xref: /aosp_15_r20/external/libaom/aom_dsp/fastssim.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  *
11  *  This code was originally written by: Nathan E. Egge, at the Daala
12  *  project.
13  */
14 #include <assert.h>
15 #include <math.h>
16 #include <stdlib.h>
17 #include <string.h>
18 
19 #include "config/aom_config.h"
20 #include "config/aom_dsp_rtcd.h"
21 
22 #include "aom_dsp/ssim.h"
23 
24 typedef struct fs_level fs_level;
25 typedef struct fs_ctx fs_ctx;
26 
27 #define SSIM_C1 (255 * 255 * 0.01 * 0.01)
28 #define SSIM_C2 (255 * 255 * 0.03 * 0.03)
29 #define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01)
30 #define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01)
31 #define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03)
32 #define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03)
33 #define MAX_SSIM_DB 100.0
34 
35 #define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b))
36 #define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b))
37 
38 struct fs_level {
39   uint32_t *im1;
40   uint32_t *im2;
41   double *ssim;
42   int w;
43   int h;
44 };
45 
46 struct fs_ctx {
47   fs_level *level;
48   int nlevels;
49   unsigned *col_buf;
50 };
51 
fs_ctx_init(fs_ctx * _ctx,int _w,int _h,int _nlevels)52 static int fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) {
53   unsigned char *data;
54   size_t data_size;
55   int lw;
56   int lh;
57   int l;
58   lw = (_w + 1) >> 1;
59   lh = (_h + 1) >> 1;
60   data_size =
61       _nlevels * sizeof(fs_level) + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf);
62   for (l = 0; l < _nlevels; l++) {
63     size_t im_size;
64     size_t level_size;
65     im_size = lw * (size_t)lh;
66     level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
67     level_size += sizeof(*_ctx->level[l].ssim) - 1;
68     level_size /= sizeof(*_ctx->level[l].ssim);
69     level_size += im_size;
70     level_size *= sizeof(*_ctx->level[l].ssim);
71     data_size += level_size;
72     lw = (lw + 1) >> 1;
73     lh = (lh + 1) >> 1;
74   }
75   data = (unsigned char *)malloc(data_size);
76   if (!data) return -1;
77   _ctx->level = (fs_level *)data;
78   _ctx->nlevels = _nlevels;
79   data += _nlevels * sizeof(*_ctx->level);
80   lw = (_w + 1) >> 1;
81   lh = (_h + 1) >> 1;
82   for (l = 0; l < _nlevels; l++) {
83     size_t im_size;
84     size_t level_size;
85     _ctx->level[l].w = lw;
86     _ctx->level[l].h = lh;
87     im_size = lw * (size_t)lh;
88     level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
89     level_size += sizeof(*_ctx->level[l].ssim) - 1;
90     level_size /= sizeof(*_ctx->level[l].ssim);
91     level_size *= sizeof(*_ctx->level[l].ssim);
92     _ctx->level[l].im1 = (uint32_t *)data;
93     _ctx->level[l].im2 = _ctx->level[l].im1 + im_size;
94     data += level_size;
95     _ctx->level[l].ssim = (double *)data;
96     data += im_size * sizeof(*_ctx->level[l].ssim);
97     lw = (lw + 1) >> 1;
98     lh = (lh + 1) >> 1;
99   }
100   _ctx->col_buf = (unsigned *)data;
101   return 0;
102 }
103 
fs_ctx_clear(fs_ctx * _ctx)104 static void fs_ctx_clear(fs_ctx *_ctx) { free(_ctx->level); }
105 
fs_downsample_level(fs_ctx * _ctx,int _l)106 static void fs_downsample_level(fs_ctx *_ctx, int _l) {
107   const uint32_t *src1;
108   const uint32_t *src2;
109   uint32_t *dst1;
110   uint32_t *dst2;
111   int w2;
112   int h2;
113   int w;
114   int h;
115   int i;
116   int j;
117   w = _ctx->level[_l].w;
118   h = _ctx->level[_l].h;
119   dst1 = _ctx->level[_l].im1;
120   dst2 = _ctx->level[_l].im2;
121   w2 = _ctx->level[_l - 1].w;
122   h2 = _ctx->level[_l - 1].h;
123   src1 = _ctx->level[_l - 1].im1;
124   src2 = _ctx->level[_l - 1].im2;
125   for (j = 0; j < h; j++) {
126     int j0offs;
127     int j1offs;
128     j0offs = 2 * j * w2;
129     j1offs = FS_MINI(2 * j + 1, h2) * w2;
