1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 // Dense Inverse Search flow algorithm
13 // Paper: https://arxiv.org/abs/1603.03590
14
15 #include <assert.h>
16 #include <math.h>
17
18 #include "aom_dsp/aom_dsp_common.h"
19 #include "aom_dsp/flow_estimation/corner_detect.h"
20 #include "aom_dsp/flow_estimation/disflow.h"
21 #include "aom_dsp/flow_estimation/ransac.h"
22 #include "aom_dsp/pyramid.h"
23 #include "aom_mem/aom_mem.h"
24
25 #include "config/aom_dsp_rtcd.h"
26
27 // Amount to downsample the flow field by.
28 // e.g., DOWNSAMPLE_SHIFT = 2 (DOWNSAMPLE_FACTOR == 4) means we calculate
29 // one flow point for each 4x4 pixel region of the frame
30 // Must be a power of 2
31 #define DOWNSAMPLE_SHIFT 3
32 #define DOWNSAMPLE_FACTOR (1 << DOWNSAMPLE_SHIFT)
33
34 // Filters used when upscaling the flow field from one pyramid level
35 // to another. See upscale_flow_component for details on kernel selection
36 #define FLOW_UPSCALE_TAPS 4
37
38 // Number of outermost flow field entries (on each edge) which can't be
39 // computed, because the patch they correspond to extends outside of the
40 // frame
41 // The border is (DISFLOW_PATCH_SIZE >> 1) pixels, which is
42 // (DISFLOW_PATCH_SIZE >> 1) >> DOWNSAMPLE_SHIFT many flow field entries
43 #define FLOW_BORDER_INNER ((DISFLOW_PATCH_SIZE >> 1) >> DOWNSAMPLE_SHIFT)
44
45 // Number of extra padding entries on each side of the flow field.
46 // These samples are added so that we do not need to apply clamping when
47 // interpolating or upsampling the flow field
48 #define FLOW_BORDER_OUTER (FLOW_UPSCALE_TAPS / 2)
49
50 // When downsampling the flow field, each flow field entry covers a square
51 // region of pixels in the image pyramid. This value is equal to the position
52 // of the center of that region, as an offset from the top/left edge.
53 //
54 // Note: Using ((DOWNSAMPLE_FACTOR - 1) / 2) is equivalent to the more
55 // natural expression ((DOWNSAMPLE_FACTOR / 2) - 1),
56 // unless DOWNSAMPLE_FACTOR == 1 (ie, no downsampling), in which case
57 // this gives the correct offset of 0 instead of -1.
58 #define UPSAMPLE_CENTER_OFFSET ((DOWNSAMPLE_FACTOR - 1) / 2)
59
60 static double flow_upscale_filter[2][FLOW_UPSCALE_TAPS] = {
61 // Cubic interpolation kernels for phase=0.75 and phase=0.25, respectively
62 { -3 / 128., 29 / 128., 111 / 128., -9 / 128. },
63 { -9 / 128., 111 / 128., 29 / 128., -3 / 128. }
64 };
65
get_cubic_kernel_dbl(double x,double kernel[4])66 static inline void get_cubic_kernel_dbl(double x, double kernel[4]) {
67 // Check that the fractional position is in range.
68 //
69 // Note: x is calculated from, e.g., `u_frac = u - floor(u)`.
70 // Mathematically, this implies that 0 <= x < 1. However, in practice it is
71 // possible to have x == 1 due to floating point rounding. This is fine,
72 // and we still interpolate correctly if we allow x = 1.
