xref: /aosp_15_r20/external/libaom/aom_dsp/arm/aom_scaled_convolve8_neon.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <arm_neon.h>
13 #include <assert.h>
14 
15 #include "aom_dsp/arm/aom_convolve8_neon.h"
16 #include "aom_dsp/arm/mem_neon.h"
17 #include "aom_dsp/arm/transpose_neon.h"
18 #include "config/aom_dsp_rtcd.h"
19 
scaled_convolve_horiz_neon(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const x_filter,const int x0_q4,const int x_step_q4,int w,int h)20 static inline void scaled_convolve_horiz_neon(
21     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
22     const ptrdiff_t dst_stride, const InterpKernel *const x_filter,
23     const int x0_q4, const int x_step_q4, int w, int h) {
24   DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
25 
26   if (w == 4) {
27     do {
28       int x_q4 = x0_q4;
29 
30       // Process a 4x4 tile.
31       for (int r = 0; r < 4; ++r) {
32         const uint8_t *s = &src[x_q4 >> SUBPEL_BITS];
33 
34         if (x_q4 & SUBPEL_MASK) {
35           // Halve filter values (all even) to avoid the need for saturating
36           // arithmetic in convolution kernels.
37           const int16x8_t filter =
38               vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1);
39 
40           uint8x8_t t0, t1, t2, t3;
41           load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
42           transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3);
43 
44           int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
45           int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
46           int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
47           int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
48           int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
49           int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
50           int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
51           int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
52 
53           int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter);
54           // We halved the filter values so -1 from right shift.
55           uint8x8_t d0 =
56               vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1);
57 
58           store_u8_4x1(&temp[4 * r], d0);
59         } else {
60           // Memcpy for non-subpel locations.
61           s += SUBPEL_TAPS / 2 - 1;
62 
63           for (int c = 0; c < 4; ++c) {
64             temp[r * 4 + c] = s[c * src_stride];
65           }
66         }
67         x_q4 += x_step_q4;
68       }
69 
70       // Transpose the 4x4 result tile and store.
71       uint8x8_t d01 = vld1_u8(temp + 0);
72       uint8x8_t d23 = vld1_u8(temp + 8);
73 
74       transpose_elems_inplace_u8_4x4(&d01, &d23);
75 
76       store_u8x4_strided_x2(dst + 0 * dst_stride, 2 * dst_stride, d01);
77       store_u8x4_strided_x2(dst + 1 * dst_stride, 2 * dst_stride, d23);
78 
79       src += 4 * src_stride;
80       dst += 4 * dst_stride;
81       h -= 4;
82     } while (h > 0);
83     return;
84   }
85 
86   // w >= 8
87   do {
88     int x_q4 = x0_q4;
89     uint8_t *d = dst;
90     int width = w;
91 
92     do {
93       // Process an 8x8 tile.
94       for (int r = 0; r < 8; ++r) {
95         const uint8_t *s = &src[x_q4 >> SUBPEL_BITS];
96 
97         if (x_q4 & SUBPEL_MASK) {
98           // Halve filter values (all even) to avoid the need for saturating
99           // arithmetic in convolution kernels.
100           const int16x8_t filter =
101               vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1);
102 
103           uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
104           load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
105           transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6,
106                                          &t7);
107 
108           int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
109           int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
110           int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
111           int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
112           int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
113           int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
114           int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
115           int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
116 
117           uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter);
118 
119           vst1_u8(&temp[r * 8], d0);
120         } else {
121           // Memcpy for non-subpel locations.
122           s += SUBPEL_TAPS / 2 - 1;
123 
124           for (int c = 0; c < 8; ++c) {
125             temp[r * 8 + c] = s[c * src_stride];
126           }
127         }
128         x_q4 += x_step_q4;
129       }
130 
131       // Transpose the 8x8 result tile and store.
132       uint8x8_t d0, d1, d2, d3, d4, d5, d6, d7;
133       load_u8_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
134 
135       transpose_elems_inplace_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
136 
137       store_u8_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
138 
139       d += 8;
140       width -= 8;
141     } while (width != 0);
142 
143     src += 8 * src_stride;
144     dst += 8 * dst_stride;
145     h -= 8;
146   } while (h > 0);
147 }
148 
scaled_convolve_vert_neon(const uint8_t * src,const ptrdiff_t src_stride,uint8_t * dst,const ptrdiff_t dst_stride,const InterpKernel * const y_filter,const int y0_q4,const int y_step_q4,int w,int h)149 static inline void scaled_convolve_vert_neon(
150     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
151     const ptrdiff_t dst_stride, const InterpKernel *const y_filter,
152     const int y0_q4, const int y_step_q4, int w, int h) {
153   int y_q4 = y0_q4;
154 
155   if (w == 4) {
156     do {
157       const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
158 
159       if (y_q4 & SUBPEL_MASK) {
160         // Halve filter values (all even) to avoid the need for saturating
161         // arithmetic in convolution kernels.