130     for (i = 0; i < w; i++) {
131       int i0;
132       int i1;
133       i0 = 2 * i;
134       i1 = FS_MINI(i0 + 1, w2);
135       dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1] +
136                         src1[j1offs + i0] + src1[j1offs + i1];
137       dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1] +
138                         src2[j1offs + i0] + src2[j1offs + i1];
139     }
140   }
141 }
142 
fs_downsample_level0(fs_ctx * _ctx,const uint8_t * _src1,int _s1ystride,const uint8_t * _src2,int _s2ystride,int _w,int _h,uint32_t shift,int buf_is_hbd)143 static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1,
144                                  int _s1ystride, const uint8_t *_src2,
145                                  int _s2ystride, int _w, int _h, uint32_t shift,
146                                  int buf_is_hbd) {
147   uint32_t *dst1;
148   uint32_t *dst2;
149   int w;
150   int h;
151   int i;
152   int j;
153   w = _ctx->level[0].w;
154   h = _ctx->level[0].h;
155   dst1 = _ctx->level[0].im1;
156   dst2 = _ctx->level[0].im2;
157   for (j = 0; j < h; j++) {
158     int j0;
159     int j1;
160     j0 = 2 * j;
161     j1 = FS_MINI(j0 + 1, _h);
162     for (i = 0; i < w; i++) {
163       int i0;
164       int i1;
165       i0 = 2 * i;
166       i1 = FS_MINI(i0 + 1, _w);
167       if (!buf_is_hbd) {
168         dst1[j * w + i] =
169             _src1[j0 * _s1ystride + i0] + _src1[j0 * _s1ystride + i1] +
170             _src1[j1 * _s1ystride + i0] + _src1[j1 * _s1ystride + i1];
171         dst2[j * w + i] =
172             _src2[j0 * _s2ystride + i0] + _src2[j0 * _s2ystride + i1] +
173             _src2[j1 * _s2ystride + i0] + _src2[j1 * _s2ystride + i1];
174       } else {
175         uint16_t *src1s = CONVERT_TO_SHORTPTR(_src1);
176         uint16_t *src2s = CONVERT_TO_SHORTPTR(_src2);
177         dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift) +
178                           (src1s[j0 * _s1ystride + i1] >> shift) +
179                           (src1s[j1 * _s1ystride + i0] >> shift) +
180                           (src1s[j1 * _s1ystride + i1] >> shift);
181         dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift) +
182                           (src2s[j0 * _s2ystride + i1] >> shift) +
183                           (src2s[j1 * _s2ystride + i0] >> shift) +
184                           (src2s[j1 * _s2ystride + i1] >> shift);
185       }
186     }
187   }
188 }
189 
fs_apply_luminance(fs_ctx * _ctx,int _l,int bit_depth)190 static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) {
191   unsigned *col_sums_x;
192   unsigned *col_sums_y;
193   uint32_t *im1;
194   uint32_t *im2;
195   double *ssim;
196   double c1;
197   int w;
198   int h;
199   int j0offs;
200   int j1offs;
201   int i;
202   int j;
203   double ssim_c1 = SSIM_C1;
204 
205   if (bit_depth == 10) ssim_c1 = SSIM_C1_10;
206   if (bit_depth == 12) ssim_c1 = SSIM_C1_12;
207 
208   w = _ctx->level[_l].w;
209   h = _ctx->level[_l].h;
210   col_sums_x = _ctx->col_buf;
211   col_sums_y = col_sums_x + w;
212   im1 = _ctx->level[_l].im1;
213   im2 = _ctx->level[_l].im2;
214   for (i = 0; i < w; i++) col_sums_x[i] = 5 * im1[i];
215   for (i = 0; i < w; i++) col_sums_y[i] = 5 * im2[i];
216   for (j = 1; j < 4; j++) {
217     j1offs = FS_MINI(j, h - 1) * w;
218     for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i];
219     for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i];
220   }
221   ssim = _ctx->level[_l].ssim;
222   c1 = (double)(ssim_c1 * 4096 * (1 << 4 * _l));
223   for (j = 0; j < h; j++) {
224     unsigned mux;
225     unsigned muy;
226     int i0;
227     int i1;
228     mux = 5 * col_sums_x[0];
229     muy = 5 * col_sums_y[0];
230     for (i = 1; i < 4; i++) {
231       i1 = FS_MINI(i, w - 1);
