1[](https://travis-ci.com/cyb70289/utf8) 2 3# Fast UTF-8 validation with Range algorithm (NEON+SSE4+AVX2) 4 5This is a brand new algorithm to leverage SIMD for fast UTF-8 string validation. Both **NEON**(armv8a) and **SSE4** versions are implemented. **AVX2** implementation contributed by [ioioioio](https://github.com/ioioioio). 6 7Four UTF-8 validation methods are compared on both x86 and Arm platforms. Benchmark result shows range base algorithm is the best solution on Arm, and achieves same performance as [Lemire's approach](https://lemire.me/blog/2018/05/16/validating-utf-8-strings-using-as-little-as-0-7-cycles-per-byte/) on x86. 8 9* Range based algorithm 10 * range-neon.c: NEON version 11 * range-sse.c: SSE4 version 12 * range-avx2.c: AVX2 version 13 * range2-neon.c, range2-sse.c: Process two blocks in one iteration 14* [Lemire's SIMD implementation](https://github.com/lemire/fastvalidate-utf-8) 15 * lemire-sse.c: SSE4 version 16 * lemire-avx2.c: AVX2 version 17 * lemire-neon.c: NEON porting 18* naive.c: Naive UTF-8 validation byte by byte 19* lookup.c: [Lookup-table method](http://bjoern.hoehrmann.de/utf-8/decoder/dfa/) 20 21## About the code 22 23* Run "make" to build. Built and tested with gcc-7.3. 24* Run "./utf8" to see all command line options. 25* Benchmark 26 * Run "./utf8 bench" to bechmark all algorithms with [default test file](https://raw.githubusercontent.com/cyb70289/utf8/master/UTF-8-demo.txt). 27 * Run "./utf8 bench size NUM" to benchmark specified string size. 28* Run "./utf8 test" to test all algorithms with positive and negative test cases. 29* To benchmark or test specific algorithm, run something like "./utf8 bench range". 30 31## Benchmark result (MB/s) 32 33### Method 341. Generate UTF-8 test buffer per [test file](https://raw.githubusercontent.com/cyb70289/utf8/master/UTF-8-demo.txt) or buffer size. 351. Call validation sub-routines in a loop until 1G bytes are checked. 361. Calculate speed(MB/s) of validating UTF-8 strings. 37 38### NEON(armv8a) 39Test case | naive | lookup | lemire | range | range2 40:-------- | :---- | :----- | :----- | :---- | :----- 41[UTF-demo.txt](https://raw.githubusercontent.com/cyb70289/utf8/master/UTF-8-demo.txt) | 562.25 | 412.84 | 1198.50 | 1411.72 | **1579.85** 4232 bytes | 651.55 | 441.70 | 891.38 | 1003.95 | **1043.58** 4333 bytes | 660.00 | 446.78 | 588.77 | 1009.31 | **1048.12** 44129 bytes | 771.89 | 402.55 | 938.07 | 1283.77 | **1401.76** 451K bytes | 811.92 | 411.58 | 1188.96 | 1398.15 | **1560.23** 468K bytes | 812.25 | 412.74 | 1198.90 | 1412.18 | **1580.65** 4764K bytes | 817.35 | 412.24 | 1200.20 | 1415.11 | **1583.86** 481M bytes | 815.70 | 411.93 | 1200.93 | 1415.65 | **1585.40** 49 50### SSE4(E5-2650) 51Test case | naive | lookup | lemire | range | range2 52:-------- | :---- | :----- | :----- | :---- | :----- 53[UTF-demo.txt](https://raw.githubusercontent.com/cyb70289/utf8/master/UTF-8-demo.txt) | 753.70 | 310.41 | 3954.74 | 3945.60 | **3986.13** 5432 bytes | 1135.76 | 364.07 | **2890.52** | 2351.81 | 2173.02 5533 bytes | 1161.85 | 376.29 | 1352.95 | **2239.55** | 2041.43 56129 bytes | 1161.22 | 322.47 | 2742.49 | **3315.33** | 3249.35 571K bytes | 1310.95 | 310.72 | 3755.88 | 3781.23 | **3874.17** 588K bytes | 1348.32 | 307.93 | 3860.71 | 3922.81 | **3968.93** 5964K bytes | 1301.34 | 308.39 | 3935.15 | 3973.50 | **3983.44** 601M bytes | 1279.78 | 309.06 | 3923.51 | 3953.00 | **3960.49** 61 62## Range algorithm analysis 63 64Basic idea: 65* Load 16 bytes 66* Leverage SIMD to calculate value range for each byte efficiently 67* Validate 16 bytes at once 68 69### UTF-8 coding format 70 71http://www.unicode.org/versions/Unicode6.0.0/ch03.pdf, page 94 72 73Table 3-7. Well-Formed UTF-8 Byte Sequences 74 75Code Points | First Byte | Second Byte | Third Byte | Fourth Byte | 76:---------- | :--------- | :---------- | :--------- | :---------- | 77U+0000..U+007F | 00..7F | | | | 78U+0080..U+07FF | C2..DF | 80..BF | | | 79U+0800..U+0FFF | E0 | ***A0***..BF| 80..BF | | 80U+1000..U+CFFF | E1..EC | 80..BF | 80..BF | | 81U+D000..U+D7FF | ED | 80..***9F***| 80..BF | | 82U+E000..U+FFFF | EE..EF | 80..BF | 80..BF | | 83U+10000..U+3FFFF | F0 | ***90***..BF| 80..BF | 80..BF | 84U+40000..U+FFFFF | F1..F3 | 80..BF | 80..BF | 80..BF | 85U+100000..U+10FFFF | F4 | 80..