1 // Copyright 2007, Google Inc. 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 // Google Mock - a framework for writing C++ mock classes. 31 // 32 // The ACTION* family of macros can be used in a namespace scope to 33 // define custom actions easily. The syntax: 34 // 35 // ACTION(name) { statements; } 36 // 37 // will define an action with the given name that executes the 38 // statements. The value returned by the statements will be used as 39 // the return value of the action. Inside the statements, you can 40 // refer to the K-th (0-based) argument of the mock function by 41 // 'argK', and refer to its type by 'argK_type'. For example: 42 // 43 // ACTION(IncrementArg1) { 44 // arg1_type temp = arg1; 45 // return ++(*temp); 46 // } 47 // 48 // allows you to write 49 // 50 // ...WillOnce(IncrementArg1()); 51 // 52 // You can also refer to the entire argument tuple and its type by 53 // 'args' and 'args_type', and refer to the mock function type and its 54 // return type by 'function_type' and 'return_type'. 55 // 56 // Note that you don't need to specify the types of the mock function 57 // arguments. However rest assured that your code is still type-safe: 58 // you'll get a compiler error if *arg1 doesn't support the ++ 59 // operator, or if the type of ++(*arg1) isn't compatible with the 60 // mock function's return type, for example. 61 // 62 // Sometimes you'll want to parameterize the action. For that you can use 63 // another macro: 64 // 65 // ACTION_P(name, param_name) { statements; } 66 // 67 // For example: 68 // 69 // ACTION_P(Add, n) { return arg0 + n; } 70 // 71 // will allow you to write: 72 // 73 // ...WillOnce(Add(5)); 74 // 75 // Note that you don't need to provide the type of the parameter 76 // either. If you need to reference the type of a parameter named 77 // 'foo', you can write 'foo_type'. For example, in the body of 78 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type 79 // of 'n'. 80 // 81 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support 82 // multi-parameter actions. 83 // 84 // For the purpose of typing, you can view 85 // 86 // ACTION_Pk(Foo, p1, ..., pk) { ... } 87 // 88 // as shorthand for 89 // 90 // template <typename p1_type, ..., typename pk_type> 91 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } 92 // 93 // In particular, you can provide the template type arguments 94 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); 95 // although usually you can rely on the compiler to infer the types 96 // for you automatically. You can assign the result of expression 97 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., 98 // pk_type>. This can be useful when composing actions. 99 // 100 // You can also overload actions with different numbers of parameters: 101 // 102 // ACTION_P(Plus, a) { ... } 103 // ACTION_P2(Plus, a, b) { ... } 104 // 105 // While it's tempting to always use the ACTION* macros when defining 106 // a new action, you should also consider implementing ActionInterface 107 // or using MakePolymorphicAction() instead, especially if you need to 108 // use the action a lot. While these approaches require more work, 109 // they give you more control on the types of the mock function 110 // arguments and the action parameters, which in general leads to 111 // better compiler error messages that pay off in the long run. They 112 // also allow overloading actions based on parameter types (as opposed 113 // to just based on the number of parameters). 114 // 115 // CAVEAT: 116 // 117 // ACTION*() can only be used in a namespace scope as templates cannot be 118 // declared inside of a local class. 119 // Users can, however, define any local functors (e.g. a lambda) that 120 // can be used as actions. 121 // 122 // MORE INFORMATION: 123 // 124 // To learn more about using these macros, please search for 'ACTION' on 125 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md 126 127 // IWYU pragma: private, include "gmock/gmock.h" 128 // IWYU pragma: friend gmock/.* 129 130 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 131 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 132 133 #ifndef _WIN32_WCE 134 #include <errno.h> 135 #endif 136 137 #include <algorithm> 138 #include <exception> 139 #include <functional> 140 #include <memory> 141 #include <string> 142 #include <tuple> 143 #include <type_traits> 144 #include <utility> 145 146 #include "gmock/internal/gmock-internal-utils.h" 147 #include "gmock/internal/gmock-port.h" 148 #include "gmock/internal/gmock-pp.h" 149 150 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) 151 152 namespace testing { 153 154 // To implement an action Foo, define: 155 // 1. a class FooAction that implements the ActionInterface interface, and 156 // 2. a factory function that creates an Action object from a 157 // const FooAction*. 158 // 159 // The two-level delegation design follows that of Matcher, providing 160 // consistency for extension developers. It also eases ownership 161 // management as Action objects can now be copied like plain values. 162 163 namespace internal { 164 165 // BuiltInDefaultValueGetter<T, true>::Get() returns a 166 // default-constructed T value. BuiltInDefaultValueGetter<T, 167 // false>::Get() crashes with an error. 168 // 169 // This primary template is used when kDefaultConstructible is true. 170 template <typename T, bool kDefaultConstructible> 171 struct BuiltInDefaultValueGetter { GetBuiltInDefaultValueGetter172 static T Get() { return T(); } 173 }; 174 template <typename T> 175 struct BuiltInDefaultValueGetter<T, false> { 176 static T Get() { 177 Assert(false, __FILE__, __LINE__, 178 "Default action undefined for the function return type."); 179 #if defined(__GNUC__) || defined(__clang__) 180 __builtin_unreachable(); 181 #elif defined(_MSC_VER) 182 __assume(0); 183 #else 184 return Invalid<T>(); 185 // The above statement will never be reached, but is required in 186 // order for this function to compile. 187 #endif 188 } 189 }; 190 191 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value 192 // for type T, which is NULL when T is a raw pointer type, 0 when T is 193 // a numeric type, false when T is bool, or "" when T is string or 194 // std::string. In addition, in C++11 and above, it turns a 195 // default-constructed T value if T is default constructible. For any 196 // other type T, the built-in default T value is undefined, and the 197 // function will abort the process. 198 template <typename T> 199 class BuiltInDefaultValue { 200 public: 201 // This function returns true if and only if type T has a built-in default 202 // value. 203 static bool Exists() { return ::std::is_default_constructible<T>::value; } 204 205 static T Get() { 206 return BuiltInDefaultValueGetter< 207 T, ::std::is_default_constructible<T>::value>::Get(); 208 } 209 }; 210 211 // This partial specialization says that we use the same built-in 212 // default value for T and const T. 213 template <typename T> 214 class BuiltInDefaultValue<const T> { 215 public: 216 static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } 217 static T Get() { return BuiltInDefaultValue<T>::Get(); } 218 }; 219 220 // This partial specialization defines the default values for pointer 221 // types. 222 template <typename T> 223 class BuiltInDefaultValue<T*> { 224 public: 225 static bool Exists() { return true; } 226 static T* Get() { return nullptr; } 227 }; 228 229 // The following specializations define the default values for 230 // specific types we care about. 231 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ 232 template <> \ 233 class BuiltInDefaultValue<type> { \ 234 public: \ 235 static bool Exists() { return true; } \ 236 static type Get() { return value; } \ 237 } 238 239 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT 240 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); 241 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); 242 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); 243 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); 244 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); 245 246 // There's no need for a default action for signed wchar_t, as that 247 // type is the same as wchar_t for gcc, and invalid for MSVC. 248 // 249 // There's also no need for a default action for unsigned wchar_t, as 250 // that type is the same as unsigned int for gcc, and invalid for 251 // MSVC. 252 #if GMOCK_WCHAR_T_IS_NATIVE_ 253 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT 254 #endif 255 256 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT 257 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT 258 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); 259 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); 260 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT 261 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT 262 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT 263 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT 264 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); 265 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); 266 267 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ 268 269 // Partial implementations of metaprogramming types from the standard library 270 // not available in C++11. 271 272 template <typename P> 273 struct negation 274 // NOLINTNEXTLINE 275 : std::integral_constant<bool, bool(!P::value)> {}; 276 277 // Base case: with zero predicates the answer is always true. 278 template <typename...> 279 struct conjunction : std::true_type {}; 280 281 // With a single predicate, the answer is that predicate. 