.h"
18 #include "aom_dsp/x86/synonyms.h"
19
20 #include "config/aom_dsp_rtcd.h"
21
22 #if DISFLOW_PATCH_SIZE != 8
23 #error "Need to change disflow_sse4.c if DISFLOW_PATCH_SIZE != 8"
24 #endif
25
26 // Compute horizontal and vertical kernels and return them packed into a
27 // register. The coefficient ordering is:
28 // h0, h1, v0, v1, h2, h3, v2, v3
29 // This is chosen because it takes less work than fully separating the kernels,
30 // but it is separated enough that we can pick out each coefficient pair in the
31 // main compute_flow_at_point function
compute_cubic_kernels(double u,double v)32 static inline __m128i compute_cubic_kernels(double u, double v) {
33 const __m128d x = _mm_set_pd(v, u);
34
35 const __m128d x2 = _mm_mul_pd(x, x);
36 const __m128d x3 = _mm_mul_pd(x2, x);
37
38 // Macro to multiply a value v by a constant coefficient c
39 #define MULC(c, v) _mm_mul_pd(_mm_set1_pd(c), v)
40
41 // Compute floating-point kernel
42 // Note: To ensure results are bit-identical to the C code, we need to perform
43 // exactly the same sequence of operations here as in the C code.
44 __m128d k0 = _mm_sub_pd(_mm_add_pd(MULC(-0.5, x), x2), MULC(0.5, x3));
45 __m128d k1 =
46 _mm_add_pd(_mm_sub_pd(_mm_set1_pd(1.0), MULC(2.5, x2)), MULC(1.5, x3));
47 __m128d k2 =
48 _mm_sub_pd(_mm_add_pd(MULC(0.5, x), MULC(2.0, x2)), MULC(1.5, x3));
49 __m128d k3 = _mm_add_pd(MULC(-0.5, x2), MULC(0.5, x3));
50 #undef MULC
51
52 // Integerize
53 __m128d prec = _mm_set1_pd((double)(1 << DISFLOW_INTERP_BITS));
54
55 k0 = _mm_round_pd(_mm_mul_pd(k0, prec),
56 _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
57 k1 = _mm_round_pd(_mm_mul_pd(k1, prec),
58 _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
59 k2 = _mm_round_pd(_mm_mul_pd(k2, prec),
60 _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
61 k3 = _mm_round_pd(_mm_mul_pd(k3, prec),
62 _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
63
64 const __m128i c0 = _mm_cvtpd_epi32(k0);
65 const __m128i c1 = _mm_cvtpd_epi32(k1);
66 const __m128i c2 = _mm_cvtpd_epi32(k2);
67 const __m128i c3 = _mm_cvtpd_epi32(k3);
68
69 // Rearrange results and convert down to 16 bits, giving the target output
70 // ordering
71 const __m128i c01 = _mm_unpacklo_epi32(c0, c1);
72 const __m128i c23 = _mm_unpacklo_epi32(c2, c3);
73 return _mm_packs_epi32(c01, c23);
74 }
75
76 // Compare two regions of width x height pixels, one rooted at position
77 // (x, y) in src and the other at (x + u, y + v) in ref.
78 // This function returns the sum of squared pixel differences between
79 // the two regions.
80 //
81 // TODO(rachelbarker): Test speed/quality impact of using bilinear interpolation
82 // instad of bicubic interpolation
compute_flow_vector(const uint8_t * src,const uint8_t * ref,int width,int height,int stride,int x,int y,double u,double v,const int16_t * dx,const int16_t * dy,int * b)83 static inline void compute_flow_vector(const uint8_t *src, const uint8_t *ref,
84 int width, int height, int stride, int x,
85 int y, double u, double v,
86 const int16_t *dx, const int16_t *dy,
87 int *b) {
88 // This function is written to do 8x8 convolutions only
89 assert(DISFLOW_PATCH_SIZE == 8);
90
91 // Accumulate 4 32-bit partial sums for each element of b
92 // These will be flattened at the end.