***8F***| 80..BF | 80..BF | 86 87To summarise UTF-8 encoding: 88* Depending on First Byte, one legal character can be 1, 2, 3, 4 bytes 89 * For First Byte within C0..DF, character length = 2 90 * For First Byte within E0..EF, character length = 3 91 * For First Byte within F0..F4, character length = 4 92* C0, C1, F5..FF are not allowed 93* Second,Third,Fourth Bytes must lie in 80..BF. 94* There are four **special cases** for Second Byte, shown ***bold italic*** in above table. 95 96### Range table 97 98Range table maps range index 0 ~ 15 to minimal and maximum values allowed. Our task is to observe input string, find the pattern and set correct range index for each byte, then validate input string. 99 100Index | Min | Max | Byte type 101:---- | :-- | :-- | :-------- 1020 | 00 | 7F | First Byte, ASCII 1031,2,3 | 80 | BF | Second, Third, Fourth Bytes 1044 | A0 | BF | Second Byte after E0 1055 | 80 | 9F | Second Byte after ED 1066 | 90 | BF | Second Byte after F0 1077 | 80 | 8F | Second Byte after F4 1088 | C2 | F4 | First Byte, non-ASCII 1099..15(NEON) | FF | 00 | Illegal: unsigned char >= 255 && unsigned char <= 0 1109..15(SSE) | 7F | 80 | Illegal: signed char >= 127 && signed char <= -128 111 112### Calculate byte ranges (ignore special cases) 113 114Ignoring the four special cases(E0,ED,F0,F4), how should we set range index for each byte? 115 116* Set range index to 0(00..7F) for all bytes by default 117* Find non-ASCII First Byte (C0..FF), set their range index to 8(C2..F4) 118* For First Byte within C0..DF, set next byte's range index to 1(80..BF) 119* For First Byte within E0..EF, set next two byte's range index to 2,1(80..BF) in sequence 120* For First Byte within F0..FF, set next three byte's range index to 3,2,1(80..BF) in sequence 121 122To implement above operations efficiently with SIMD: 123* For 16 input bytes, use lookup table to map C0..DF to 1, E0..EF to 2, F0..FF to 3, others to 0. Save to first_len. 124* Map C0..FF to 8, we get range indices for First Byte. 125* Shift first_len one byte, we get range indices for Second Byte. 126* Saturate substract first_len by one(3->2, 2->1, 1->0, 0->0), then shift two bytes, we get range indices for Third Byte. 127* Saturate substract first_len by two(3->1, 2->0, 1->0, 0->0), then shift three bytes, we get range indices for Fourth Byte. 128 129Example(assume no previous data) 130 131Input | F1 | 80 | 80 | 80 | 80 | C2 | 80 | 80 | ... 132:---- | :- | :- | :- | :- | :- | :- | :- | :- | :-- 133*first_len* |*3* |*0* |*0* |*0* |*0* |*1* |*0* |*0* |*...* 134First Byte | 8 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | ... 135Second Byte | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | ... 136Third Byte | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | ... 137Fourth Byte | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ... 138Range index | 8 | 3 | 2 | 1 | 0 | 8 | 1 | 0 | ... 139 140```c 141Range_index = First_Byte | Second_Byte | Third_Byte | Fourth_Byte 142``` 143 144#### Error handling 145 146* C0,C1,F5..FF are not included in range table and will always be detected. 147* Illegal 80..BF will have range index 0(00..7F) and be detected. 148* Based on First Byte, according Second, Third and Fourth Bytes will have range index 1/2/3, to make sure they must lie in 80..BF. 149* If non-ASCII First Byte overlaps, above algorithm will set range index of the latter First Byte to 9,10,11, which are illegal ranges. E.g, Input = F1 80 C2 90 --> Range index = 8 3 10 1, where 10 indicates error. See table below. 150 151Overlapped non-ASCII First Byte 152 153Input | F1 | 80 | C2 | 90 154:---- | :- | :- | :- | :- 155*first_len* |*3* |*0* |*1* |*0* 156First Byte | 8 | 0 | 8 | 0 157Second Byte | 0 | 3 | 0 | 1 158Third Byte | 0 | 0 | 2 | 0 159Fourth Byte | 0 | 0 | 0 | 1 160Range index | 8 | 3 |***10***| 1 161 162### Adjust Second Byte range for special cases 163 164Range index adjustment for four special cases 165 166First Byte | Second Byte | Before adjustment | Correct index | Adjustment | 167:--------- | :---------- | :---------------- | :------------ | :--------- 168E0 | A0..BF | 2 | 4 | **2** 169ED | 80..9F | 2 | 5 | **3** 170F0 | 90..BF | 3 | 6 | **3** 171F4 | 80..8F | 3 | 7 | **4** 172 173Range index adjustment can be reduced to below problem: 174 175***Given 16 bytes, replace E0 with 2, ED with 3, F0 with 3, F4 with 4, others with 0.