282 template <typename P1> 283 struct conjunction<P1> : P1 {}; 284 285 // With multiple predicates the answer is the first predicate if that is false, 286 // and we recurse otherwise. 287 template <typename P1, typename... Ps> 288 struct conjunction<P1, Ps...> 289 : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; 290 291 template <typename...> 292 struct disjunction : std::false_type {}; 293 294 template <typename P1> 295 struct disjunction<P1> : P1 {}; 296 297 template <typename P1, typename... Ps> 298 struct disjunction<P1, Ps...> 299 // NOLINTNEXTLINE 300 : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; 301 302 template <typename...> 303 using void_t = void; 304 305 // Detects whether an expression of type `From` can be implicitly converted to 306 // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: 307 // 308 // An expression e can be implicitly converted to a type T if and only if 309 // the declaration T t=e; is well-formed, for some invented temporary 310 // variable t ([dcl.init]). 311 // 312 // [conv]/2 implies we can use function argument passing to detect whether this 313 // initialization is valid. 314 // 315 // Note that this is distinct from is_convertible, which requires this be valid: 316 // 317 // To test() { 318 // return declval<From>(); 319 // } 320 // 321 // In particular, is_convertible doesn't give the correct answer when `To` and 322 // `From` are the same non-moveable type since `declval<From>` will be an rvalue 323 // reference, defeating the guaranteed copy elision that would otherwise make 324 // this function work. 325 // 326 // REQUIRES: `From` is not cv void. 327 template <typename From, typename To> 328 struct is_implicitly_convertible { 329 private: 330 // A function that accepts a parameter of type T. This can be called with type 331 // U successfully only if U is implicitly convertible to T. 332 template <typename T> 333 static void Accept(T); 334 335 // A function that creates a value of type T. 336 template <typename T> 337 static T Make(); 338 339 // An overload be selected when implicit conversion from T to To is possible. 340 template <typename T, typename = decltype(Accept<To>(Make<T>()))> 341 static std::true_type TestImplicitConversion(int); 342 343 // A fallback overload selected in all other cases. 344 template <typename T> 345 static std::false_type TestImplicitConversion(...); 346 347 public: 348 using type = decltype(TestImplicitConversion<From>(0)); 349 static constexpr bool value = type::value; 350 }; 351 352 // Like std::invoke_result_t from C++17, but works only for objects with call 353 // operators (not e.g. member function pointers, which we don't need specific 354 // support for in OnceAction because std::function deals with them). 355 template <typename F, typename... Args> 356 using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); 357 358 template <typename Void, typename R, typename F, typename... Args> 359 struct is_callable_r_impl : std::false_type {}; 360 361 // Specialize the struct for those template arguments where call_result_t is 362 // well-formed. When it's not, the generic template above is chosen, resulting 363 // in std::false_type. 364 template <typename R, typename F, typename... Args> 365 struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> 366 : std::conditional< 367 std::is_void<R>::value, // 368 std::true_type, // 369 is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; 370 371 // Like std::is_invocable_r from C++17, but works only for objects with call 372 // operators. See the note on call_result_t. 373 template <typename R, typename F, typename... Args> 374 using is_callable_r = is_callable_r_impl<void, R, F, Args...>; 375 376 // Like std::as_const from C++17. 377 template <typename T> 378 typename std::add_const<T>::type& as_const(T& t) { 379 return t; 380 } 381 382 } // namespace internal 383 384 // Specialized for function types below. 385 template <typename F> 386 class OnceAction; 387 388 // An action that can only be used once. 389 // 390 // This is accepted by WillOnce, which doesn't require the underlying action to 391 // be copy-constructible (only move-constructible), and promises to invoke it as 392 // an rvalue reference. This allows the action to work with move-only types like 393 // std::move_only_function in a type-safe manner. 394 // 395 // For example: 396 // 397 // // Assume we have some API that needs to accept a unique pointer to some 398 // // non-copyable object Foo. 399 // void AcceptUniquePointer(std::unique_ptr<Foo> foo); 400 // 401 // // We can define an action that provides a Foo to that API. Because It 402 // // has to give away its unique pointer, it must not be called more than 403 // // once, so its call operator is &&-qualified. 404 // struct ProvideFoo { 405 // std::unique_ptr<Foo> foo; 406 // 407 // void operator()() && { 408 // AcceptUniquePointer(std::move(Foo)); 409 // } 410 // }; 411 // 412 // // This action can be used with WillOnce. 413 // EXPECT_CALL(mock, Call) 414 // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); 415 // 416 // // But a call to WillRepeatedly will fail to compile. This is correct, 417 // // since the action cannot correctly be used repeatedly. 418 // EXPECT_CALL(mock, Call) 419 // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); 420 // 421 // A less-contrived example would be an action that returns an arbitrary type, 422 // whose &&-qualified call operator is capable of dealing with move-only types. 423 template <typename Result, typename... Args> 424 class OnceAction<Result(Args...)> final { 425 private: 426 // True iff we can use the given callable type (or lvalue reference) directly 427 // via StdFunctionAdaptor. 428 template <typename Callable> 429 using IsDirectlyCompatible = internal::conjunction< 430 // It must be possible to capture the callable in StdFunctionAdaptor. 431 std::is_constructible<typename std::decay<Callable>::type, Callable>, 432 // The callable must be compatible with our signature. 433 internal::is_callable_r<Result, typename std::decay<Callable>::type, 434 Args...>>; 435 436 // True iff we can use the given callable type via StdFunctionAdaptor once we 437 // ignore incoming arguments. 438 template <typename Callable> 439 using IsCompatibleAfterIgnoringArguments = internal::conjunction< 440 // It must be possible to capture the callable in a lambda. 441 std::is_constructible<typename std::decay<Callable>::type, Callable>, 442 // The callable must be invocable with zero arguments, returning something 443 // convertible to Result. 444 internal::is_callable_r<Result, typename std::decay<Callable>::type>>; 445 446 public: 447 // Construct from a callable that is directly compatible with our mocked 448 // signature: it accepts our function type's arguments and returns something 449 // convertible to our result type. 450 template <typename Callable, 451 typename std::enable_if< 452 internal::conjunction< 453 // Teach clang on macOS that we're not talking about a 454 // copy/move constructor here. Otherwise it gets confused 455 // when checking the is_constructible requirement of our 456 // traits above. 457 internal::negation<std::is_same< 458 OnceAction, typename std::decay<Callable>::type>>, 459 IsDirectlyCompatible<Callable>> // 460 ::value, 461 int>::type = 0> 462 OnceAction(Callable&& callable) // NOLINT 463 : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( 464 {}, std::forward<Callable>(callable))) {} 465 466 // As above, but for a callable that ignores the mocked function's arguments. 467 template <typename Callable, 468 typename std::enable_if< 469 internal::conjunction< 470 // Teach clang on macOS that we're not talking about a 471 // copy/move constructor here. Otherwise it gets confused 472 // when checking the is_constructible requirement of our 473 // traits above. 474 internal::negation<std::is_same< 475 OnceAction, typename std::decay<Callable>::type>>, 476 // Exclude callables for which the overload above works. 477 // We'd rather provide the arguments if possible. 478 internal::negation<IsDirectlyCompatible<Callable>>, 479 IsCompatibleAfterIgnoringArguments<Callable>>::value, 480 int>::type = 0> 481 OnceAction(Callable&& callable) // NOLINT 482 // Call the constructor above with a callable 483 // that ignores the input arguments. 484 : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ 485 std::forward<Callable>(callable)}) {} 486 487 // We are naturally copyable because we store only an std::function, but 488 // semantically we should not be copyable. 489 OnceAction(const OnceAction&) = delete; 490 OnceAction& operator=(const OnceAction&) = delete; 491 OnceAction(OnceAction&&) = default; 492 493 // Invoke the underlying action callable with which we were constructed, 494 // handing it the supplied arguments. 495 Result Call(Args... args) && { 496 return function_(std::forward<Args>(args)...); 497 } 498 499 private: 500 // An adaptor that wraps a callable that is compatible with our signature and 501 // being invoked as an rvalue reference so that it can be used as an 502 // StdFunctionAdaptor. This throws away type safety, but that's fine because 503 // this is only used by WillOnce, which we know calls at most once. 504 // 505 // Once we have something like std::move_only_function from C++23, we can do 506 // away with this. 507 template <typename Callable> 508 class StdFunctionAdaptor final { 509 public: 510 // A tag indicating that the (otherwise universal) constructor is accepting 511 // the callable itself, instead of e.g. stealing calls for the move 512 // constructor. 