232       mux += col_sums_x[i1];
233       muy += col_sums_y[i1];
234     }
235     for (i = 0; i < w; i++) {
236       ssim[j * w + i] *= (2 * mux * (double)muy + c1) /
237                          (mux * (double)mux + muy * (double)muy + c1);
238       if (i + 1 < w) {
239         i0 = FS_MAXI(0, i - 4);
240         i1 = FS_MINI(i + 4, w - 1);
241         mux += col_sums_x[i1] - col_sums_x[i0];
242         muy += col_sums_x[i1] - col_sums_x[i0];
243       }
244     }
245     if (j + 1 < h) {
246       j0offs = FS_MAXI(0, j - 4) * w;
247       for (i = 0; i < w; i++) col_sums_x[i] -= im1[j0offs + i];
248       for (i = 0; i < w; i++) col_sums_y[i] -= im2[j0offs + i];
249       j1offs = FS_MINI(j + 4, h - 1) * w;
250       for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i];
251       for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i];
252     }
253   }
254 }
255 
256 #define FS_COL_SET(_col, _joffs, _ioffs)                       \
257   do {                                                         \
258     unsigned gx;                                               \
259     unsigned gy;                                               \
260     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
261     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
262     col_sums_gx2[(_col)] = gx * (double)gx;                    \
263     col_sums_gy2[(_col)] = gy * (double)gy;                    \
264     col_sums_gxgy[(_col)] = gx * (double)gy;                   \
265   } while (0)
266 
267 #define FS_COL_ADD(_col, _joffs, _ioffs)                       \
268   do {                                                         \
269     unsigned gx;                                               \
270     unsigned gy;                                               \
271     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
272     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
273     col_sums_gx2[(_col)] += gx * (double)gx;                   \
274     col_sums_gy2[(_col)] += gy * (double)gy;                   \
275     col_sums_gxgy[(_col)] += gx * (double)gy;                  \
276   } while (0)
277 
278 #define FS_COL_SUB(_col, _joffs, _ioffs)                       \
279   do {                                                         \
280     unsigned gx;                                               \
281     unsigned gy;                                               \
282     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
283     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
284     col_sums_gx2[(_col)] -= gx * (double)gx;                   \
285     col_sums_gy2[(_col)] -= gy * (double)gy;                   \
286     col_sums_gxgy[(_col)] -= gx * (double)gy;                  \
287   } while (0)
288 
289 #define FS_COL_COPY(_col1, _col2)                    \
290   do {                                               \
291     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)];   \
292     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)];   \
293     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \
294   } while (0)
295 
296 #define FS_COL_HALVE(_col1, _col2)                         \
297   do {                                                     \
298     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5;   \
299     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5;   \
300     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \
301   } while (0)
302 
303 #define FS_COL_DOUBLE(_col1, _col2)                      \
304   do {                                                   \
305     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2;   \
306     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2;   \
307     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \
308   } while (0)
309 