93 __m128i b0_acc = _mm_setzero_si128();
94 __m128i b1_acc = _mm_setzero_si128();
95
96 // Split offset into integer and fractional parts, and compute cubic
97 // interpolation kernels
98 const int u_int = (int)floor(u);
99 const int v_int = (int)floor(v);
100 const double u_frac = u - floor(u);
101 const double v_frac = v - floor(v);
102
103 const __m128i kernels = compute_cubic_kernels(u_frac, v_frac);
104
105 // Storage for intermediate values between the two convolution directions
106 DECLARE_ALIGNED(16, int16_t,
107 tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)]);
108 int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row
109
110 // Clamp coordinates so that all pixels we fetch will remain within the
111 // allocated border region, but allow them to go far enough out that
112 // the border pixels' values do not change.
113 // Since we are calculating an 8x8 block, the bottom-right pixel
114 // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic
115 // interpolation has 4 taps, meaning that the output of pixel
116 // (x_w, y_w) depends on the pixels in the range
117 // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]).
118 //
119 // Thus the most extreme coordinates which will be fetched are
120 // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9).
121 const int x0 = clamp(x + u_int, -9, width);
122 const int y0 = clamp(y + v_int, -9, height);
123
124 // Horizontal convolution
125
126 // Prepare the kernel vectors
127 // We split the kernel into two vectors with kernel indices:
128 // 0, 1, 0, 1, 0, 1, 0, 1, and
129 // 2, 3, 2, 3, 2, 3, 2, 3
130 __m128i h_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 0));
131 __m128i h_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 2));
132
133 __m128i round_const_h = _mm_set1_epi32(1 << (DISFLOW_INTERP_BITS - 6 - 1));
134
135 for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) {
136 const int y_w = y0 + i;
137 const uint8_t *ref_row = &ref[y_w * stride + (x0 - 1)];
138 int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];
139
140 // Load this row of pixels.
141 // For an 8x8 patch, we need to load the 8 image pixels + 3 extras,
142 // for a total of 11 pixels. Here we load 16 pixels, but only use
143 // the first 11.
144 __m128i row = _mm_loadu_si128((__m128i *)ref_row);
145
146 // Expand pixels to int16s
147 __m128i px_0to7_i16 = _mm_cvtepu8_epi16(row);
148 __m128i px_4to10_i16 = _mm_cvtepu8_epi16(_mm_srli_si128(row, 4));
149
150 // Compute first four outputs
151 // input pixels 0, 1, 1, 2, 2, 3, 3, 4
152 // * kernel 0, 1, 0, 1, 0, 1, 0, 1
153 __m128i px0 =
154 _mm_unpacklo_epi16(px_0to7_i16, _mm_srli_si128(px_0to7_i16, 2));
155 // input pixels 2, 3, 3, 4, 4, 5, 5, 6
156 // * kernel 2, 3, 2, 3, 2, 3, 2, 3
157 __m128i px1 = _mm_unpacklo_epi16(_mm_srli_si128(px_0to7_i16, 4),
158 _mm_srli_si128(px_0to7_i16, 6));
159 // Convolve with kernel and sum 2x2 boxes to form first 4 outputs
160 __m128i sum0 = _mm_add_epi32(_mm_madd_epi16(px0, h_kernel_01),
161 _mm_madd_epi16(px1, h_kernel_23));
162
163 __m128i out0 = _mm_srai_epi32(_mm_add_epi32(sum0, round_const_h),
164 DISFLOW_INTERP_BITS - 6);
165
166 // Compute second four outputs
167 __m128i px2 =
168 _mm_unpacklo_epi16(px_4to10_i16, _mm_srli_si128(px_4to10_i16, 2));
169 __m128i px3 = _mm_unpacklo_epi16(_mm_srli_si128(px_4to10_i16, 4),
170 _mm_srli_si128(px_4to10_i16, 6));
171 __m128i sum1 = _mm_add_epi32(_mm_madd_epi16(px2, h_kernel_01),
172 _mm_madd_epi16(px3, h_kernel_23));
173
174 // Round by just enough bits that the result is
175 // guaranteed to fit into an i16. Then the next stage can use 16 x 16 -> 32
176 // bit multiplies, which should be a fair bit faster than 32 x 32 -> 32
177 // as it does now
178 // This means shifting down so we have 6 extra bits, for a maximum value
179 // of +18360, which can occur if u_frac == 0.5 and the input pixels are
180 // {0, 255, 255, 0}.