513 struct CallableTag final {}; 514 515 template <typename F> 516 explicit StdFunctionAdaptor(CallableTag, F&& callable) 517 : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} 518 519 // Rather than explicitly returning Result, we return whatever the wrapped 520 // callable returns. This allows for compatibility with existing uses like 521 // the following, when the mocked function returns void: 522 // 523 // EXPECT_CALL(mock_fn_, Call) 524 // .WillOnce([&] { 525 // [...] 526 // return 0; 527 // }); 528 // 529 // Such a callable can be turned into std::function<void()>. If we use an 530 // explicit return type of Result here then it *doesn't* work with 531 // std::function, because we'll get a "void function should not return a 532 // value" error. 533 // 534 // We need not worry about incompatible result types because the SFINAE on 535 // OnceAction already checks this for us. std::is_invocable_r_v itself makes 536 // the same allowance for void result types. 537 template <typename... ArgRefs> 538 internal::call_result_t<Callable, ArgRefs...> operator()( 539 ArgRefs&&... args) const { 540 return std::move(*callable_)(std::forward<ArgRefs>(args)...); 541 } 542 543 private: 544 // We must put the callable on the heap so that we are copyable, which 545 // std::function needs. 546 std::shared_ptr<Callable> callable_; 547 }; 548 549 // An adaptor that makes a callable that accepts zero arguments callable with 550 // our mocked arguments. 551 template <typename Callable> 552 struct IgnoreIncomingArguments { 553 internal::call_result_t<Callable> operator()(Args&&...) { 554 return std::move(callable)(); 555 } 556 557 Callable callable; 558 }; 559 560 std::function<Result(Args...)> function_; 561 }; 562 563 // When an unexpected function call is encountered, Google Mock will 564 // let it return a default value if the user has specified one for its 565 // return type, or if the return type has a built-in default value; 566 // otherwise Google Mock won't know what value to return and will have 567 // to abort the process. 568 // 569 // The DefaultValue<T> class allows a user to specify the 570 // default value for a type T that is both copyable and publicly 571 // destructible (i.e. anything that can be used as a function return 572 // type). The usage is: 573 // 574 // // Sets the default value for type T to be foo. 575 // DefaultValue<T>::Set(foo); 576 template <typename T> 577 class DefaultValue { 578 public: 579 // Sets the default value for type T; requires T to be 580 // copy-constructable and have a public destructor. 581 static void Set(T x) { 582 delete producer_; 583 producer_ = new FixedValueProducer(x); 584 } 585 586 // Provides a factory function to be called to generate the default value. 587 // This method can be used even if T is only move-constructible, but it is not 588 // limited to that case. 589 typedef T (*FactoryFunction)(); 590 static void SetFactory(FactoryFunction factory) { 591 delete producer_; 592 producer_ = new FactoryValueProducer(factory); 593 } 594 595 // Unsets the default value for type T. 596 static void Clear() { 597 delete producer_; 598 producer_ = nullptr; 599 } 600 601 // Returns true if and only if the user has set the default value for type T. 602 static bool IsSet() { return producer_ != nullptr; } 603 604 // Returns true if T has a default return value set by the user or there 605 // exists a built-in default value. 606 static bool Exists() { 607 return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); 608 } 609 610 // Returns the default value for type T if the user has set one; 611 // otherwise returns the built-in default value. Requires that Exists() 612 // is true, which ensures that the return value is well-defined. 613 static T Get() { 614 return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() 615 : producer_->Produce(); 616 } 617 618 private: 619 class ValueProducer { 620 public: 621 virtual ~ValueProducer() = default; 622 virtual T Produce() = 0; 623 }; 624 625 class FixedValueProducer : public ValueProducer { 626 public: 627 explicit FixedValueProducer(T value) : value_(value) {} 628 T Produce() override { return value_; } 629 630 private: 631 const T value_; 632 FixedValueProducer(const FixedValueProducer&) = delete; 633 FixedValueProducer& operator=(const FixedValueProducer&) = delete; 634 }; 635 636 class FactoryValueProducer : public ValueProducer { 637 public: 638 explicit FactoryValueProducer(FactoryFunction factory) 639 : factory_(factory) {} 640 T Produce() override { return factory_(); } 641 642 private: 643 const FactoryFunction factory_; 644 FactoryValueProducer(const FactoryValueProducer&) = delete; 645 FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; 646 }; 647 648 static ValueProducer* producer_; 649 }; 650 651 // This partial specialization allows a user to set default values for 652 // reference types. 653 template <typename T> 654 class DefaultValue<T&> { 655 public: 656 // Sets the default value for type T&. 657 static void Set(T& x) { // NOLINT 658 address_ = &x; 659 } 660 661 // Unsets the default value for type T&. 662 static void Clear() { address_ = nullptr; } 663 664 // Returns true if and only if the user has set the default value for type T&. 665 static bool IsSet() { return address_ != nullptr; } 666 667 // Returns true if T has a default return value set by the user or there 668 // exists a built-in default value. 669 static bool Exists() { 670 return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); 671 } 672 673 // Returns the default value for type T& if the user has set one; 674 // otherwise returns the built-in default value if there is one; 675 // otherwise aborts the process. 676 static T& Get() { 677 return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() 678 : *address_; 679 } 680 681 private: 682 static T* address_; 683 }; 684 685 // This specialization allows DefaultValue<void>::Get() to 686 // compile. 687 template <> 688 class DefaultValue<void> { 689 public: 690 static bool Exists() { return true; } 691 static void Get() {} 692 }; 693 694 // Points to the user-set default value for type T. 695 template <typename T> 696 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; 697 698 // Points to the user-set default value for type T&. 699 template <typename T> 700 T* DefaultValue<T&>::address_ = nullptr; 701 702 // Implement this interface to define an action for function type F. 703 template <typename F> 704 class ActionInterface { 705 public: 706 typedef typename internal::Function<F>::Result Result; 707 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 708 709 ActionInterface() = default; 710 virtual ~ActionInterface() = default; 711 712 // Performs the action. This method is not const, as in general an 713 // action can have side effects and be stateful. For example, a 714 // get-the-next-element-from-the-collection action will need to 715 // remember the current element. 716 virtual Result Perform(const ArgumentTuple& args) = 0; 717 718 private: 719 ActionInterface(const ActionInterface&) = delete; 720 ActionInterface& operator=(const ActionInterface&) = delete; 721 }; 722 723 template <typename F> 724 class Action; 725 726 // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) 727 // object that represents an action to be taken when a mock function of type 728 // R(Args...) is called. The implementation of Action<T> is just a 729 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You 730 // can view an object implementing ActionInterface<F> as a concrete action 731 // (including its current state), and an Action<F> object as a handle to it. 732 template <typename R, typename... Args> 733 class Action<R(Args...)> { 734 private: 735 using F = R(Args...); 736 737 // Adapter class to allow constructing Action from a legacy ActionInterface. 738 // New code should create Actions from functors instead. 739 struct ActionAdapter { 740 // Adapter must be copyable to satisfy std::function requirements. 741 ::std::shared_ptr<ActionInterface<F>> impl_; 742 743 template <typename... InArgs> 744 typename internal::Function<F>::Result operator()(InArgs&&... args) { 745 return impl_->Perform( 746 ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); 747 } 748 }; 749 750 template <typename G> 751 using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; 752 753 public: 754 typedef typename internal::Function<F>::Result Result; 755 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 756 757 // Constructs a null Action. Needed for storing Action objects in 758 // STL containers. 759 Action() = default; 760 761 // Construct an Action from a specified callable. 762 // This cannot take std::function directly, because then Action would not be 763 // directly constructible from lambda (it would require two conversions). 764 template < 765 typename G, 766 typename = typename std::enable_if<internal::disjunction< 767 IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, 768 G>>::value>::type> 769 Action(G&& fun) { // NOLINT 770 Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); 771 } 772 773 // Constructs an Action from its implementation. 774 explicit Action(ActionInterface<F>* impl) 775 : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} 776 777 // This constructor allows us to turn an Action<Func> object into an 778 // Action<F>, as long as F's arguments can be implicitly converted 779 // to Func's and Func's return type can be implicitly converted to F's. 780 template <typename Func> 781 Action(const Action<Func>& action) // NOLINT 782 : fun_(action.fun_) {} 783 784 // Returns true if and only if this is the DoDefault() action. 