*** 176 177A naive SIMD approach: 1781. Compare 16 bytes with E0, get the mask for eacy byte (FF if equal, 00 otherwise) 1791. And the mask with 2 to get adjustment for E0 1801. Repeat step 1,2 for ED,F0,F4 181 182At least **eight** operations are required for naive approach. 183 184Observing special bytes(E0,ED,F0,F4) are close to each other, we can do much better using lookup table. 185 186#### NEON 187 188NEON ```tbl``` instruction is very convenient for table lookup: 189* Table can be up to 16x4 bytes in size 190* Return zero if index is out of range 191 192Leverage these features, we can solve the problem with as few as **two** operations: 193* Precreate a 16x2 lookup table, where table[0]=2, table[13]=3, table[16]=3, table[20]=4, table[others]=0. 194* Substract input bytes with E0 (E0 -> 0, ED -> 13, F0 -> 16, F4 -> 20). 195* Use the substracted byte as index of lookup table and get range adjustment directly. 196 * For indices less than 32, we get zero or required adjustment value per input byte 197 * For out of bound indices, we get zero per ```tbl``` behaviour 198 199#### SSE 200 201SSE ```pshufb``` instruction is not as friendly as NEON ```tbl``` in this case: 202* Table can only be 16 bytes in size 203* Out of bound indices are handled this way: 204 * If 7-th bit of index is 0, least four bits are used as index (E.g, index 0x73 returns 3rd element) 205 * If 7-th bit of index is 1, return 0 (E.g, index 0x83 returns 0) 206 207We can still leverage these features to solve the problem in **five** operations: 208* Precreate two tables: 209 * table_df[1] = 2, table_df[14] = 3, table_df[others] = 0 210 * table_ef[1] = 3, table_ef[5] = 4, table_ef[others] = 0 211* Substract input bytes with EF (E0 -> 241, ED -> 254, F0 -> 1, F4 -> 5) to get the temporary indices 212* Get range index for E0,ED 213 * Saturate substract temporary indices with 240 (E0 -> 1, ED -> 14, all values below 240 becomes 0) 214 * Use substracted indices to look up table_df, get the correct adjustment 215* Get range index for F0,F4 216 * Saturate add temporary indices with 112(0x70) (F0 -> 0x71, F4 -> 0x75, all values above 16 will be larger than 128(7-th bit set)) 217 * Use added indices to look up table_ef, get the correct adjustment (index 0x71,0x75 returns 1st,5th elements, per ```pshufb``` behaviour) 218 219#### Error handling 220 221* For overlapped non-ASCII First Byte, range index before adjustment is 9,10,11. After adjustment (adds 2,3,4 or 0), the range index will be 9 to 15, which is still illegal in range table. So the error will be detected. 222 223### Handling remaining bytes 224 225For remaining input less than 16 bytes, we will fallback to naive byte by byte approach to validate them, which is actually faster than SIMD processing. 226* Look back last 16 bytes buffer to find First Byte. At most three bytes need to look back. Otherwise we either happen to be at character boundray, or there are some errors we already detected. 227* Validate string byte by byte starting from the First Byte. 228 229## Tests 230 231It's necessary to design test cases to cover corner cases as more as possible. 232 233### Positive cases 234 2351. Prepare correct characters 2362. Validate correct characters 2373. Validate long strings 238 * Round concatenate characters starting from first character to 1024 bytes 239 * Validate 1024 bytes string 240 * Shift 1 byte, validate 1025 bytes string 241 * Shift 2 bytes, Validate 1026 bytes string 242 * ... 243 * Shift 16 bytes, validate 1040 bytes string 2444. Repeat step3, test buffer starting from second character 2455. Repeat step3, test buffer starting from third character 2466. ... 247 248### Negative cases 249 2501. Prepare bad characters and bad strings 251 * Bad character 252 * Bad character cross 16 bytes boundary 253 * Bad character cross last 16 bytes and remaining bytes boundary 2542. Test long strings 255 * Prepare correct long strings same as positive cases 256 * Append bad characters 257 * Shift one byte for each iteration 258 * Validate each shift 259 260## Code breakdown 261 262Below table shows how 16 bytes input are processed step by step. See [range-neon.c](range-neon.c) for according code. 263 264 265