181 __m128i out1 = _mm_srai_epi32(_mm_add_epi32(sum1, round_const_h),
182 DISFLOW_INTERP_BITS - 6);
183
184 _mm_storeu_si128((__m128i *)tmp_row, _mm_packs_epi32(out0, out1));
185 }
186
187 // Vertical convolution
188 const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2;
189 __m128i round_const_v = _mm_set1_epi32(1 << (round_bits - 1));
190
191 __m128i v_kernel_01 = _mm_set1_epi32(_mm_extract_epi32(kernels, 1));
192 __m128i v_kernel_23 = _mm_set1_epi32(_mm_extract_epi32(kernels, 3));
193
194 for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) {
195 int16_t *tmp_row = &tmp[i * DISFLOW_PATCH_SIZE];
196
197 // Load 4 rows of 8 x 16-bit values
198 __m128i px0 = _mm_loadu_si128((__m128i *)(tmp_row - DISFLOW_PATCH_SIZE));
199 __m128i px1 = _mm_loadu_si128((__m128i *)tmp_row);
200 __m128i px2 = _mm_loadu_si128((__m128i *)(tmp_row + DISFLOW_PATCH_SIZE));
201 __m128i px3 =
202 _mm_loadu_si128((__m128i *)(tmp_row + 2 * DISFLOW_PATCH_SIZE));
203
204 // We want to calculate px0 * v_kernel[0] + px1 * v_kernel[1] + ... ,
205 // but each multiply expands its output to 32 bits. So we need to be
206 // a little clever about how we do this
207 __m128i sum0 = _mm_add_epi32(
208 _mm_madd_epi16(_mm_unpacklo_epi16(px0, px1), v_kernel_01),
209 _mm_madd_epi16(_mm_unpacklo_epi16(px2, px3), v_kernel_23));
210 __m128i sum1 = _mm_add_epi32(
211 _mm_madd_epi16(_mm_unpackhi_epi16(px0, px1), v_kernel_01),
212 _mm_madd_epi16(_mm_unpackhi_epi16(px2, px3), v_kernel_23));
213
214 __m128i sum0_rounded =
215 _mm_srai_epi32(_mm_add_epi32(sum0, round_const_v), round_bits);
216 __m128i sum1_rounded =
217 _mm_srai_epi32(_mm_add_epi32(sum1, round_const_v), round_bits);
218
219 __m128i warped = _mm_packs_epi32(sum0_rounded, sum1_rounded);
220 __m128i src_pixels_u8 =
221 _mm_loadl_epi64((__m128i *)&src[(y + i) * stride + x]);
222 __m128i src_pixels = _mm_slli_epi16(_mm_cvtepu8_epi16(src_pixels_u8), 3);
223
224 // Calculate delta from the target patch
225 __m128i dt = _mm_sub_epi16(warped, src_pixels);
226
227 // Load 8 elements each of dx and dt, to pair with the 8 elements of dt
228 // that we have just computed. Then compute 8 partial sums of dx * dt
229 // and dy * dt, implicitly sum to give 4 partial sums of each, and
230 // accumulate.
231 __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * DISFLOW_PATCH_SIZE]);
232 __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * DISFLOW_PATCH_SIZE]);
233 b0_acc = _mm_add_epi32(b0_acc, _mm_madd_epi16(dx_row, dt));
234 b1_acc = _mm_add_epi32(b1_acc, _mm_madd_epi16(dy_row, dt));
235 }
236
237 // Flatten the two sets of partial sums to find the final value of b
238 // We need to set b[0] = sum(b0_acc), b[1] = sum(b1_acc).
239 // We need to do 6 additions in total; a `hadd` instruction can take care
240 // of four of them, leaving two scalar additions.