785 bool IsDoDefault() const { return fun_ == nullptr; } 786 787 // Performs the action. Note that this method is const even though 788 // the corresponding method in ActionInterface is not. The reason 789 // is that a const Action<F> means that it cannot be re-bound to 790 // another concrete action, not that the concrete action it binds to 791 // cannot change state. (Think of the difference between a const 792 // pointer and a pointer to const.) 793 Result Perform(ArgumentTuple args) const { 794 if (IsDoDefault()) { 795 internal::IllegalDoDefault(__FILE__, __LINE__); 796 } 797 return internal::Apply(fun_, ::std::move(args)); 798 } 799 800 // An action can be used as a OnceAction, since it's obviously safe to call it 801 // once. 802 operator OnceAction<F>() const { // NOLINT 803 // Return a OnceAction-compatible callable that calls Perform with the 804 // arguments it is provided. We could instead just return fun_, but then 805 // we'd need to handle the IsDoDefault() case separately. 806 struct OA { 807 Action<F> action; 808 809 R operator()(Args... args) && { 810 return action.Perform( 811 std::forward_as_tuple(std::forward<Args>(args)...)); 812 } 813 }; 814 815 return OA{*this}; 816 } 817 818 private: 819 template <typename G> 820 friend class Action; 821 822 template <typename G> 823 void Init(G&& g, ::std::true_type) { 824 fun_ = ::std::forward<G>(g); 825 } 826 827 template <typename G> 828 void Init(G&& g, ::std::false_type) { 829 fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; 830 } 831 832 template <typename FunctionImpl> 833 struct IgnoreArgs { 834 template <typename... InArgs> 835 Result operator()(const InArgs&...) const { 836 return function_impl(); 837 } 838 839 FunctionImpl function_impl; 840 }; 841 842 // fun_ is an empty function if and only if this is the DoDefault() action. 843 ::std::function<F> fun_; 844 }; 845 846 // The PolymorphicAction class template makes it easy to implement a 847 // polymorphic action (i.e. an action that can be used in mock 848 // functions of than one type, e.g. Return()). 849 // 850 // To define a polymorphic action, a user first provides a COPYABLE 851 // implementation class that has a Perform() method template: 852 // 853 // class FooAction { 854 // public: 855 // template <typename Result, typename ArgumentTuple> 856 // Result Perform(const ArgumentTuple& args) const { 857 // // Processes the arguments and returns a result, using 858 // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. 859 // } 860 // ... 861 // }; 862 // 863 // Then the user creates the polymorphic action using 864 // MakePolymorphicAction(object) where object has type FooAction. See 865 // the definition of Return(void) and SetArgumentPointee<N>(value) for 866 // complete examples. 867 template <typename Impl> 868 class PolymorphicAction { 869 public: 870 explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} 871 872 template <typename F> 873 operator Action<F>() const { 874 return Action<F>(new MonomorphicImpl<F>(impl_)); 875 } 876 877 private: 878 template <typename F> 879 class MonomorphicImpl : public ActionInterface<F> { 880 public: 881 typedef typename internal::Function<F>::Result Result; 882 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 883 884 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} 885 886 Result Perform(const ArgumentTuple& args) override { 887 return impl_.template Perform<Result>(args); 888 } 889 890 private: 891 Impl impl_; 892 }; 893 894 Impl impl_; 895 }; 896 897 // Creates an Action from its implementation and returns it. The 898 // created Action object owns the implementation. 899 template <typename F> 900 Action<F> MakeAction(ActionInterface<F>* impl) { 901 return Action<F>(impl); 902 } 903 904 // Creates a polymorphic action from its implementation. This is 905 // easier to use than the PolymorphicAction<Impl> constructor as it 906 // doesn't require you to explicitly write the template argument, e.g. 907 // 908 // MakePolymorphicAction(foo); 909 // vs 910 // PolymorphicAction<TypeOfFoo>(foo); 911 template <typename Impl> 912 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { 913 return PolymorphicAction<Impl>(impl); 914 } 915 916 namespace internal { 917 918 // Helper struct to specialize ReturnAction to execute a move instead of a copy 919 // on return. Useful for move-only types, but could be used on any type. 920 template <typename T> 921 struct ByMoveWrapper { 922 explicit ByMoveWrapper(T value) : payload(std::move(value)) {} 923 T payload; 924 }; 925 926 // The general implementation of Return(R). Specializations follow below. 927 template <typename R> 928 class ReturnAction final { 929 public: 930 explicit ReturnAction(R value) : value_(std::move(value)) {} 931 932 template <typename U, typename... Args, 933 typename = typename std::enable_if<conjunction< 934 // See the requirements documented on Return. 935 negation<std::is_same<void, U>>, // 936 negation<std::is_reference<U>>, // 937 std::is_convertible<R, U>, // 938 std::is_move_constructible<U>>::value>::type> 939 operator OnceAction<U(Args...)>() && { // NOLINT 940 return Impl<U>(std::move(value_)); 941 } 942 943 template <typename U, typename... Args, 944 typename = typename std::enable_if<conjunction< 945 // See the requirements documented on Return. 946 negation<std::is_same<void, U>>, // 947 negation<std::is_reference<U>>, // 948 std::is_convertible<const R&, U>, // 949 std::is_copy_constructible<U>>::value>::type> 950 operator Action<U(Args...)>() const { // NOLINT 951 return Impl<U>(value_); 952 } 953 954 private: 955 // Implements the Return(x) action for a mock function that returns type U. 956 template <typename U> 957 class Impl final { 958 public: 959 // The constructor used when the return value is allowed to move from the 960 // input value (i.e. we are converting to OnceAction). 961 explicit Impl(R&& input_value) 962 : state_(new State(std::move(input_value))) {} 963 964 // The constructor used when the return value is not allowed to move from 965 // the input value (i.e. we are converting to Action). 966 explicit Impl(const R& input_value) : state_(new State(input_value)) {} 967 968 U operator()() && { return std::move(state_->value); } 969 U operator()() const& { return state_->value; } 970 971 private: 972 // We put our state on the heap so that the compiler-generated copy/move 973 // constructors work correctly even when U is a reference-like type. This is 974 // necessary only because we eagerly create State::value (see the note on 975 // that symbol for details). If we instead had only the input value as a 976 // member then the default constructors would work fine. 977 // 978 // For example, when R is std::string and U is std::string_view, value is a 979 // reference to the string backed by input_value. The copy constructor would 980 // copy both, so that we wind up with a new input_value object (with the 981 // same contents) and a reference to the *old* input_value object rather 982 // than the new one. 983 struct State { 984 explicit State(const R& input_value_in) 985 : input_value(input_value_in), 986 // Make an implicit conversion to Result before initializing the U 987 // object we store, avoiding calling any explicit constructor of U 988 // from R. 989 // 990 // This simulates the language rules: a function with return type U 991 // that does `return R()` requires R to be implicitly convertible to 992 // U, and uses that path for the conversion, even U Result has an 993 // explicit constructor from R. 994 value(ImplicitCast_<U>(internal::as_const(input_value))) {} 995 996 // As above, but for the case where we're moving from the ReturnAction 997 // object because it's being used as a OnceAction. 998 explicit State(R&& input_value_in) 999 : input_value(std::move(input_value_in)), 1000 // For the same reason as above we make an implicit conversion to U 1001 // before initializing the value. 1002 // 1003 // Unlike above we provide the input value as an rvalue to the 1004 // implicit conversion because this is a OnceAction: it's fine if it 1005 // wants to consume the input value. 1006 value(ImplicitCast_<U>(std::move(input_value))) {} 1007 1008 // A copy of the value originally provided by the user. We retain this in 1009 // addition to the value of the mock function's result type below in case 1010 // the latter is a reference-like type. See the std::string_view example 1011 // in the documentation on Return. 1012 R input_value; 1013 1014 // The value we actually return, as the type returned by the mock function 1015 // itself. 1016 // 1017 // We eagerly initialize this here, rather than lazily doing the implicit 1018 // conversion automatically each time Perform is called, for historical 1019 // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) 1020 // made the Action<U()> conversion operator eagerly convert the R value to 1021 // U, but without keeping the R alive. This broke the use case discussed 1022 // in the documentation for Return, making reference-like types such as 1023 // std::string_view not safe to use as U where the input type R is a 1024 // value-like type such as std::string. 1025 // 1026 // The example the commit gave was not very clear, nor was the issue 1027 // thread (https://github.com/google/googlemock/issues/86), but it seems 1028 // the worry was about reference-like input types R that flatten to a 1029 // value-like type U when being implicitly converted. An example of this 1030 // is std::vector<bool>::reference, which is often a proxy type with an 1031 // reference to the underlying vector: 1032 // 1033 // // Helper method: have the mock function return bools according 1034 // // to the supplied script. 