fs_calc_structure(fs_ctx * _ctx,int _l,int bit_depth)310 static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) {
311   uint32_t *im1;
312   uint32_t *im2;
313   unsigned *gx_buf;
314   unsigned *gy_buf;
315   double *ssim;
316   double col_sums_gx2[8];
317   double col_sums_gy2[8];
318   double col_sums_gxgy[8];
319   double c2;
320   int stride;
321   int w;
322   int h;
323   int i;
324   int j;
325   double ssim_c2 = SSIM_C2;
326   if (bit_depth == 10) ssim_c2 = SSIM_C2_10;
327   if (bit_depth == 12) ssim_c2 = SSIM_C2_12;
328 
329   w = _ctx->level[_l].w;
330   h = _ctx->level[_l].h;
331   im1 = _ctx->level[_l].im1;
332   im2 = _ctx->level[_l].im2;
333   ssim = _ctx->level[_l].ssim;
334   gx_buf = _ctx->col_buf;
335   stride = w + 8;
336   gy_buf = gx_buf + 8 * stride;
337   memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf));
338   c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104;
339   for (j = 0; j < h + 4; j++) {
340     if (j < h - 1) {
341       for (i = 0; i < w - 1; i++) {
342         unsigned g1;
343         unsigned g2;
344         unsigned gx;
345         unsigned gy;
346         g1 = abs((int)im1[(j + 1) * w + i + 1] - (int)im1[j * w + i]);
347         g2 = abs((int)im1[(j + 1) * w + i] - (int)im1[j * w + i + 1]);
348         gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
349         g1 = abs((int)im2[(j + 1) * w + i + 1] - (int)im2[j * w + i]);
350         g2 = abs((int)im2[(j + 1) * w + i] - (int)im2[j * w + i + 1]);
351         gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
352         gx_buf[(j & 7) * stride + i + 4] = gx;
353         gy_buf[(j & 7) * stride + i + 4] = gy;
354       }
355     } else {
356       memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf));
357       memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf));
358     }
359     if (j >= 4) {
360       int k;
361       col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0;
362       col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0;
363       col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] =
364           col_sums_gxgy[0] = 0;
365       for (i = 4; i < 8; i++) {
366         FS_COL_SET(i, -1, 0);
367         FS_COL_ADD(i, 0, 0);
368         for (k = 1; k < 8 - i; k++) {
369           FS_COL_DOUBLE(i, i);
370           FS_COL_ADD(i, -k - 1, 0);
371           FS_COL_ADD(i, k, 0);
372         }
373       }
374       for (i = 0; i < w; i++) {
375         double mugx2;
376         double mugy2;
377         double mugxgy;
378         mugx2 = col_sums_gx2[0];
379         for (k = 1; k < 8; k++) mugx2 += col_sums_gx2[k];
380         mugy2 = col_sums_gy2[0];
381         for (k = 1; k < 8; k++) mugy2 += col_sums_gy2[k];
382         mugxgy = col_sums_gxgy[0];
383         for (k = 1; k < 8; k++) mugxgy += col_sums_gxgy[k];
384         ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2);
385         if (i + 1 < w) {
386           FS_COL_SET(0, -1, 1);
387           FS_COL_ADD(0, 0, 1);
388           FS_COL_SUB(2, -3, 2);
389           FS_COL_SUB(2, 2, 2);
390           FS_COL_HALVE(1, 2);
391           FS_COL_SUB(3, -4, 3);
392           FS_COL_SUB(3, 3, 3);
393           FS_COL_HALVE(2, 3);
394           FS_COL_COPY(3, 4);
395           FS_COL_DOUBLE(4, 5);
396           FS_COL_ADD(4, -4, 5);
397           FS_COL_ADD(4, 3, 5);
398           FS_COL_DOUBLE(5, 6);
399           FS_COL_ADD(5, -3, 6);
400           FS_COL_ADD(5, 2, 6);
401           FS_COL_DOUBLE(6, 7);
402           FS_COL_ADD(6, -2, 7);
403           FS_COL_ADD(6, 1, 7);
404           FS_COL_SET(7, -1, 8);
405           FS_COL_ADD(7, 0, 8);
406         }
407       }
408     }
409   }
410 }
411 
412 #define FS_NLEVELS (4)
413 
414 /*These weights were derived from the default weights found in Wang's original
415  Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}.
