xref: /aosp_15_r20/external/icu/libicu/cts_headers/number_decimalquantity.h (revision 0e209d3975ff4a8c132096b14b0e9364a753506e)
1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
9 
10 #include <cstdint>
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
15 
16 U_NAMESPACE_BEGIN
17 namespace number::impl {
18 
19 // Forward-declare (maybe don't want number_utils.h included here):
20 class DecNum;
21 
22 /**
23  * A class for representing a number to be processed by the decimal formatting pipeline. Includes
24  * methods for rounding, plural rules, and decimal digit extraction.
25  *
26  * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27  * object holding state during a pass through the decimal formatting pipeline.
28  *
29  * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30  *
31  * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32  */
33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34   public:
35     /** Copy constructor. */
36     DecimalQuantity(const DecimalQuantity &other);
37 
38     /** Move constructor. */
39     DecimalQuantity(DecimalQuantity &&src) noexcept;
40 
41     DecimalQuantity();
42 
43     ~DecimalQuantity() override;
44 
45     /**
46      * Sets this instance to be equal to another instance.
47      *
48      * @param other The instance to copy from.
49      */
50     DecimalQuantity &operator=(const DecimalQuantity &other);
51 
52     /** Move assignment */
53     DecimalQuantity &operator=(DecimalQuantity&& src) noexcept;
54 
55     /**
56      * If the minimum integer digits are greater than `minInt`,
57      * sets it to `minInt`.
58      *
59      * @param minInt The minimum number of integer digits.
60      */
61     void decreaseMinIntegerTo(int32_t minInt);
62 
63     /**
64      * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
65      * This method does not perform rounding.
66      *
67      * @param minInt The minimum number of integer digits.
68      */
69     void increaseMinIntegerTo(int32_t minInt);
70 
71     /**
72      * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
73      * This method does not perform rounding.
74      *
75      * @param minFrac The minimum number of fraction digits.
76      */
77     void setMinFraction(int32_t minFrac);
78 
79     /**
80      * Truncates digits from the upper magnitude of the number in order to satisfy the
81      * specified maximum number of integer digits.
82      *
83      * @param maxInt The maximum number of integer digits.
84      */
85     void applyMaxInteger(int32_t maxInt);
86 
87     /**
88      * Rounds the number to a specified interval, such as 0.05.
89      *
90      * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
91      *
92      * @param increment The increment to which to round.
93      * @param magnitude The power of 10 to which to round.
94      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
95      */
96     void roundToIncrement(
97         uint64_t increment,
98         digits_t magnitude,
99         RoundingMode roundingMode,
100         UErrorCode& status);
101 
102     /** Removes all fraction digits. */
103     void truncate();
104 
105     /**
106      * Rounds the number to the nearest multiple of 5 at the specified magnitude.
107      * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
108      *
109      * @param magnitude The magnitude at which the digit should become either 0 or 5.
110      * @param roundingMode Rounding strategy.
111      */
112     void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
113 
114     /**
115      * Rounds the number to a specified magnitude (power of ten).
116      *
117      * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
118      *     round to 2 decimal places.
119      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
120      */
121     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
122 
123     /**
124      * Rounds the number to an infinite number of decimal points. This has no effect except for
125      * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
126      */
127     void roundToInfinity();
128 
129     /**
130      * Multiply the internal value. Uses decNumber.
131      *
132      * @param multiplicand The value by which to multiply.
133      */
134     void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
135 
136     /**
137      * Divide the internal value. Uses decNumber.
138      *
139      * @param multiplicand The value by which to multiply.
140      */
141     void divideBy(const DecNum& divisor, UErrorCode& status);
142 
143     /** Flips the sign from positive to negative and back. */
144     void negate();
145 
146     /**
147      * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
148      * this method with delta=-3 will change the value to "1.23456".
149      *
150      * @param delta The number of magnitudes of ten to change by.
151      * @return true if integer overflow occurred; false otherwise.