1035 // void SetActions(MockFunction<bool(size_t)>& mock, 1036 // const std::vector<bool>& script) { 1037 // for (size_t i = 0; i < script.size(); ++i) { 1038 // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); 1039 // } 1040 // } 1041 // 1042 // TEST(Foo, Bar) { 1043 // // Set actions using a temporary vector, whose operator[] 1044 // // returns proxy objects that references that will be 1045 // // dangling once the call to SetActions finishes and the 1046 // // vector is destroyed. 1047 // MockFunction<bool(size_t)> mock; 1048 // SetActions(mock, {false, true}); 1049 // 1050 // EXPECT_FALSE(mock.AsStdFunction()(0)); 1051 // EXPECT_TRUE(mock.AsStdFunction()(1)); 1052 // } 1053 // 1054 // This eager conversion helps with a simple case like this, but doesn't 1055 // fully make these types work in general. For example the following still 1056 // uses a dangling reference: 1057 // 1058 // TEST(Foo, Baz) { 1059 // MockFunction<std::vector<std::string>()> mock; 1060 // 1061 // // Return the same vector twice, and then the empty vector 1062 // // thereafter. 1063 // auto action = Return(std::initializer_list<std::string>{ 1064 // "taco", "burrito", 1065 // }); 1066 // 1067 // EXPECT_CALL(mock, Call) 1068 // .WillOnce(action) 1069 // .WillOnce(action) 1070 // .WillRepeatedly(Return(std::vector<std::string>{})); 1071 // 1072 // EXPECT_THAT(mock.AsStdFunction()(), 1073 // ElementsAre("taco", "burrito")); 1074 // EXPECT_THAT(mock.AsStdFunction()(), 1075 // ElementsAre("taco", "burrito")); 1076 // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); 1077 // } 1078 // 1079 U value; 1080 }; 1081 1082 const std::shared_ptr<State> state_; 1083 }; 1084 1085 R value_; 1086 }; 1087 1088 // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. 1089 // 1090 // This version applies the type system-defeating hack of moving from T even in 1091 // the const call operator, checking at runtime that it isn't called more than 1092 // once, since the user has declared their intent to do so by using ByMove. 1093 template <typename T> 1094 class ReturnAction<ByMoveWrapper<T>> final { 1095 public: 1096 explicit ReturnAction(ByMoveWrapper<T> wrapper) 1097 : state_(new State(std::move(wrapper.payload))) {} 1098 1099 T operator()() const { 1100 GTEST_CHECK_(!state_->called) 1101 << "A ByMove() action must be performed at most once."; 1102 1103 state_->called = true; 1104 return std::move(state_->value); 1105 } 1106 1107 private: 1108 // We store our state on the heap so that we are copyable as required by 1109 // Action, despite the fact that we are stateful and T may not be copyable. 1110 struct State { 1111 explicit State(T&& value_in) : value(std::move(value_in)) {} 1112 1113 T value; 1114 bool called = false; 1115 }; 1116 1117 const std::shared_ptr<State> state_; 1118 }; 1119 1120 // Implements the ReturnNull() action. 1121 class ReturnNullAction { 1122 public: 1123 // Allows ReturnNull() to be used in any pointer-returning function. In C++11 1124 // this is enforced by returning nullptr, and in non-C++11 by asserting a 1125 // pointer type on compile time. 1126 template <typename Result, typename ArgumentTuple> 1127 static Result Perform(const ArgumentTuple&) { 1128 return nullptr; 1129 } 1130 }; 1131 1132 // Implements the Return() action. 1133 class ReturnVoidAction { 1134 public: 1135 // Allows Return() to be used in any void-returning function. 1136 template <typename Result, typename ArgumentTuple> 1137 static void Perform(const ArgumentTuple&) { 1138 static_assert(std::is_void<Result>::value, "Result should be void."); 1139 } 1140 }; 1141 1142 // Implements the polymorphic ReturnRef(x) action, which can be used 1143 // in any function that returns a reference to the type of x, 1144 // regardless of the argument types. 1145 template <typename T> 1146 class ReturnRefAction { 1147 public: 1148 // Constructs a ReturnRefAction object from the reference to be returned. 1149 explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT 1150 1151 // This template type conversion operator allows ReturnRef(x) to be 1152 // used in ANY function that returns a reference to x's type. 1153 template <typename F> 1154 operator Action<F>() const { 1155 typedef typename Function<F>::Result Result; 1156 // Asserts that the function return type is a reference. This 1157 // catches the user error of using ReturnRef(x) when Return(x) 1158 // should be used, and generates some helpful error message. 1159 static_assert(std::is_reference<Result>::value, 1160 "use Return instead of ReturnRef to return a value"); 1161 return Action<F>(new Impl<F>(ref_)); 1162 } 1163 1164 private: 1165 // Implements the ReturnRef(x) action for a particular function type F. 1166 template <typename F> 1167 class Impl : public ActionInterface<F> { 1168 public: 1169 typedef typename Function<F>::Result Result; 1170 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1171 1172 explicit Impl(T& ref) : ref_(ref) {} // NOLINT 1173 1174 Result Perform(const ArgumentTuple&) override { return ref_; } 1175 1176 private: 1177 T& ref_; 1178 }; 1179 1180 T& ref_; 1181 }; 1182 1183 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be 1184 // used in any function that returns a reference to the type of x, 1185 // regardless of the argument types. 1186 template <typename T> 1187 class ReturnRefOfCopyAction { 1188 public: 1189 // Constructs a ReturnRefOfCopyAction object from the reference to 1190 // be returned. 1191 explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT 1192 1193 // This template type conversion operator allows ReturnRefOfCopy(x) to be 1194 // used in ANY function that returns a reference to x's type. 1195 template <typename F> 1196 operator Action<F>() const { 1197 typedef typename Function<F>::Result Result; 1198 // Asserts that the function return type is a reference. This 1199 // catches the user error of using ReturnRefOfCopy(x) when Return(x) 1200 // should be used, and generates some helpful error message. 1201 static_assert(std::is_reference<Result>::value, 1202 "use Return instead of ReturnRefOfCopy to return a value"); 1203 return Action<F>(new Impl<F>(value_)); 1204 } 1205 1206 private: 1207 // Implements the ReturnRefOfCopy(x) action for a particular function type F. 1208 template <typename F> 1209 class Impl : public ActionInterface<F> { 1210 public: 1211 typedef typename Function<F>::Result Result; 1212 typedef typename Function<F>::ArgumentTuple ArgumentTuple; 1213 1214 explicit Impl(const T& value) : value_(value) {} // NOLINT 1215 1216 Result Perform(const ArgumentTuple&) override { return value_; } 1217 1218 private: 1219 T value_; 1220 }; 1221 1222 const T value_; 1223 }; 1224 1225 // Implements the polymorphic ReturnRoundRobin(v) action, which can be 1226 // used in any function that returns the element_type of v. 1227 template <typename T> 1228 class ReturnRoundRobinAction { 1229 public: 1230 explicit ReturnRoundRobinAction(std::vector<T> values) { 1231 GTEST_CHECK_(!values.empty()) 1232 << "ReturnRoundRobin requires at least one element."; 1233 state_->values = std::move(values); 1234 } 1235 1236 template <typename... Args> 1237 T operator()(Args&&...) const { 1238 return state_->Next(); 1239 } 1240 1241 private: 1242 struct State { 1243 T Next() { 1244 T ret_val = values[i++]; 1245 if (i == values.size()) i = 0; 1246 return ret_val; 1247 } 1248 1249 std::vector<T> values; 1250 size_t i = 0; 1251 }; 1252 std::shared_ptr<State> state_ = std::make_shared<State>(); 1253 }; 1254 1255 // Implements the polymorphic DoDefault() action. 1256 class DoDefaultAction { 1257 public: 1258 // This template type conversion operator allows DoDefault() to be 1259 // used in any function. 1260 template <typename F> 1261 operator Action<F>() const { 1262 return Action<F>(); 1263 } // NOLINT 1264 }; 1265 1266 // Implements the Assign action to set a given pointer referent to a 1267 // particular value. 1268 template <typename T1, typename T2> 1269 class AssignAction { 1270 public: 1271 AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} 1272 1273 template <typename Result, typename ArgumentTuple> 1274 void Perform(const ArgumentTuple& /* args */) const { 1275 *ptr_ = value_; 1276 } 1277 1278 private: 1279 T1* const ptr_; 1280 const T2 value_; 1281 }; 1282 1283 #ifndef GTEST_OS_WINDOWS_MOBILE 1284 1285 // Implements the SetErrnoAndReturn action to simulate return from 1286 // various system calls and libc functions. 1287 template <typename T> 1288 class SetErrnoAndReturnAction { 1289 public: 1290 SetErrnoAndReturnAction(int errno_value, T result) 1291 : errno_(errno_value), result_(result) {} 1292 template <typename Result, typename ArgumentTuple> 1293 Result Perform(const ArgumentTuple& /* args */) const { 1294 errno = errno_; 1295 return result_; 1296 } 1297 1298 private: 1299 const int errno_; 1300 const T result_; 1301 }; 1302 1303 #endif // !GTEST_OS_WINDOWS_MOBILE 1304 1305 // Implements the SetArgumentPointee<N>(x) action for any function 1306 // whose N-th argument (0-based) is a pointer to x's type. 1307 template <size_t N, typename A, typename = void> 1308 struct SetArgumentPointeeAction { 1309 A value; 1310 1311 template <typename... Args> 1312 void operator()(const Args&... args) const { 1313 *::std::get<N>(std::tie(args...)) = value; 1314 } 1315 }; 1316 1317 // Implements the Invoke(object_ptr, &Class::Method) action. 