416  We drop the finest scale and renormalize the rest to sum to 1.*/
417 
418 static const double FS_WEIGHTS[FS_NLEVELS] = {
419   0.2989654541015625, 0.3141326904296875, 0.2473602294921875, 0.1395416259765625
420 };
421 
fs_average(fs_ctx * _ctx,int _l)422 static double fs_average(fs_ctx *_ctx, int _l) {
423   double *ssim;
424   double ret;
425   int w;
426   int h;
427   int i;
428   int j;
429   w = _ctx->level[_l].w;
430   h = _ctx->level[_l].h;
431   ssim = _ctx->level[_l].ssim;
432   ret = 0;
433   for (j = 0; j < h; j++)
434     for (i = 0; i < w; i++) ret += ssim[j * w + i];
435   return pow(ret / (w * h), FS_WEIGHTS[_l]);
436 }
437 
convert_ssim_db(double _ssim,double _weight)438 static double convert_ssim_db(double _ssim, double _weight) {
439   assert(_weight >= _ssim);
440   if ((_weight - _ssim) < 1e-10) return MAX_SSIM_DB;
441   return 10 * (log10(_weight) - log10(_weight - _ssim));
442 }
443 
calc_ssim(const uint8_t * _src,int _systride,const uint8_t * _dst,int _dystride,int _w,int _h,uint32_t _bd,uint32_t _shift,int buf_is_hbd)444 static double calc_ssim(const uint8_t *_src, int _systride, const uint8_t *_dst,
445                         int _dystride, int _w, int _h, uint32_t _bd,
446                         uint32_t _shift, int buf_is_hbd) {
447   fs_ctx ctx;
448   double ret;
449   int l;
450   ret = 1;
451   if (fs_ctx_init(&ctx, _w, _h, FS_NLEVELS)) return 99.0;
452   fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h, _shift,
453                        buf_is_hbd);
454   for (l = 0; l < FS_NLEVELS - 1; l++) {
455     fs_calc_structure(&ctx, l, _bd);
456     ret *= fs_average(&ctx, l);
457     fs_downsample_level(&ctx, l + 1);
458   }
459   fs_calc_structure(&ctx, l, _bd);
460   fs_apply_luminance(&ctx, l, _bd);
461   ret *= fs_average(&ctx, l);
462   fs_ctx_clear(&ctx);
463   return ret;
464 }
465 
aom_calc_fastssim(const YV12_BUFFER_CONFIG * source,const YV12_BUFFER_CONFIG * dest,double * ssim_y,double * ssim_u,double * ssim_v,uint32_t bd,uint32_t in_bd)466 double aom_calc_fastssim(const YV12_BUFFER_CONFIG *source,
467                          const YV12_BUFFER_CONFIG *dest, double *ssim_y,
468                          double *ssim_u, double *ssim_v, uint32_t bd,
469                          uint32_t in_bd) {
470   double ssimv;
471   uint32_t bd_shift = 0;
472   assert(bd >= in_bd);
473   assert(source->flags == dest->flags);
474   int buf_is_hbd = source->flags & YV12_FLAG_HIGHBITDEPTH;
475   bd_shift = bd - in_bd;
476 
477   *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer,
478                       dest->y_stride, source->y_crop_width,
479                       source->y_crop_height, in_bd, bd_shift, buf_is_hbd);
480   *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer,
481                       dest->uv_stride, source->uv_crop_width,
482                       source->uv_crop_height, in_bd, bd_shift, buf_is_hbd);
483   *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer,
484                       dest->uv_stride, source->uv_crop_width,
485                       source->uv_crop_height, in_bd, bd_shift, buf_is_hbd);
486   ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v));
487   return convert_ssim_db(ssimv, 1.0);
488 }
489