73 assert(0 <= x && x <= 1);
74
75 double x2 = x * x;
76 double x3 = x2 * x;
77 kernel[0] = -0.5 * x + x2 - 0.5 * x3;
78 kernel[1] = 1.0 - 2.5 * x2 + 1.5 * x3;
79 kernel[2] = 0.5 * x + 2.0 * x2 - 1.5 * x3;
80 kernel[3] = -0.5 * x2 + 0.5 * x3;
81 }
82
get_cubic_kernel_int(double x,int kernel[4])83 static inline void get_cubic_kernel_int(double x, int kernel[4]) {
84 double kernel_dbl[4];
85 get_cubic_kernel_dbl(x, kernel_dbl);
86
87 kernel[0] = (int)rint(kernel_dbl[0] * (1 << DISFLOW_INTERP_BITS));
88 kernel[1] = (int)rint(kernel_dbl[1] * (1 << DISFLOW_INTERP_BITS));
89 kernel[2] = (int)rint(kernel_dbl[2] * (1 << DISFLOW_INTERP_BITS));
90 kernel[3] = (int)rint(kernel_dbl[3] * (1 << DISFLOW_INTERP_BITS));
91 }
92
get_cubic_value_dbl(const double * p,const double kernel[4])93 static inline double get_cubic_value_dbl(const double *p,
94 const double kernel[4]) {
95 return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] +
96 kernel[3] * p[3];
97 }
98
get_cubic_value_int(const int * p,const int kernel[4])99 static inline int get_cubic_value_int(const int *p, const int kernel[4]) {
100 return kernel[0] * p[0] + kernel[1] * p[1] + kernel[2] * p[2] +
101 kernel[3] * p[3];
102 }
103
bicubic_interp_one(const double * arr,int stride,const double h_kernel[4],const double v_kernel[4])104 static inline double bicubic_interp_one(const double *arr, int stride,
105 const double h_kernel[4],
106 const double v_kernel[4]) {
107 double tmp[1 * 4];
108
109 // Horizontal convolution
110 for (int i = -1; i < 3; ++i) {
111 tmp[i + 1] = get_cubic_value_dbl(&arr[i * stride - 1], h_kernel);
112 }
113
114 // Vertical convolution
115 return get_cubic_value_dbl(tmp, v_kernel);
116 }
117
determine_disflow_correspondence(const ImagePyramid * src_pyr,const ImagePyramid * ref_pyr,CornerList * corners,const FlowField * flow,Correspondence * correspondences)118 static int determine_disflow_correspondence(const ImagePyramid *src_pyr,
119 const ImagePyramid *ref_pyr,
120 CornerList *corners,
121 const FlowField *flow,
122 Correspondence *correspondences) {
123 const int width = flow->width;
124 const int height = flow->height;
125 const int stride = flow->stride;
126
127 int num_correspondences = 0;
128 for (int i = 0; i < corners->num_corners; ++i) {
129 const int x0 = corners->corners[2 * i];
130 const int y0 = corners->corners[2 * i + 1];
131
132 // Offset points, to compensate for the fact that (say) a flow field entry
133 // at horizontal index i, is nominally associated with the pixel at
134 // horizontal coordinate (i << DOWNSAMPLE_FACTOR) + UPSAMPLE_CENTER_OFFSET
135 // This offset must be applied before we split the coordinate into integer
136 // and fractional parts, in order for the interpolation to be correct.
137 const int x = x0 - UPSAMPLE_CENTER_OFFSET;
138 const int y = y0 - UPSAMPLE_CENTER_OFFSET;
139
140 // Split the pixel coordinates into integer flow field coordinates and
141 // an offset for interpolation
142 const int flow_x = x >> DOWNSAMPLE_SHIFT;
143 const double flow_sub_x =
144 (x & (DOWNSAMPLE_FACTOR - 1)) / (double)DOWNSAMPLE_FACTOR;
145 const int flow_y = y >> DOWNSAMPLE_SHIFT;
146 const double flow_sub_y =
147 (y & (DOWNSAMPLE_FACTOR - 1)) / (double)DOWNSAMPLE_FACTOR;
148
149 // Exclude points which would sample from the outer border of the flow
150 // field, as this would give lower-quality results.
151 //
152 // Note: As we never read from the border region at pyramid level 0, we
153 // can skip filling it in. If the conditions here are removed, or any
154 // other logic is added which reads from this border region, then
155 // compute_flow_field() will need to be modified to call
156 // fill_flow_field_borders() at pyramid level 0 to set up the correct
157 // border data.
158 if (flow_x < 1 || (flow_x + 2) >= width) continue;
159 if (flow_y < 1 || (flow_y + 2) >= height) continue;
160
161 double h_kernel[4];
162 double v_kernel[4];
163 get_cubic_kernel_dbl(flow_sub_x, h_kernel);
164 get_cubic_kernel_dbl(flow_sub_y, v_kernel);
165
166 double flow_u = bicubic_interp_one(&flow->u[flow_y * stride + flow_x],
167 stride, h_kernel, v_kernel);
168 double flow_v = bicubic_interp_one(&flow->v[flow_y * stride + flow_x],
169 stride, h_kernel, v_kernel);
170
171 // Refine the interpolated flow vector one last time
172 const int patch_tl_x = x0 - DISFLOW_PATCH_CENTER;
173 const int patch_tl_y = y0 - DISFLOW_PATCH_CENTER;
174 aom_compute_flow_at_point(
175 src_pyr->layers[0].buffer, ref_pyr->layers[0].buffer, patch_tl_x,
176 patch_tl_y, src_pyr->layers[0].width, src_pyr->layers[0].height,
177 src_pyr->layers[0].stride, &flow_u, &flow_v);
178
179 // Use original points (without offsets) when filling in correspondence
180 // array
181 correspondences[num_correspondences].x = x0;
182 correspondences[num_correspondences].y = y0;
183 correspondences[num_correspondences].rx = x0 + flow_u;
184 correspondences[num_correspondences].ry = y0 + flow_v;
185 num_correspondences++;
186 }
187 return num_correspondences;
188 }
189
190 // Compare two regions of width x height pixels, one rooted at position
191 // (x, y) in src and the other at (x + u, y + v) in ref.