152      */
153     bool adjustMagnitude(int32_t delta);
154 
155     /**
156      * Scales the number such that the least significant nonzero digit is at magnitude 0.
157      *
158      * @return The previous magnitude of the least significant digit.
159      */
160     int32_t adjustToZeroScale();
161 
162     /**
163      * @return The power of ten corresponding to the most significant nonzero digit.
164      * The number must not be zero.
165      */
166     int32_t getMagnitude() const;
167 
168     /**
169      * @return The value of the (suppressed) exponent after the number has been
170      * put into a notation with exponents (ex: compact, scientific).  Ex: given
171      * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
172      */
173     int32_t getExponent() const;
174 
175     /**
176      * Adjusts the value for the (suppressed) exponent stored when using
177      * notation with exponents (ex: compact, scientific).
178      *
179      * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
180      * order to allow flexibility for {@link StandardPlural} to be selected in
181      * formatting (ex: for compact notation) either with or without the exponent
182      * applied in the value of the number.
183      * @param delta
184      *             The value to adjust the exponent by.
185      */
186     void adjustExponent(int32_t delta);
187 
188     /**
189      * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
190      */
191     void resetExponent();
192 
193     /**
194      * @return Whether the value represented by this {@link DecimalQuantity} is
195      * zero, infinity, or NaN.
196      */
197     bool isZeroish() const;
198 
199     /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
200     bool isNegative() const;
201 
202     /** @return The appropriate value from the Signum enum. */
203     Signum signum() const;
204 
205     /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
206     bool isInfinite() const override;
207 
208     /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
209     bool isNaN() const override;
210 
211     /**
212      * Note: this method incorporates the value of {@code exponent}
213      * (for cases such as compact notation) to return the proper long value
214      * represented by the result.
215      * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
216      */
217     int64_t toLong(bool truncateIfOverflow = false) const;
218 
219     /**
220      * Note: this method incorporates the value of {@code exponent}
221      * (for cases such as compact notation) to return the proper long value
222      * represented by the result.
223      */
224     uint64_t toFractionLong(bool includeTrailingZeros) const;
225 
226     /**
227      * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
228      * @param ignoreFraction if true, silently ignore digits after the decimal place.
229      */
230     bool fitsInLong(bool ignoreFraction = false) const;
231 
232     /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
233     double toDouble() const;
234 
235     /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
236     DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
237 
238     DecimalQuantity &setToInt(int32_t n);
239 
240     DecimalQuantity &setToLong(int64_t n);
241 
242     DecimalQuantity &setToDouble(double n);
243 
244     /**
245      * Produces a DecimalQuantity that was parsed from a string by the decNumber
246      * C Library.
247      *
248      * decNumber is similar to BigDecimal in Java, and supports parsing strings
249      * such as "123.456621E+40".
250      */
251     DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
252 
253     /** Internal method if the caller already has a DecNum. */
254     DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
255 
256     /** Returns a DecimalQuantity after parsing the input string. */
257     static DecimalQuantity fromExponentString(UnicodeString n, UErrorCode& status);
258 
259     /**
260      * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
261      * by this DecimalQuantity.
262      *
263      * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
264      * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
265      *
266      * @param value The digit to append.
267      * @param leadingZeros The number of zeros to append before the digit. For example, if the value
268      *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
269      *     12.304.
270      * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
271      *     new digit. If false, append to the end like a fraction digit. If true, there must not be
272      *     any fraction digits already in the number.
273      * @internal
274      * @deprecated This API is ICU internal only.
275      */
276     void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
277 
278     double getPluralOperand(PluralOperand operand) const override;
279 
280     bool hasIntegerValue() const override;
281 
282     /**
283      * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
284      * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
285      *
286      * @param magnitude The magnitude of the digit.
287      * @return The digit at the specified magnitude.
288      */
289     int8_t getDigit(int32_t magnitude) const;
290 
291     /**
292      * Gets the largest power of ten that needs to be displayed. The value returned by this function
293      * will be bounded between minInt and maxInt.