1318 template <class Class, typename MethodPtr> 1319 struct InvokeMethodAction { 1320 Class* const obj_ptr; 1321 const MethodPtr method_ptr; 1322 1323 template <typename... Args> 1324 auto operator()(Args&&... args) const 1325 -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { 1326 return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); 1327 } 1328 }; 1329 1330 // Implements the InvokeWithoutArgs(f) action. The template argument 1331 // FunctionImpl is the implementation type of f, which can be either a 1332 // function pointer or a functor. InvokeWithoutArgs(f) can be used as an 1333 // Action<F> as long as f's type is compatible with F. 1334 template <typename FunctionImpl> 1335 struct InvokeWithoutArgsAction { 1336 FunctionImpl function_impl; 1337 1338 // Allows InvokeWithoutArgs(f) to be used as any action whose type is 1339 // compatible with f. 1340 template <typename... Args> 1341 auto operator()(const Args&...) -> decltype(function_impl()) { 1342 return function_impl(); 1343 } 1344 }; 1345 1346 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. 1347 template <class Class, typename MethodPtr> 1348 struct InvokeMethodWithoutArgsAction { 1349 Class* const obj_ptr; 1350 const MethodPtr method_ptr; 1351 1352 using ReturnType = 1353 decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); 1354 1355 template <typename... Args> 1356 ReturnType operator()(const Args&...) const { 1357 return (obj_ptr->*method_ptr)(); 1358 } 1359 }; 1360 1361 // Implements the IgnoreResult(action) action. 1362 template <typename A> 1363 class IgnoreResultAction { 1364 public: 1365 explicit IgnoreResultAction(const A& action) : action_(action) {} 1366 1367 template <typename F> 1368 operator Action<F>() const { 1369 // Assert statement belongs here because this is the best place to verify 1370 // conditions on F. It produces the clearest error messages 1371 // in most compilers. 1372 // Impl really belongs in this scope as a local class but can't 1373 // because MSVC produces duplicate symbols in different translation units 1374 // in this case. Until MS fixes that bug we put Impl into the class scope 1375 // and put the typedef both here (for use in assert statement) and 1376 // in the Impl class. But both definitions must be the same. 1377 typedef typename internal::Function<F>::Result Result; 1378 1379 // Asserts at compile time that F returns void. 1380 static_assert(std::is_void<Result>::value, "Result type should be void."); 1381 1382 return Action<F>(new Impl<F>(action_)); 1383 } 1384 1385 private: 1386 template <typename F> 1387 class Impl : public ActionInterface<F> { 1388 public: 1389 typedef typename internal::Function<F>::Result Result; 1390 typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; 1391 1392 explicit Impl(const A& action) : action_(action) {} 1393 1394 void Perform(const ArgumentTuple& args) override { 1395 // Performs the action and ignores its result. 1396 action_.Perform(args); 1397 } 1398 1399 private: 1400 // Type OriginalFunction is the same as F except that its return 1401 // type is IgnoredValue. 1402 typedef 1403 typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; 1404 1405 const Action<OriginalFunction> action_; 1406 }; 1407 1408 const A action_; 1409 }; 1410 1411 template <typename InnerAction, size_t... I> 1412 struct WithArgsAction { 1413 InnerAction inner_action; 1414 1415 // The signature of the function as seen by the inner action, given an out 1416 // action with the given result and argument types. 1417 template <typename R, typename... Args> 1418 using InnerSignature = 1419 R(typename std::tuple_element<I, std::tuple<Args...>>::type...); 1420 1421 // Rather than a call operator, we must define conversion operators to 1422 // particular action types. This is necessary for embedded actions like 1423 // DoDefault(), which rely on an action conversion operators rather than 1424 // providing a call operator because even with a particular set of arguments 1425 // they don't have a fixed return type. 1426 1427 template < 1428 typename R, typename... Args, 1429 typename std::enable_if< 1430 std::is_convertible<InnerAction, 1431 // Unfortunately we can't use the InnerSignature 1432 // alias here; MSVC complains about the I 1433 // parameter pack not being expanded (error C3520) 1434 // despite it being expanded in the type alias. 1435 // TupleElement is also an MSVC workaround. 1436 // See its definition for details. 1437 OnceAction<R(internal::TupleElement< 1438 I, std::tuple<Args...>>...)>>::value, 1439 int>::type = 0> 1440 operator OnceAction<R(Args...)>() && { // NOLINT 1441 struct OA { 1442 OnceAction<InnerSignature<R, Args...>> inner_action; 1443 1444 R operator()(Args&&... args) && { 1445 return std::move(inner_action) 1446 .Call(std::get<I>( 1447 std::forward_as_tuple(std::forward<Args>(args)...))...); 1448 } 1449 }; 1450 1451 return OA{std::move(inner_action)}; 1452 } 1453 1454 template < 1455 typename R, typename... Args, 1456 typename std::enable_if< 1457 std::is_convertible<const InnerAction&, 1458 // Unfortunately we can't use the InnerSignature 1459 // alias here; MSVC complains about the I 1460 // parameter pack not being expanded (error C3520) 1461 // despite it being expanded in the type alias. 1462 // TupleElement is also an MSVC workaround. 1463 // See its definition for details. 1464 Action<R(internal::TupleElement< 1465 I, std::tuple<Args...>>...)>>::value, 1466 int>::type = 0> 1467 operator Action<R(Args...)>() const { // NOLINT 1468 Action<InnerSignature<R, Args...>> converted(inner_action); 1469 1470 return [converted](Args&&... args) -> R { 1471 return converted.Perform(std::forward_as_tuple( 1472 std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); 1473 }; 1474 } 1475 }; 1476 1477 template <typename... Actions> 1478 class DoAllAction; 1479 1480 // Base case: only a single action. 1481 template <typename FinalAction> 1482 class DoAllAction<FinalAction> { 1483 public: 1484 struct UserConstructorTag {}; 1485 1486 template <typename T> 1487 explicit DoAllAction(UserConstructorTag, T&& action) 1488 : final_action_(std::forward<T>(action)) {} 1489 1490 // Rather than a call operator, we must define conversion operators to 1491 // particular action types. This is necessary for embedded actions like 1492 // DoDefault(), which rely on an action conversion operators rather than 1493 // providing a call operator because even with a particular set of arguments 1494 // they don't have a fixed return type. 1495 1496 // We support conversion to OnceAction whenever the sub-action does. 1497 template <typename R, typename... Args, 1498 typename std::enable_if< 1499 std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, 1500 int>::type = 0> 1501 operator OnceAction<R(Args...)>() && { // NOLINT 1502 return std::move(final_action_); 1503 } 1504 1505 // We also support conversion to OnceAction whenever the sub-action supports 1506 // conversion to Action (since any Action can also be a OnceAction). 1507 template < 1508 typename R, typename... Args, 1509 typename std::enable_if< 1510 conjunction< 1511 negation< 1512 std::is_convertible<FinalAction, OnceAction<R(Args...)>>>, 1513 std::is_convertible<FinalAction, Action<R(Args...)>>>::value, 1514 int>::type = 0> 1515 operator OnceAction<R(Args...)>() && { // NOLINT 1516 return Action<R(Args...)>(std::move(final_action_)); 1517 } 1518 1519 // We support conversion to Action whenever the sub-action does. 1520 template < 1521 typename R, typename... Args, 1522 typename std::enable_if< 1523 std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, 1524 int>::type = 0> 1525 operator Action<R(Args...)>() const { // NOLINT 1526 return final_action_; 1527 } 1528 1529 private: 1530 FinalAction final_action_; 1531 }; 1532 1533 // Recursive case: support N actions by calling the initial action and then 1534 // calling through to the base class containing N-1 actions. 1535 template <typename InitialAction, typename... OtherActions> 1536 class DoAllAction<InitialAction, OtherActions...> 1537 : private DoAllAction<OtherActions...> { 1538 private: 1539 using Base = DoAllAction<OtherActions...>; 1540 1541 // The type of reference that should be provided to an initial action for a 1542 // mocked function parameter of type T. 1543 // 1544 // There are two quirks here: 1545 // 1546 // * Unlike most forwarding functions, we pass scalars through by value. 1547 // This isn't strictly necessary because an lvalue reference would work 1548 // fine too and be consistent with other non-reference types, but it's 1549 // perhaps less surprising. 1550 // 1551 // For example if the mocked function has signature void(int), then it 1552 // might seem surprising for the user's initial action to need to be 1553 // convertible to Action<void(const int&)>. This is perhaps less 1554 // surprising for a non-scalar type where there may be a performance 1555 // impact, or it might even be impossible, to pass by value. 1556 // 1557 // * More surprisingly, `const T&` is often not a const reference type. 1558 // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to 1559 // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is 1560 // U&. In other words, we may hand over a non-const reference. 