192 // This function returns the sum of squared pixel differences between
193 // the two regions.
compute_flow_vector(const uint8_t * src,const uint8_t * ref,int width,int height,int stride,int x,int y,double u,double v,const int16_t * dx,const int16_t * dy,int * b)194 static inline void compute_flow_vector(const uint8_t *src, const uint8_t *ref,
195 int width, int height, int stride, int x,
196 int y, double u, double v,
197 const int16_t *dx, const int16_t *dy,
198 int *b) {
199 memset(b, 0, 2 * sizeof(*b));
200
201 // Split offset into integer and fractional parts, and compute cubic
202 // interpolation kernels
203 const int u_int = (int)floor(u);
204 const int v_int = (int)floor(v);
205 const double u_frac = u - floor(u);
206 const double v_frac = v - floor(v);
207
208 int h_kernel[4];
209 int v_kernel[4];
210 get_cubic_kernel_int(u_frac, h_kernel);
211 get_cubic_kernel_int(v_frac, v_kernel);
212
213 // Storage for intermediate values between the two convolution directions
214 int tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 3)];
215 int *tmp = tmp_ + DISFLOW_PATCH_SIZE; // Offset by one row
216
217 // Clamp coordinates so that all pixels we fetch will remain within the
218 // allocated border region, but allow them to go far enough out that
219 // the border pixels' values do not change.
220 // Since we are calculating an 8x8 block, the bottom-right pixel
221 // in the block has coordinates (x0 + 7, y0 + 7). Then, the cubic
222 // interpolation has 4 taps, meaning that the output of pixel
223 // (x_w, y_w) depends on the pixels in the range
224 // ([x_w - 1, x_w + 2], [y_w - 1, y_w + 2]).
225 //
226 // Thus the most extreme coordinates which will be fetched are
227 // (x0 - 1, y0 - 1) and (x0 + 9, y0 + 9).
228 const int x0 = clamp(x + u_int, -9, width);
229 const int y0 = clamp(y + v_int, -9, height);
230
231 // Horizontal convolution
232 for (int i = -1; i < DISFLOW_PATCH_SIZE + 2; ++i) {
233 const int y_w = y0 + i;
234 for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
235 const int x_w = x0 + j;
236 int arr[4];
237
238 arr[0] = (int)ref[y_w * stride + (x_w - 1)];
239 arr[1] = (int)ref[y_w * stride + (x_w + 0)];
240 arr[2] = (int)ref[y_w * stride + (x_w + 1)];
241 arr[3] = (int)ref[y_w * stride + (x_w + 2)];
242
243 // Apply kernel and round, keeping 6 extra bits of precision.
244 //
245 // 6 is the maximum allowable number of extra bits which will avoid
246 // the intermediate values overflowing an int16_t. The most extreme
247 // intermediate value occurs when:
248 // * The input pixels are [0, 255, 255, 0]
249 // * u_frac = 0.5
250 // In this case, the un-scaled output is 255 * 1.125 = 286.875.
251 // As an integer with 6 fractional bits, that is 18360, which fits
252 // in an int16_t. But with 7 fractional bits it would be 36720,
253 // which is too large.
254 tmp[i * DISFLOW_PATCH_SIZE + j] = ROUND_POWER_OF_TWO(
255 get_cubic_value_int(arr, h_kernel), DISFLOW_INTERP_BITS - 6);
256 }
257 }
258
259 // Vertical convolution
260 for (int i = 0; i < DISFLOW_PATCH_SIZE; ++i) {
261 for (int j = 0; j < DISFLOW_PATCH_SIZE; ++j) {
262 const int *p = &tmp[i * DISFLOW_PATCH_SIZE + j];
263 const int arr[4] = { p[-DISFLOW_PATCH_SIZE], p[0], p[DISFLOW_PATCH_SIZE],
264 p[2 * DISFLOW_PATCH_SIZE] };
265 const int result = get_cubic_value_int(arr, v_kernel);
266
267 // Apply kernel and round.
268 // This time, we have to round off the 6 extra bits which were kept
269 // earlier, but we also want to keep DISFLOW_DERIV_SCALE_LOG2 extra bits
270 // of precision to match the scale of the dx and dy arrays.
271 const int round_bits = DISFLOW_INTERP_BITS + 6 - DISFLOW_DERIV_SCALE_LOG2;
272 const int warped = ROUND_POWER_OF_TWO(result, round_bits);
273 const int src_px = src[(x + j) + (y + i) * stride] << 3;
274 const int dt = warped - src_px;
275 b[0] += dx[i * DISFLOW_PATCH_SIZE + j] * dt;
276 b[1] += dy[i * DISFLOW_PATCH_SIZE + j] * dt;
277 }
278 }
279 }
280
sobel_filter(const uint8_t * src,int src_stride,int16_t * dst,int dst_stride,int dir)281 static inline void sobel_filter(const uint8_t *src, int src_stride,
282 int16_t *dst, int dst_stride, int dir) {
283 int16_t tmp_[DISFLOW_PATCH_SIZE * (DISFLOW_PATCH_SIZE + 2)];
284 int16_t *tmp = tmp_ + DISFLOW_PATCH_SIZE;
285
286 // Sobel filter kernel
287 // This must have an overall scale factor equal to DISFLOW_DERIV_SCALE,
288 // in order to produce correctly scaled outputs.