241 __m128i partial_sum = _mm_hadd_epi32(b0_acc, b1_acc);
242 b[0] = _mm_extract_epi32(partial_sum, 0) + _mm_extract_epi32(partial_sum, 1);
243 b[1] = _mm_extract_epi32(partial_sum, 2) + _mm_extract_epi32(partial_sum, 3);
244 }
245
246 // Compute the x and y gradients of the source patch in a single pass,
247 // and store into dx and dy respectively.
sobel_filter(const uint8_t * src,int src_stride,int16_t * dx,int16_t * dy)248 static inline void sobel_filter(const uint8_t *src, int src_stride, int16_t *dx,
249 int16_t *dy) {
250 // Loop setup: Load the first two rows (of 10 input rows) and apply
251 // the horizontal parts of the two filters
252 __m128i row_m1 = _mm_loadu_si128((__m128i *)(src - src_stride - 1));
253 __m128i row_m1_a = _mm_cvtepu8_epi16(row_m1);
254 __m128i row_m1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 1));
255 __m128i row_m1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_m1, 2));
256
257 __m128i row_m1_hsmooth = _mm_add_epi16(_mm_add_epi16(row_m1_a, row_m1_c),
258 _mm_slli_epi16(row_m1_b, 1));
259 __m128i row_m1_hdiff = _mm_sub_epi16(row_m1_a, row_m1_c);
260
261 __m128i row = _mm_loadu_si128((__m128i *)(src - 1));
262 __m128i row_a = _mm_cvtepu8_epi16(row);
263 __m128i row_b = _mm_cvtepu8_epi16(_mm_srli_si128(row, 1));
264 __m128i row_c = _mm_cvtepu8_epi16(_mm_srli_si128(row, 2));
265
266 __m128i row_hsmooth =
267 _mm_add_epi16(_mm_add_epi16(row_a, row_c), _mm_slli_epi16(row_b, 1));
268 __m128i row_hdiff = _mm_sub_epi16(row_a, row_c);
269
270 // Main loop: For each of the 8 output rows:
271 // * Load row i+1 and apply both horizontal filters
272 // * Apply vertical filters and store results
273 // * Shift rows for next iteration
274 for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
275 // Load row i+1 and apply both horizontal filters
276 const __m128i row_p1 =
277 _mm_loadu_si128((__m128i *)(src + (i + 1) * src_stride - 1));
278 const __m128i row_p1_a = _mm_cvtepu8_epi16(row_p1);
279 const __m128i row_p1_b = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 1));
280 const __m128i row_p1_c = _mm_cvtepu8_epi16(_mm_srli_si128(row_p1, 2));
281
282 const __m128i row_p1_hsmooth = _mm_add_epi16(
283 _mm_add_epi16(row_p1_a, row_p1_c), _mm_slli_epi16(row_p1_b, 1));
284 const __m128i row_p1_hdiff = _mm_sub_epi16(row_p1_a, row_p1_c);
285
286 // Apply vertical filters and store results
287 // dx = vertical smooth(horizontal diff(input))
288 // dy = vertical diff(horizontal smooth(input))
289 const __m128i dx_row =
290 _mm_add_epi16(_mm_add_epi16(row_m1_hdiff, row_p1_hdiff),
291 _mm_slli_epi16(row_hdiff, 1));
292 const __m128i dy_row = _mm_sub_epi16(row_m1_hsmooth, row_p1_hsmooth);
293
294 _mm_storeu_si128((__m128i *)(dx + i * DISFLOW_PATCH_SIZE), dx_row);
295 _mm_storeu_si128((__m128i *)(dy + i * DISFLOW_PATCH_SIZE), dy_row);
296
297 // Shift rows for next iteration
298 // This allows a lot of work to be reused, reducing the number of
299 // horizontal filtering operations from 2*3*8 = 48 to 2*10 = 20
300 row_m1_hsmooth = row_hsmooth;
301 row_m1_hdiff = row_hdiff;
302 row_hsmooth = row_p1_hsmooth;
303 row_hdiff = row_p1_hdiff;
304 }
305 }
306
compute_flow_matrix(const int16_t * dx,int dx_stride,const int16_t * dy,int dy_stride,double * M)307 static inline void compute_flow_matrix(const int16_t *dx, int dx_stride,
308 const int16_t *dy, int dy_stride,
309 double *M) {
310 __m128i acc[4] = { 0 };
311
312 for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
313 __m128i dx_row = _mm_loadu_si128((__m128i *)&dx[i * dx_stride]);