1561 // 1562 // So for example, given some non-scalar type Obj we have the following 1563 // mappings: 1564 // 1565 // T InitialActionArgType<T> 1566 // ------- ----------------------- 1567 // Obj const Obj& 1568 // Obj& Obj& 1569 // Obj&& Obj& 1570 // const Obj const Obj& 1571 // const Obj& const Obj& 1572 // const Obj&& const Obj& 1573 // 1574 // In other words, the initial actions get a mutable view of an non-scalar 1575 // argument if and only if the mock function itself accepts a non-const 1576 // reference type. They are never given an rvalue reference to an 1577 // non-scalar type. 1578 // 1579 // This situation makes sense if you imagine use with a matcher that is 1580 // designed to write through a reference. For example, if the caller wants 1581 // to fill in a reference argument and then return a canned value: 1582 // 1583 // EXPECT_CALL(mock, Call) 1584 // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); 1585 // 1586 template <typename T> 1587 using InitialActionArgType = 1588 typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; 1589 1590 public: 1591 struct UserConstructorTag {}; 1592 1593 template <typename T, typename... U> 1594 explicit DoAllAction(UserConstructorTag, T&& initial_action, 1595 U&&... other_actions) 1596 : Base({}, std::forward<U>(other_actions)...), 1597 initial_action_(std::forward<T>(initial_action)) {} 1598 1599 // We support conversion to OnceAction whenever both the initial action and 1600 // the rest support conversion to OnceAction. 1601 template < 1602 typename R, typename... Args, 1603 typename std::enable_if< 1604 conjunction<std::is_convertible< 1605 InitialAction, 1606 OnceAction<void(InitialActionArgType<Args>...)>>, 1607 std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 1608 int>::type = 0> 1609 operator OnceAction<R(Args...)>() && { // NOLINT 1610 // Return an action that first calls the initial action with arguments 1611 // filtered through InitialActionArgType, then forwards arguments directly 1612 // to the base class to deal with the remaining actions. 1613 struct OA { 1614 OnceAction<void(InitialActionArgType<Args>...)> initial_action; 1615 OnceAction<R(Args...)> remaining_actions; 1616 1617 R operator()(Args... args) && { 1618 std::move(initial_action) 1619 .Call(static_cast<InitialActionArgType<Args>>(args)...); 1620 1621 return std::move(remaining_actions).Call(std::forward<Args>(args)...); 1622 } 1623 }; 1624 1625 return OA{ 1626 std::move(initial_action_), 1627 std::move(static_cast<Base&>(*this)), 1628 }; 1629 } 1630 1631 // We also support conversion to OnceAction whenever the initial action 1632 // supports conversion to Action (since any Action can also be a OnceAction). 1633 // 1634 // The remaining sub-actions must also be compatible, but we don't need to 1635 // special case them because the base class deals with them. 1636 template < 1637 typename R, typename... Args, 1638 typename std::enable_if< 1639 conjunction< 1640 negation<std::is_convertible< 1641 InitialAction, 1642 OnceAction<void(InitialActionArgType<Args>...)>>>, 1643 std::is_convertible<InitialAction, 1644 Action<void(InitialActionArgType<Args>...)>>, 1645 std::is_convertible<Base, OnceAction<R(Args...)>>>::value, 1646 int>::type = 0> 1647 operator OnceAction<R(Args...)>() && { // NOLINT 1648 return DoAll( 1649 Action<void(InitialActionArgType<Args>...)>(std::move(initial_action_)), 1650 std::move(static_cast<Base&>(*this))); 1651 } 1652 1653 // We support conversion to Action whenever both the initial action and the 1654 // rest support conversion to Action. 1655 template < 1656 typename R, typename... Args, 1657 typename std::enable_if< 1658 conjunction< 1659 std::is_convertible<const InitialAction&, 1660 Action<void(InitialActionArgType<Args>...)>>, 1661 std::is_convertible<const Base&, Action<R(Args...)>>>::value, 1662 int>::type = 0> 1663 operator Action<R(Args...)>() const { // NOLINT 1664 // Return an action that first calls the initial action with arguments 1665 // filtered through InitialActionArgType, then forwards arguments directly 1666 // to the base class to deal with the remaining actions. 1667 struct OA { 1668 Action<void(InitialActionArgType<Args>...)> initial_action; 1669 Action<R(Args...)> remaining_actions; 1670 1671 R operator()(Args... args) const { 1672 initial_action.Perform(std::forward_as_tuple( 1673 static_cast<InitialActionArgType<Args>>(args)...)); 1674 1675 return remaining_actions.Perform( 1676 std::forward_as_tuple(std::forward<Args>(args)...)); 1677 } 1678 }; 1679 1680 return OA{ 1681 initial_action_, 1682 static_cast<const Base&>(*this), 1683 }; 1684 } 1685 1686 private: 1687 InitialAction initial_action_; 1688 }; 1689 1690 template <typename T, typename... Params> 1691 struct ReturnNewAction { 1692 T* operator()() const { 1693 return internal::Apply( 1694 [](const Params&... unpacked_params) { 1695 return new T(unpacked_params...); 1696 }, 1697 params); 1698 } 1699 std::tuple<Params...> params; 1700 }; 1701 1702 template <size_t k> 1703 struct ReturnArgAction { 1704 template <typename... Args, 1705 typename = typename std::enable_if<(k < sizeof...(Args))>::type> 1706 auto operator()(Args&&... args) const 1707 -> decltype(std::get<k>( 1708 std::forward_as_tuple(std::forward<Args>(args)...))) { 1709 return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); 1710 } 1711 }; 1712 1713 template <size_t k, typename Ptr> 1714 struct SaveArgAction { 1715 Ptr pointer; 1716 1717 template <typename... Args> 1718 void operator()(const Args&... args) const { 1719 *pointer = std::get<k>(std::tie(args...)); 1720 } 1721 }; 1722 1723 template <size_t k, typename Ptr> 1724 struct SaveArgPointeeAction { 1725 Ptr pointer; 1726 1727 template <typename... Args> 1728 void operator()(const Args&... args) const { 1729 *pointer = *std::get<k>(std::tie(args...)); 1730 } 1731 }; 1732 1733 template <size_t k, typename T> 1734 struct SetArgRefereeAction { 1735 T value; 1736 1737 template <typename... Args> 1738 void operator()(Args&&... args) const { 1739 using argk_type = 1740 typename ::std::tuple_element<k, std::tuple<Args...>>::type; 1741 static_assert(std::is_lvalue_reference<argk_type>::value, 1742 "Argument must be a reference type."); 1743 std::get<k>(std::tie(args...)) = value; 1744 } 1745 }; 1746 1747 template <size_t k, typename I1, typename I2> 1748 struct SetArrayArgumentAction { 1749 I1 first; 1750 I2 last; 1751 1752 template <typename... Args> 1753 void operator()(const Args&... args) const { 1754 auto value = std::get<k>(std::tie(args...)); 1755 for (auto it = first; it != last; ++it, (void)++value) { 1756 *value = *it; 1757 } 1758 } 1759 }; 1760 1761 template <size_t k> 1762 struct DeleteArgAction { 1763 template <typename... Args> 1764 void operator()(const Args&... args) const { 1765 delete std::get<k>(std::tie(args...)); 1766 } 1767 }; 1768 1769 template <typename Ptr> 1770 struct ReturnPointeeAction { 1771 Ptr pointer; 1772 template <typename... Args> 1773 auto operator()(const Args&...) const -> decltype(*pointer) { 1774 return *pointer; 1775 } 1776 }; 1777 1778 #if GTEST_HAS_EXCEPTIONS 1779 template <typename T> 1780 struct ThrowAction { 1781 T exception; 1782 // We use a conversion operator to adapt to any return type. 1783 template <typename R, typename... Args> 1784 operator Action<R(Args...)>() const { // NOLINT 1785 T copy = exception; 1786 return [copy](Args...) -> R { throw copy; }; 1787 } 1788 }; 1789 struct RethrowAction { 1790 std::exception_ptr exception; 1791 template <typename R, typename... Args> 1792 operator Action<R(Args...)>() const { // NOLINT 1793 return [ex = exception](Args...) -> R { std::rethrow_exception(ex); }; 1794 } 1795 }; 1796 #endif // GTEST_HAS_EXCEPTIONS 1797 1798 } // namespace internal 1799 1800 // An Unused object can be implicitly constructed from ANY value. 1801 // This is handy when defining actions that ignore some or all of the 1802 // mock function arguments. For example, given 1803 // 1804 // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); 1805 // MOCK_METHOD3(Bar, double(int index, double x, double y)); 1806 // 1807 // instead of 1808 // 1809 // double DistanceToOriginWithLabel(const string& label, double x, double y) { 1810 // return sqrt(x*x + y*y); 1811 // } 1812 // double DistanceToOriginWithIndex(int index, double x, double y) { 1813 // return sqrt(x*x + y*y); 1814 // } 1815 // ... 1816 // EXPECT_CALL(mock, Foo("abc", _, _)) 1817 // .WillOnce(Invoke(DistanceToOriginWithLabel)); 1818 // EXPECT_CALL(mock, Bar(5, _, _)) 1819 // .WillOnce(Invoke(DistanceToOriginWithIndex)); 1820 // 1821 // you could write 1822 // 1823 // // We can declare any uninteresting argument as Unused. 1824 // double DistanceToOrigin(Unused, double x, double y) { 1825 // return sqrt(x*x + y*y); 1826 // } 1827 // ... 1828 // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); 1829 // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); 1830 typedef internal::IgnoredValue Unused; 1831 1832 // Creates an action that does actions a1, a2, ..., sequentially in 1833 // each invocation. All but the last action will have a readonly view of the 1834 // arguments. 1835 template <typename... Action> 1836 internal::DoAllAction<typename std::decay<Action>::type...> DoAll( 1837 Action&&... action) { 1838 return internal::DoAllAction<typename std::decay<Action>::type...>( 1839 {}, std::forward<Action>(action)...); 1840 } 1841 1842 // WithArg<k>(an_action) creates an action that passes the k-th 1843 // (0-based) argument of the mock function to an_action and performs 1844 // it. It adapts an action accepting one argument to one that accepts 1845 // multiple arguments. For convenience, we also provide 1846 // WithArgs<k>(an_action) (defined below) as a synonym. 1847 template <size_t k, typename InnerAction> 1848 internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( 1849 InnerAction&& action) { 1850 return {std::forward<InnerAction>(action)}; 1851 } 1852 1853 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes 1854 // the selected arguments of the mock function to an_action and 1855 // performs it. It serves as an adaptor between actions with 1856 // different argument lists. 