289 // To work out the scale factor, we multiply two factors:
290 //
291 // * For the derivative filter (sobel_a), comparing our filter
292 // image[x - 1] - image[x + 1]
293 // to the standard form
294 // d/dx image[x] = image[x+1] - image[x]
295 // tells us that we're actually calculating -2 * d/dx image[2]
296 //
297 // * For the smoothing filter (sobel_b), all coefficients are positive
298 // so the scale factor is just the sum of the coefficients
299 //
300 // Thus we need to make sure that DISFLOW_DERIV_SCALE = 2 * sum(sobel_b)
301 // (and take care of the - sign from sobel_a elsewhere)
302 static const int16_t sobel_a[3] = { 1, 0, -1 };
303 static const int16_t sobel_b[3] = { 1, 2, 1 };
304 const int taps = 3;
305
306 // horizontal filter
307 const int16_t *h_kernel = dir ? sobel_a : sobel_b;
308
309 for (int y = -1; y < DISFLOW_PATCH_SIZE + 1; ++y) {
310 for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
311 int sum = 0;
312 for (int k = 0; k < taps; ++k) {
313 sum += h_kernel[k] * src[y * src_stride + (x + k - 1)];
314 }
315 tmp[y * DISFLOW_PATCH_SIZE + x] = sum;
316 }
317 }
318
319 // vertical filter
320 const int16_t *v_kernel = dir ? sobel_b : sobel_a;
321
322 for (int y = 0; y < DISFLOW_PATCH_SIZE; ++y) {
323 for (int x = 0; x < DISFLOW_PATCH_SIZE; ++x) {
324 int sum = 0;
325 for (int k = 0; k < taps; ++k) {
326 sum += v_kernel[k] * tmp[(y + k - 1) * DISFLOW_PATCH_SIZE + x];
327 }
328 dst[y * dst_stride + x] = sum;
329 }
330 }
331 }
332
333 // Computes the components of the system of equations used to solve for
334 // a flow vector.
335 //
336 // The flow equations are a least-squares system, derived as follows:
337 //
338 // For each pixel in the patch, we calculate the current error `dt`,
339 // and the x and y gradients `dx` and `dy` of the source patch.
340 // This means that, to first order, the squared error for this pixel is
341 //
342 // (dt + u * dx + v * dy)^2
343 //
344 // where (u, v) are the incremental changes to the flow vector.
345 //
346 // We then want to find the values of u and v which minimize the sum
347 // of the squared error across all pixels. Conveniently, this fits exactly
348 // into the form of a least squares problem, with one equation
349 //
350 // u * dx + v * dy = -dt
351 //
352 // for each pixel.
353 //
354 // Summing across all pixels in a square window of size DISFLOW_PATCH_SIZE,
355 // and absorbing the - sign elsewhere, this results in the least squares system
356 //
357 // M = |sum(dx * dx) sum(dx * dy)|
358 // |sum(dx * dy) sum(dy * dy)|
359 //
360 // b = |sum(dx * dt)|
361 // |sum(dy * dt)|
compute_flow_matrix(const int16_t * dx,int dx_stride,const int16_t * dy,int dy_stride,double * M)362 static inline void compute_flow_matrix(const int16_t *dx, int dx_stride,
363 const int16_t *dy, int dy_stride,
364 double *M) {
365 int tmp[4] = { 0 };
366
367 for (int i = 0; i < DISFLOW_PATCH_SIZE; i++) {
368 for (int j = 0; j < DISFLOW_PATCH_SIZE; j++) {
369 tmp[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
370 tmp[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
371 // Don't compute tmp[2], as it should be equal to tmp[1]
372 tmp[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
373 }
374 }
375
376 // Apply regularization
377 // We follow the standard regularization method of adding `k * I` before
378 // inverting. This ensures that the matrix will be invertible.
379 //
380 // Setting the regularization strength k to 1 seems to work well here, as
381 // typical values coming from the other equations are very large (1e5 to
382 // 1e6, with an upper limit of around 6e7, at the time of writing).
383 // It also preserves the property that all matrix values are whole numbers,
384 // which is convenient for integerized SIMD implementation.
385 tmp[0] += 1;
386 tmp[3] += 1;
387
388 tmp[2] = tmp[1];
389
390 M[0] = (double)tmp[0];
391 M[1] = (double)tmp[1];
392 M[2] = (double)tmp[2];
393 M[3] = (double)tmp[3];
394 }
395
396 // Try to invert the matrix M
397 // Note: Due to the nature of how a least-squares matrix is constructed, all of
398 // the eigenvalues will be >= 0, and therefore det M >= 0 as well.
399 // The regularization term `+ k * I` further ensures that det M >= k^2.