314 __m128i dy_row = _mm_loadu_si128((__m128i *)&dy[i * dy_stride]);
315
316 acc[0] = _mm_add_epi32(acc[0], _mm_madd_epi16(dx_row, dx_row));
317 acc[1] = _mm_add_epi32(acc[1], _mm_madd_epi16(dx_row, dy_row));
318 // Don't compute acc[2], as it should be equal to acc[1]
319 acc[3] = _mm_add_epi32(acc[3], _mm_madd_epi16(dy_row, dy_row));
320 }
321
322 // Condense sums
323 __m128i partial_sum_0 = _mm_hadd_epi32(acc[0], acc[1]);
324 __m128i partial_sum_1 = _mm_hadd_epi32(acc[1], acc[3]);
325 __m128i result = _mm_hadd_epi32(partial_sum_0, partial_sum_1);
326
327 // Apply regularization
328 // We follow the standard regularization method of adding `k * I` before
329 // inverting. This ensures that the matrix will be invertible.
330 //
331 // Setting the regularization strength k to 1 seems to work well here, as
332 // typical values coming from the other equations are very large (1e5 to
333 // 1e6, with an upper limit of around 6e7, at the time of writing).
334 // It also preserves the property that all matrix values are whole numbers,
335 // which is convenient for integerized SIMD implementation.
336 result = _mm_add_epi32(result, _mm_set_epi32(1, 0, 0, 1));
337
338 // Convert results to doubles and store
339 _mm_storeu_pd(M, _mm_cvtepi32_pd(result));
340 _mm_storeu_pd(M + 2, _mm_cvtepi32_pd(_mm_srli_si128(result, 8)));
341 }
342
343 // Try to invert the matrix M
344 // Note: Due to the nature of how a least-squares matrix is constructed, all of
345 // the eigenvalues will be >= 0, and therefore det M >= 0 as well.
346 // The regularization term `+ k * I` further ensures that det M >= k^2.
347 // As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1.
348 // So we don't have to worry about non-invertible matrices here.
invert_2x2(const double * M,double * M_inv)349 static inline void invert_2x2(const double *M, double *M_inv) {
350 double det = (M[0] * M[3]) - (M[1] * M[2]);
351 assert(det >= 1);
352 const double det_inv = 1 / det;
353
354 M_inv[0] = M[3] * det_inv;
355 M_inv[1] = -M[1] * det_inv;
356 M_inv[2] = -M[2] * det_inv;
357 M_inv[3] = M[0] * det_inv;
358 }
359
aom_compute_flow_at_point_sse4_1(const uint8_t * src,const uint8_t * ref,int x,int y,int width,int height,int stride,double * u,double * v)360 void aom_compute_flow_at_point_sse4_1(const uint8_t *src, const uint8_t *ref,
361 int x, int y, int width, int height,
362 int stride, double *u, double *v) {
363 DECLARE_ALIGNED(16, double, M[4]);
364 DECLARE_ALIGNED(16, double, M_inv[4]);
365 DECLARE_ALIGNED(16, int16_t, dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]);
366 DECLARE_ALIGNED(16, int16_t, dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE]);
367 int b[2];
368
369 // Compute gradients within this patch
370 const uint8_t *src_patch = &src[y * stride + x];
371 sobel_filter(src_patch, stride, dx, dy);
372
373 compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M);
374 invert_2x2(M, M_inv);
375
376 for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
377 compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy,
378 b);
379
380 // Solve flow equations to find a better estimate for the flow vector
381 // at this point
382 const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1];
383 const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1];
384 *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2);
385 *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2);
386
387 if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) {
388 // Stop iteration when we're close to convergence
389 break;
390 }
391 }
392 }
393