162         const int16x8_t filter =
163             vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1);
164 
165         uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
166         load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
167 
168         int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
169         int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
170         int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
171         int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
172         int16x4_t s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4)));
173         int16x4_t s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5)));
174         int16x4_t s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6)));
175         int16x4_t s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t7)));
176 
177         int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter);
178         // We halved the filter values so -1 from right shift.
179         uint8x8_t d0 =
180             vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1);
181 
182         store_u8_4x1(dst, d0);
183       } else {
184         // Memcpy for non-subpel locations.
185         memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 4);
186       }
187 
188       y_q4 += y_step_q4;
189       dst += dst_stride;
190     } while (--h != 0);
191     return;
192   }
193 
194   if (w == 8) {
195     do {
196       const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
197 
198       if (y_q4 & SUBPEL_MASK) {
199         // Halve filter values (all even) to avoid the need for saturating
200         // arithmetic in convolution kernels.
201         const int16x8_t filter =
202             vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1);
203 
204         uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
205         load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
206 
207         int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
208         int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
209         int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
210         int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
211         int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
212         int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
213         int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
214         int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
215 
216         uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter);
217 
218         vst1_u8(dst, d0);
219       } else {
220         // Memcpy for non-subpel locations.
221         memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 8);
222       }
223 
224       y_q4 += y_step_q4;
225       dst += dst_stride;
226     } while (--h != 0);
227     return;
228   }
229 
230   // w >= 16
231   do {
232     const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
233     uint8_t *d = dst;
234     int width = w;
235 
236     if (y_q4 & SUBPEL_MASK) {
237       do {
238         // Halve filter values (all even) to avoid the need for saturating
239         // arithmetic in convolution kernels.
240         const int16x8_t filter =
241             vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1);
242 
243         uint8x16_t t0, t1, t2, t3, t4, t5, t6, t7;
244         load_u8_16x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
245 
246         int16x8_t s0[2], s1[2], s2[2], s3[2], s4[2], s5[2], s6[2], s7[2];
247         s0[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0)));
248         s1[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1)));
249         s2[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2)));
250         s3[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3)));
251         s4[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t4)));
252         s5[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t5)));
253         s6[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t6)));
254         s7[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t7)));
255 
256         s0[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0)));
257         s1[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1)));
258         s2[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2)));
259         s3[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3)));
260         s4[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t4)));
261         s5[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t5)));
262         s6[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t6)));
263         s7[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t7)));
264 
265         uint8x8_t d0 = convolve8_8(s0[0], s1[0], s2[0], s3[0], s4[0], s5[0],
266                                    s6[0], s7[0], filter);
267         uint8x8_t d1 = convolve8_8(s0[1], s1[1], s2[1], s3[1], s4[1], s5[1],
268                                    s6[1], s7[1], filter);
269 
270         vst1q_u8(d, vcombine_u8(d0, d1));
271 
272         s += 16;
273         d += 16;
274         width -= 16;
275       } while (width != 0);
276     } else {
277       // Memcpy for non-subpel locations.
278       s += (SUBPEL_TAPS / 2 - 1) * src_stride;
279 
280       do {
281         uint8x16_t s0 = vld1q_u8(s);
282         vst1q_u8(d, s0);
283         s += 16;
284         d += 16;
285         width -= 16;
286       } while (width != 0);
287     }
288 
289     y_q4 += y_step_q4;
290     dst += dst_stride;
291   } while (--h != 0);
292 }
293 
aom_scaled_2d_neon(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)294 void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
295                         ptrdiff_t dst_stride, const InterpKernel *filter,
296                         int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
297                         int w, int h) {
298   // Fixed size intermediate buffer, im_block, places limits on parameters.
299   // 2d filtering proceeds in 2 steps:
300   //   (1) Interpolate horizontally into an intermediate buffer, temp.
301   //   (2) Interpolate temp vertically to derive the sub-pixel result.
302   // Deriving the maximum number of rows in the im_block buffer (135):
303   // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
304   // --Largest block size is 64x64 pixels.
305   // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
306   //   original frame (in 1/16th pixel units).
307   // --Must round-up because block may be located at sub-pixel position.
308   // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
309   // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
310   // --Require an additional 8 rows for the horiz_w8 transpose tail.
311   // When calling in frame scaling function, the smallest scaling factor is x1/4
312   // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
313   // big enough.
314   DECLARE_ALIGNED(16, uint8_t, im_block[(135 + 8) * 64]);
315   const int im_height =
316       (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
317   const ptrdiff_t im_stride = 64;
318 
319   assert(w <= 64);
320   assert(h <= 64);
321   assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
322   assert(x_step_q4 <= 64);
323 
324   // Account for needing SUBPEL_TAPS / 2 - 1 lines prior and SUBPEL_TAPS / 2
325   // lines post both horizontally and vertically.
326   const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 1;
327   const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 1) * src_stride;
328 
329   scaled_convolve_horiz_neon(src - horiz_offset - vert_offset, src_stride,
330                              im_block, im_stride, filter, x0_q4, x_step_q4, w,
331                              im_height);
332 
333   scaled_convolve_vert_neon(im_block, im_stride, dst, dst_stride, filter, y0_q4,
334                             y_step_q4, w, h);
335 }
336