400 // As mentioned in compute_flow_matrix(), here we use k = 1, so det M >= 1.
401 // So we don't have to worry about non-invertible matrices here.
invert_2x2(const double * M,double * M_inv)402 static inline void invert_2x2(const double *M, double *M_inv) {
403 double det = (M[0] * M[3]) - (M[1] * M[2]);
404 assert(det >= 1);
405 const double det_inv = 1 / det;
406
407 M_inv[0] = M[3] * det_inv;
408 M_inv[1] = -M[1] * det_inv;
409 M_inv[2] = -M[2] * det_inv;
410 M_inv[3] = M[0] * det_inv;
411 }
412
aom_compute_flow_at_point_c(const uint8_t * src,const uint8_t * ref,int x,int y,int width,int height,int stride,double * u,double * v)413 void aom_compute_flow_at_point_c(const uint8_t *src, const uint8_t *ref, int x,
414 int y, int width, int height, int stride,
415 double *u, double *v) {
416 double M[4];
417 double M_inv[4];
418 int b[2];
419 int16_t dx[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
420 int16_t dy[DISFLOW_PATCH_SIZE * DISFLOW_PATCH_SIZE];
421
422 // Compute gradients within this patch
423 const uint8_t *src_patch = &src[y * stride + x];
424 sobel_filter(src_patch, stride, dx, DISFLOW_PATCH_SIZE, 1);
425 sobel_filter(src_patch, stride, dy, DISFLOW_PATCH_SIZE, 0);
426
427 compute_flow_matrix(dx, DISFLOW_PATCH_SIZE, dy, DISFLOW_PATCH_SIZE, M);
428 invert_2x2(M, M_inv);
429
430 for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
431 compute_flow_vector(src, ref, width, height, stride, x, y, *u, *v, dx, dy,
432 b);
433
434 // Solve flow equations to find a better estimate for the flow vector
435 // at this point
436 const double step_u = M_inv[0] * b[0] + M_inv[1] * b[1];
437 const double step_v = M_inv[2] * b[0] + M_inv[3] * b[1];
438 *u += fclamp(step_u * DISFLOW_STEP_SIZE, -2, 2);
439 *v += fclamp(step_v * DISFLOW_STEP_SIZE, -2, 2);
440
441 if (fabs(step_u) + fabs(step_v) < DISFLOW_STEP_SIZE_THRESOLD) {
442 // Stop iteration when we're close to convergence
443 break;
444 }
445 }
446 }
447
fill_flow_field_borders(double * flow,int width,int height,int stride)448 static void fill_flow_field_borders(double *flow, int width, int height,
449 int stride) {
450 // Calculate the bounds of the rectangle which was filled in by
451 // compute_flow_field() before calling this function.
452 // These indices are inclusive on both ends.
453 const int left_index = FLOW_BORDER_INNER;
454 const int right_index = (width - FLOW_BORDER_INNER - 1);
455 const int top_index = FLOW_BORDER_INNER;
456 const int bottom_index = (height - FLOW_BORDER_INNER - 1);
457
458 // Left area
459 for (int i = top_index; i <= bottom_index; i += 1) {
460 double *row = flow + i * stride;
461 const double left = row[left_index];
462 for (int j = -FLOW_BORDER_OUTER; j < left_index; j++) {
463 row[j] = left;
464 }
465 }
466
467 // Right area
468 for (int i = top_index; i <= bottom_index; i += 1) {
469 double *row = flow + i * stride;
470 const double right = row[right_index];
471 for (int j = right_index + 1; j < width + FLOW_BORDER_OUTER; j++) {
472 row[j] = right;
473 }
474 }
475
476 // Top area
477 const double *top_row = flow + top_index * stride - FLOW_BORDER_OUTER;
478 for (int i = -FLOW_BORDER_OUTER; i < top_index; i++) {
479 double *row = flow + i * stride - FLOW_BORDER_OUTER;
480 size_t length = width + 2 * FLOW_BORDER_OUTER;
481 memcpy(row, top_row, length * sizeof(*row));
482 }
483
484 // Bottom area
485 const double *bottom_row = flow + bottom_index * stride - FLOW_BORDER_OUTER;
486 for (int i = bottom_index + 1; i < height + FLOW_BORDER_OUTER; i++) {
487 double *row = flow + i * stride - FLOW_BORDER_OUTER;
488 size_t length = width + 2 * FLOW_BORDER_OUTER;
489 memcpy(row, bottom_row, length * sizeof(*row));
490 }
491 }
492
493 // Upscale one component of the flow field, from a size of
494 // cur_width x cur_height to a size of (2*cur_width) x (2*cur_height), storing
495 // the result back into the same buffer. This function also scales the flow
496 // vector by 2, so that when we move to the next pyramid level down, the implied
497 // motion vector is the same.