294      *
295      * @return The highest-magnitude digit to be displayed.
296      */
297     int32_t getUpperDisplayMagnitude() const;
298 
299     /**
300      * Gets the smallest power of ten that needs to be displayed. The value returned by this function
301      * will be bounded between -minFrac and -maxFrac.
302      *
303      * @return The lowest-magnitude digit to be displayed.
304      */
305     int32_t getLowerDisplayMagnitude() const;
306 
307     int32_t fractionCount() const;
308 
309     int32_t fractionCountWithoutTrailingZeros() const;
310 
311     void clear();
312 
313     /** This method is for internal testing only. */
314     uint64_t getPositionFingerprint() const;
315 
316 //    /**
317 //     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
318 //     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
319 //     * happens.
320 //     *
321 //     * @param fp The {@link UFieldPosition} to populate.
322 //     */
323 //    void populateUFieldPosition(FieldPosition fp);
324 
325     /**
326      * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
327      *
328      * @return An error message if this instance is invalid, or null if this instance is healthy.
329      */
330     const char16_t* checkHealth() const;
331 
332     UnicodeString toString() const;
333 
334     /** Returns the string in standard exponential notation. */
335     UnicodeString toScientificString() const;
336 
337     /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
338     UnicodeString toPlainString() const;
339 
340     /** Returns the string using ASCII digits and using exponential notation for non-zero
341     exponents, following the UTS 35 specification for plural rule samples. */
342     UnicodeString toExponentString() const;
343 
344     /** Visible for testing */
isUsingBytes()345     inline bool isUsingBytes() { return usingBytes; }
346 
347     /** Visible for testing */
isExplicitExactDouble()348     inline bool isExplicitExactDouble() { return explicitExactDouble; }
349 
350     bool operator==(const DecimalQuantity& other) const;
351 
352     inline bool operator!=(const DecimalQuantity& other) const {
353         return !(*this == other);
354     }
355 
356     /**
357      * Bogus flag for when a DecimalQuantity is stored on the stack.
358      */
359     bool bogus = false;
360 
361   private:
362     /**
363      * The power of ten corresponding to the least significant digit in the BCD. For example, if this
364      * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
365      *
366      * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
367      * digits after the decimal place, which is the negative of our definition of scale.
368      */
369     int32_t scale;
370 
371     /**
372      * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
373      * maximum precision is 16 since a long can hold only 16 digits.
374      *
375      * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
376      * #computePrecisionAndCompact()}.
377      */
378     int32_t precision;
379 
380     /**
381      * A bitmask of properties relating to the number represented by this object.
382      *
383      * @see #NEGATIVE_FLAG
384      * @see #INFINITY_FLAG
385      * @see #NAN_FLAG
386      */
387     int8_t flags;
388 
389     // The following three fields relate to the double-to-ascii fast path algorithm.
390     // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
391     // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
392     // of rounding the number ensures that the converted digits are correct, falling back to a slow-
393     // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
394     // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
395     // you don't round, assertions will fail in certain other methods if you try calling them.
396 
397     /**
398      * Whether the value in the BCD comes from the double fast path without having been rounded to
399      * ensure correctness
400      */
401     UBool isApproximate;
402 
403     /**
404      * The original number provided by the user and which is represented in BCD. Used when we need to
405      * re-compute the BCD for an exact double representation.
406      */
407     double origDouble;
408 
409     /**
410      * The change in magnitude relative to the original double. Used when we need to re-compute the
411      * BCD for an exact double representation.
412      */
413     int32_t origDelta;
414 
415     // Positions to keep track of leading and trailing zeros.
416     // lReqPos is the magnitude of the first required leading zero.
417     // rReqPos is the magnitude of the last required trailing zero.
418     int32_t lReqPos = 0;
419     int32_t rReqPos = 0;
420 
421     // The value of the (suppressed) exponent after the number has been put into
422     // a notation with exponents (ex: compact, scientific).