498 //
499 // The temporary buffer tmpbuf must be large enough to hold an intermediate
500 // array of size stride * cur_height, *plus* FLOW_BORDER_OUTER rows above and
501 // below. In other words, indices from -FLOW_BORDER_OUTER * stride to
502 // (cur_height + FLOW_BORDER_OUTER) * stride - 1 must be valid.
503 //
504 // Note that the same stride is used for u before and after upscaling
505 // and for the temporary buffer, for simplicity.
506 //
507 // A note on phasing:
508 //
509 // The flow fields at two adjacent pyramid levels are offset from each other,
510 // and we need to account for this in the construction of the interpolation
511 // kernels.
512 //
513 // Consider an 8x8 pixel patch at pyramid level n. This is split into four
514 // patches at pyramid level n-1. Bringing these patches back up to pyramid level
515 // n, each sub-patch covers 4x4 pixels, and between them they cover the same
516 // 8x8 region.
517 //
518 // Therefore, at pyramid level n, two adjacent patches look like this:
519 //
520 // + - - - - - - - + - - - - - - - +
521 // | | |
522 // | x x | x x |
523 // | | |
524 // | # | # |
525 // | | |
526 // | x x | x x |
527 // | | |
528 // + - - - - - - - + - - - - - - - +
529 //
530 // where # marks the center of a patch at pyramid level n (the input to this
531 // function), and x marks the center of a patch at pyramid level n-1 (the output
532 // of this function).
533 //
534 // By counting pixels (marked by +, -, and |), we can see that the flow vectors
535 // at pyramid level n-1 are offset relative to the flow vectors at pyramid
536 // level n, by 1/4 of the larger (input) patch size. Therefore, our
537 // interpolation kernels need to have phases of 0.25 and 0.75.
538 //
539 // In addition, in order to handle the frame edges correctly, we need to
540 // generate one output vector to the left and one to the right of each input
541 // vector, even though these must be interpolated using different source points.
upscale_flow_component(double * flow,int cur_width,int cur_height,int stride,double * tmpbuf)542 static void upscale_flow_component(double *flow, int cur_width, int cur_height,
543 int stride, double *tmpbuf) {
544 const int half_len = FLOW_UPSCALE_TAPS / 2;
545
546 // Check that the outer border is large enough to avoid needing to clamp
547 // the source locations
548 assert(half_len <= FLOW_BORDER_OUTER);
549
550 // Horizontal upscale and multiply by 2
551 for (int i = 0; i < cur_height; i++) {
552 for (int j = 0; j < cur_width; j++) {
553 double left = 0;
554 for (int k = -half_len; k < half_len; k++) {
555 left +=
556 flow[i * stride + (j + k)] * flow_upscale_filter[0][k + half_len];
557 }
558 tmpbuf[i * stride + (2 * j + 0)] = 2.0 * left;
559
560 // Right output pixel is 0.25 units to the right of the input pixel
561 double right = 0;
562 for (int k = -(half_len - 1); k < (half_len + 1); k++) {
563 right += flow[i * stride + (j + k)] *
564 flow_upscale_filter[1][k + (half_len - 1)];
565 }
566 tmpbuf[i * stride + (2 * j + 1)] = 2.0 * right;
567 }
568 }
569
570 // Fill in top and bottom borders of tmpbuf
571 const double *top_row = &tmpbuf[0];
572 for (int i = -FLOW_BORDER_OUTER; i < 0; i++) {
573 double *row = &tmpbuf[i * stride];
574 memcpy(row, top_row, 2 * cur_width * sizeof(*row));
575 }
576
577 const double *bottom_row = &tmpbuf[(cur_height - 1) * stride];
578 for (int i = cur_height; i < cur_height + FLOW_BORDER_OUTER; i++) {
579 double *row = &tmpbuf[i * stride];
580 memcpy(row, bottom_row, 2 * cur_width * sizeof(*row));
581 }
582
583 // Vertical upscale
584 int upscaled_width = cur_width * 2;
585 for (int i = 0; i < cur_height; i++) {
586 for (int j = 0; j < upscaled_width; j++) {
587 double top = 0;
588 for (int k = -half_len; k < half_len; k++) {
589 top +=
590 tmpbuf[(i + k) * stride + j] * flow_upscale_filter[0][k + half_len];
591 }
592 flow[(2 * i) * stride + j] = top;
593
594 double bottom = 0;
595 for (int k = -(half_len - 1); k < (half_len + 1); k++) {
596 bottom += tmpbuf[(i + k) * stride + j] *
597 flow_upscale_filter[1][k + (half_len - 1)];
598 }
599 flow[(2 * i + 1) * stride + j] = bottom;
600 }
601 }
602 }
603
604 // make sure flow_u and flow_v start at 0
compute_flow_field(const ImagePyramid * src_pyr,const ImagePyramid * ref_pyr,int n_levels,FlowField * flow)605 static bool compute_flow_field(const ImagePyramid *src_pyr,
606 const ImagePyramid *ref_pyr, int n_levels,
607 FlowField *flow) {
608 bool mem_status = true;
609
610 double *flow_u = flow->u;
611 double *flow_v = flow->v;
612
613 double *tmpbuf0;
614 double *tmpbuf;
615
616 if (n_levels < 2) {
617 // tmpbuf not needed
618 tmpbuf0 = NULL;
619 tmpbuf = NULL;
620 } else {
621 // This line must match the calculation of cur_flow_height below
622 const int layer1_height = src_pyr->layers[1].height >> DOWNSAMPLE_SHIFT;
623
624 const size_t tmpbuf_size =
625 (layer1_height + 2 * FLOW_BORDER_OUTER) * flow->stride;
626 tmpbuf0 = aom_malloc(tmpbuf_size * sizeof(*tmpbuf0));
627 if (!tmpbuf0) {
628 mem_status = false;
629 goto free_tmpbuf;
630 }
631 tmpbuf = tmpbuf0 + FLOW_BORDER_OUTER * flow->stride;
632 }
633
634 // Compute flow field from coarsest to finest level of the pyramid
635 //
636 // Note: We stop after refining pyramid level 1 and interpolating it to
637 // generate an initial flow field at level 0. We do *not* refine the dense
638 // flow field at level 0. Instead, we wait until we have generated
639 // correspondences by interpolating this flow field, and then refine the
640 // correspondences themselves. This is both faster and gives better output
641 // compared to refining the flow field at level 0 and then interpolating.
642 for (int level = n_levels - 1; level >= 1; --level) {
643 const PyramidLayer *cur_layer = &src_pyr->layers[level];
644 const int cur_width = cur_layer->width;
645 const int cur_height = cur_layer->height;
646 const int cur_stride = cur_layer->stride;
647
648 const uint8_t *src_buffer = cur_layer->buffer;
649 const uint8_t *ref_buffer = ref_pyr->layers[level].buffer;
650
651 const int cur_flow_width = cur_width >> DOWNSAMPLE_SHIFT;
652 const int cur_flow_height = cur_height >> DOWNSAMPLE_SHIFT;
653 const int cur_flow_stride = flow->stride;
654
655 for (int i = FLOW_BORDER_INNER; i < cur_flow_height - FLOW_BORDER_INNER;
656 i += 1) {
657 for (int j = FLOW_BORDER_INNER; j < cur_flow_width - FLOW_BORDER_INNER;
658 j += 1) {
659 const int flow_field_idx = i * cur_flow_stride + j;
660
661 // Calculate the position of a patch of size DISFLOW_PATCH_SIZE pixels,
662 // which is centered on the region covered by this flow field entry
663 const int patch_center_x =
664 (j << DOWNSAMPLE_SHIFT) + UPSAMPLE_CENTER_OFFSET; // In pixels
665 const int patch_center_y =
666 (i << DOWNSAMPLE_SHIFT) + UPSAMPLE_CENTER_OFFSET; // In pixels
667 const int patch_tl_x = patch_center_x - DISFLOW_PATCH_CENTER;
668 const int patch_tl_y = patch_center_y - DISFLOW_PATCH_CENTER;
669 assert(patch_tl_x >= 0);
670 assert(patch_tl_y >= 0);
671
672 aom_compute_flow_at_point(src_buffer, ref_buffer, patch_tl_x,
673 patch_tl_y, cur_width, cur_height, cur_stride,
674 &flow_u[flow_field_idx],
675 &flow_v[flow_field_idx]);
676 }
677 }
678
679 // Fill in the areas which we haven't explicitly computed, with copies
680 // of the outermost values which we did compute
681 fill_flow_field_borders(flow_u, cur_flow_width, cur_flow_height,
682 cur_flow_stride);
683 fill_flow_field_borders(flow_v, cur_flow_width, cur_flow_height,
684 cur_flow_stride);
685
686 if (level > 0) {
687 const int upscale_flow_width = cur_flow_width << 1;
688 const int upscale_flow_height = cur_flow_height << 1;
689 const int upscale_stride = flow->stride;
690
691 upscale_flow_component(flow_u, cur_flow_width, cur_flow_height,
692 cur_flow_stride, tmpbuf);
693 upscale_flow_component(flow_v, cur_flow_width, cur_flow_height,
694 cur_flow_stride, tmpbuf);
695
696 // If we didn't fill in the rightmost column or bottommost row during
697 // upsampling (in order to keep the ratio to exactly 2), fill them
698 // in here by copying the next closest column/row
699 const PyramidLayer *next_layer = &src_pyr->layers[level - 1];
700 const int next_flow_width = next_layer->width >> DOWNSAMPLE_SHIFT;
701 const int next_flow_height = next_layer->height >> DOWNSAMPLE_SHIFT;
702
703 // Rightmost column
704 if (next_flow_width > upscale_flow_width) {
705 assert(next_flow_width == upscale_flow_width + 1);
706 for (int i = 0; i < upscale_flow_height; i++) {
707 const int index = i * upscale_stride + upscale_flow_width;
708 flow_u[index] = flow_u[index - 1];
709 flow_v[index] = flow_v[index - 1];
710 }
711 }
712
713 // Bottommost row
714 if (next_flow_height > upscale_flow_height) {
715 assert(next_flow_height == upscale_flow_height + 1);
716 for (int j = 0; j < next_flow_width; j++) {
717 const int index = upscale_flow_height * upscale_stride + j;
718 flow_u[index] = flow_u[index - upscale_stride];
719 flow_v[index] = flow_v[index - upscale_stride];
720 }
721 }
722 }
723 }
724
725 free_tmpbuf:
726 aom_free(tmpbuf0);
727 return mem_status;
728 }
729
alloc_flow_field(int frame_width,int frame_height)730 static FlowField *alloc_flow_field(int frame_width, int frame_height) {