423     int32_t exponent = 0;
424 
425     /**
426      * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
427      * to one digit. For example, the number "12345" in BCD is "0x12345".
428      *
429      * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
430      * like setting the digit to zero.
431      */
432     union {
433         struct {
434             int8_t *ptr;
435             int32_t len;
436         } bcdBytes;
437         uint64_t bcdLong;
438     } fBCD;
439 
440     bool usingBytes = false;
441 
442     /**
443      * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
444      * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
445      * Used for testing.
446      */
447     bool explicitExactDouble = false;
448 
449     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
450 
451     /**
452      * Returns a single digit from the BCD list. No internal state is changed by calling this method.
453      *
454      * @param position The position of the digit to pop, counted in BCD units from the least
455      *     significant digit. If outside the range supported by the implementation, zero is returned.
456      * @return The digit at the specified location.
457      */
458     int8_t getDigitPos(int32_t position) const;
459 
460     /**
461      * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
462      * responsibility to call {@link #compact} after setting the digit, and to ensure
463      * that the precision field is updated to reflect the correct number of digits if a
464      * nonzero digit is added to the decimal.
465      *
466      * @param position The position of the digit to pop, counted in BCD units from the least
467      *     significant digit. If outside the range supported by the implementation, an AssertionError
468      *     is thrown.
469      * @param value The digit to set at the specified location.
470      */
471     void setDigitPos(int32_t position, int8_t value);
472 
473     /**
474      * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
475      * the caller's responsibility to do further manipulation and then call {@link #compact}.
476      *
477      * @param numDigits The number of zeros to add.
478      */
479     void shiftLeft(int32_t numDigits);
480 
481     /**
482      * Directly removes digits from the end of the BCD list.
483      * Updates the scale and precision.
484      *
485      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
486      */
487     void shiftRight(int32_t numDigits);
488 
489     /**
490      * Directly removes digits from the front of the BCD list.
491      * Updates precision.
492      *
493      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
494      */
495     void popFromLeft(int32_t numDigits);
496 
497     /**
498      * Sets the internal representation to zero. Clears any values stored in scale, precision,
499      * hasDouble, origDouble, origDelta, exponent, and BCD data.
500      */
501     void setBcdToZero();
502 
503     /**
504      * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
505      * be either positive. The internal state is guaranteed to be empty when this method is called.
506      *
507      * @param n The value to consume.
508      */
509     void readIntToBcd(int32_t n);
510 
511     /**
512      * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
513      * be either positive. The internal state is guaranteed to be empty when this method is called.
514      *
515      * @param n The value to consume.
516      */
517     void readLongToBcd(int64_t n);
518 
519     void readDecNumberToBcd(const DecNum& dn);
520 
521     void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
522 
523     void copyFieldsFrom(const DecimalQuantity& other);
524 
525     void copyBcdFrom(const DecimalQuantity &other);
526 
527     void moveBcdFrom(DecimalQuantity& src);
528 
529     /**
530      * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
531      * precision. The precision is the number of digits in the number up through the greatest nonzero
532      * digit.
533      *
534      * <p>This method must always be called when bcd changes in order for assumptions to be correct in
535      * methods like {@link #fractionCount()}.
536      */
537     void compact();
538 
539     void _setToInt(int32_t n);
540 
541     void _setToLong(int64_t n);
542 
543     void _setToDoubleFast(double n);
544 
545     void _setToDecNum(const DecNum& dn, UErrorCode& status);
546 
547     static int32_t getVisibleFractionCount(UnicodeString value);
548 
549     void convertToAccurateDouble();
550 
551     /** Ensure that a byte array of at least 40 digits is allocated. */
552     void ensureCapacity();
553 
554     void ensureCapacity(int32_t capacity);
555 
556     /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
557     void switchStorage();
558 };
559 
560 } // namespace number::impl
561 U_NAMESPACE_END
562 
563 
564 #endif //__NUMBER_DECIMALQUANTITY_H__
565 
566 #endif /* #if !UCONFIG_NO_FORMATTING */
567