731 FlowField *flow = (FlowField *)aom_malloc(sizeof(FlowField));
732 if (flow == NULL) return NULL;
733
734 // Calculate the size of the bottom (largest) layer of the flow pyramid
735 flow->width = frame_width >> DOWNSAMPLE_SHIFT;
736 flow->height = frame_height >> DOWNSAMPLE_SHIFT;
737 flow->stride = flow->width + 2 * FLOW_BORDER_OUTER;
738
739 const size_t flow_size =
740 flow->stride * (size_t)(flow->height + 2 * FLOW_BORDER_OUTER);
741
742 flow->buf0 = aom_calloc(2 * flow_size, sizeof(*flow->buf0));
743 if (!flow->buf0) {
744 aom_free(flow);
745 return NULL;
746 }
747
748 flow->u = flow->buf0 + FLOW_BORDER_OUTER * flow->stride + FLOW_BORDER_OUTER;
749 flow->v = flow->u + flow_size;
750
751 return flow;
752 }
753
free_flow_field(FlowField * flow)754 static void free_flow_field(FlowField *flow) {
755 aom_free(flow->buf0);
756 aom_free(flow);
757 }
758
759 // Compute flow field between `src` and `ref`, and then use that flow to
760 // compute a global motion model relating the two frames.
761 //
762 // Following the convention in flow_estimation.h, the flow vectors are computed
763 // at fixed points in `src` and point to the corresponding locations in `ref`,
764 // regardless of the temporal ordering of the frames.
av1_compute_global_motion_disflow(TransformationType type,YV12_BUFFER_CONFIG * src,YV12_BUFFER_CONFIG * ref,int bit_depth,int downsample_level,MotionModel * motion_models,int num_motion_models,bool * mem_alloc_failed)765 bool av1_compute_global_motion_disflow(
766 TransformationType type, YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *ref,
767 int bit_depth, int downsample_level, MotionModel *motion_models,
768 int num_motion_models, bool *mem_alloc_failed) {
769 // Precompute information we will need about each frame
770 ImagePyramid *src_pyramid = src->y_pyramid;
771 CornerList *src_corners = src->corners;
772 ImagePyramid *ref_pyramid = ref->y_pyramid;
773
774 const int src_layers =
775 aom_compute_pyramid(src, bit_depth, DISFLOW_PYRAMID_LEVELS, src_pyramid);
776 const int ref_layers =
777 aom_compute_pyramid(ref, bit_depth, DISFLOW_PYRAMID_LEVELS, ref_pyramid);
778
779 if (src_layers < 0 || ref_layers < 0) {
780 *mem_alloc_failed = true;
781 return false;
782 }
783 if (!av1_compute_corner_list(src, bit_depth, downsample_level, src_corners)) {
784 *mem_alloc_failed = true;
785 return false;
786 }
787
788 assert(src_layers == ref_layers);
789
790 const int src_width = src_pyramid->layers[0].width;
791 const int src_height = src_pyramid->layers[0].height;
792 assert(ref_pyramid->layers[0].width == src_width);
793 assert(ref_pyramid->layers[0].height == src_height);
794
795 FlowField *flow = alloc_flow_field(src_width, src_height);
796 if (!flow) {
797 *mem_alloc_failed = true;
798 return false;
799 }
800
801 if (!compute_flow_field(src_pyramid, ref_pyramid, src_layers, flow)) {
802 *mem_alloc_failed = true;
803 free_flow_field(flow);
804 return false;
805 }
806
807 // find correspondences between the two images using the flow field
808 Correspondence *correspondences =
809 aom_malloc(src_corners->num_corners * sizeof(*correspondences));
810 if (!correspondences) {
811 *mem_alloc_failed = true;
812 free_flow_field(flow);
813 return false;
814 }
815
816 const int num_correspondences = determine_disflow_correspondence(
817 src_pyramid, ref_pyramid, src_corners, flow, correspondences);
818
819 bool result = ransac(correspondences, num_correspondences, type,
820 motion_models, num_motion_models, mem_alloc_failed);
821
822 aom_free(correspondences);
823 free_flow_field(flow);
824 return result;
825 }
826