1857 template <size_t k, size_t... ks, typename InnerAction> 1858 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> 1859 WithArgs(InnerAction&& action) { 1860 return {std::forward<InnerAction>(action)}; 1861 } 1862 1863 // WithoutArgs(inner_action) can be used in a mock function with a 1864 // non-empty argument list to perform inner_action, which takes no 1865 // argument. In other words, it adapts an action accepting no 1866 // argument to one that accepts (and ignores) arguments. 1867 template <typename InnerAction> 1868 internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( 1869 InnerAction&& action) { 1870 return {std::forward<InnerAction>(action)}; 1871 } 1872 1873 // Creates an action that returns a value. 1874 // 1875 // The returned type can be used with a mock function returning a non-void, 1876 // non-reference type U as follows: 1877 // 1878 // * If R is convertible to U and U is move-constructible, then the action can 1879 // be used with WillOnce. 1880 // 1881 // * If const R& is convertible to U and U is copy-constructible, then the 1882 // action can be used with both WillOnce and WillRepeatedly. 1883 // 1884 // The mock expectation contains the R value from which the U return value is 1885 // constructed (a move/copy of the argument to Return). This means that the R 1886 // value will survive at least until the mock object's expectations are cleared 1887 // or the mock object is destroyed, meaning that U can safely be a 1888 // reference-like type such as std::string_view: 1889 // 1890 // // The mock function returns a view of a copy of the string fed to 1891 // // Return. The view is valid even after the action is performed. 1892 // MockFunction<std::string_view()> mock; 1893 // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); 1894 // const std::string_view result = mock.AsStdFunction()(); 1895 // EXPECT_EQ("taco", result); 1896 // 1897 template <typename R> 1898 internal::ReturnAction<R> Return(R value) { 1899 return internal::ReturnAction<R>(std::move(value)); 1900 } 1901 1902 // Creates an action that returns NULL. 1903 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { 1904 return MakePolymorphicAction(internal::ReturnNullAction()); 1905 } 1906 1907 // Creates an action that returns from a void function. 1908 inline PolymorphicAction<internal::ReturnVoidAction> Return() { 1909 return MakePolymorphicAction(internal::ReturnVoidAction()); 1910 } 1911 1912 // Creates an action that returns the reference to a variable. 1913 template <typename R> 1914 inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT 1915 return internal::ReturnRefAction<R>(x); 1916 } 1917 1918 // Prevent using ReturnRef on reference to temporary. 1919 template <typename R, R* = nullptr> 1920 internal::ReturnRefAction<R> ReturnRef(R&&) = delete; 1921 1922 // Creates an action that returns the reference to a copy of the 1923 // argument. The copy is created when the action is constructed and 1924 // lives as long as the action. 1925 template <typename R> 1926 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { 1927 return internal::ReturnRefOfCopyAction<R>(x); 1928 } 1929 1930 // DEPRECATED: use Return(x) directly with WillOnce. 1931 // 1932 // Modifies the parent action (a Return() action) to perform a move of the 1933 // argument instead of a copy. 1934 // Return(ByMove()) actions can only be executed once and will assert this 1935 // invariant. 1936 template <typename R> 1937 internal::ByMoveWrapper<R> ByMove(R x) { 1938 return internal::ByMoveWrapper<R>(std::move(x)); 1939 } 1940 1941 // Creates an action that returns an element of `vals`. Calling this action will 1942 // repeatedly return the next value from `vals` until it reaches the end and 1943 // will restart from the beginning. 1944 template <typename T> 1945 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { 1946 return internal::ReturnRoundRobinAction<T>(std::move(vals)); 1947 } 1948 1949 // Creates an action that returns an element of `vals`. Calling this action will 1950 // repeatedly return the next value from `vals` until it reaches the end and 1951 // will restart from the beginning. 1952 template <typename T> 1953 internal::ReturnRoundRobinAction<T> ReturnRoundRobin( 1954 std::initializer_list<T> vals) { 1955 return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); 1956 } 1957 1958 // Creates an action that does the default action for the give mock function. 1959 inline internal::DoDefaultAction DoDefault() { 1960 return internal::DoDefaultAction(); 1961 } 1962 1963 // Creates an action that sets the variable pointed by the N-th 1964 // (0-based) function argument to 'value'. 1965 template <size_t N, typename T> 1966 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { 1967 return {std::move(value)}; 1968 } 1969 1970 // The following version is DEPRECATED. 1971 template <size_t N, typename T> 1972 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { 1973 return {std::move(value)}; 1974 } 1975 1976 // Creates an action that sets a pointer referent to a given value. 1977 template <typename T1, typename T2> 1978 PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { 1979 return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); 1980 } 1981 1982 #ifndef GTEST_OS_WINDOWS_MOBILE 1983 1984 // Creates an action that sets errno and returns the appropriate error. 1985 template <typename T> 1986 PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( 1987 int errval, T result) { 1988 return MakePolymorphicAction( 1989 internal::SetErrnoAndReturnAction<T>(errval, result)); 1990 } 1991 1992 #endif // !GTEST_OS_WINDOWS_MOBILE 1993 1994 // Various overloads for Invoke(). 1995 1996 // Legacy function. 1997 // Actions can now be implicitly constructed from callables. No need to create 1998 // wrapper objects. 1999 // This function exists for backwards compatibility. 2000 template <typename FunctionImpl> 2001 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { 2002 return std::forward<FunctionImpl>(function_impl); 2003 } 2004 2005 // Creates an action that invokes the given method on the given object 2006 // with the mock function's arguments. 2007 template <class Class, typename MethodPtr> 2008 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, 2009 MethodPtr method_ptr) { 2010 return {obj_ptr, method_ptr}; 2011 } 2012 2013 // Creates an action that invokes 'function_impl' with no argument. 2014 template <typename FunctionImpl> 2015 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> 2016 InvokeWithoutArgs(FunctionImpl function_impl) { 2017 return {std::move(function_impl)}; 2018 } 2019 2020 // Creates an action that invokes the given method on the given object 2021 // with no argument. 2022 template <class Class, typename MethodPtr> 2023 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( 2024 Class* obj_ptr, MethodPtr method_ptr) { 2025 return {obj_ptr, method_ptr}; 2026 } 2027 2028 // Creates an action that performs an_action and throws away its 2029 // result. In other words, it changes the return type of an_action to 2030 // void. an_action MUST NOT return void, or the code won't compile. 2031 template <typename A> 2032 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { 2033 return internal::IgnoreResultAction<A>(an_action); 2034 } 2035 2036 // Creates a reference wrapper for the given L-value. If necessary, 2037 // you can explicitly specify the type of the reference. For example, 2038 // suppose 'derived' is an object of type Derived, ByRef(derived) 2039 // would wrap a Derived&. If you want to wrap a const Base& instead, 2040 // where Base is a base class of Derived, just write: 2041 // 2042 // ByRef<const Base>(derived) 2043 // 2044 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. 2045 // However, it may still be used for consistency with ByMove(). 2046 template <typename T> 2047 inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT 2048 return ::std::reference_wrapper<T>(l_value); 2049 } 2050 2051 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new 2052 // instance of type T, constructed on the heap with constructor arguments 2053 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. 2054 template <typename T, typename... Params> 2055 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( 2056 Params&&... params) { 2057 return {std::forward_as_tuple(std::forward<Params>(params)...)}; 2058 } 2059 2060 // Action ReturnArg<k>() returns the k-th argument of the mock function. 2061 template <size_t k> 2062 internal::ReturnArgAction<k> ReturnArg() { 2063 return {}; 2064 } 2065 2066 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the 2067 // mock function to *pointer. 2068 template <size_t k, typename Ptr> 2069 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { 2070 return {pointer}; 2071 } 2072 2073 // Action SaveArgPointee<k>(pointer) saves the value pointed to 2074 // by the k-th (0-based) argument of the mock function to *pointer. 2075 template <size_t k, typename Ptr> 2076 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { 2077 return {pointer}; 2078 } 2079 2080 // Action SetArgReferee<k>(value) assigns 'value' to the variable 2081 // referenced by the k-th (0-based) argument of the mock function. 2082 template <size_t k, typename T> 2083 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( 2084 T&& value) { 2085 return {std::forward<T>(value)}; 2086 } 2087 2088 // Action SetArrayArgument<k>(first, last) copies the elements in 2089 // source range [first, last) to the array pointed to by the k-th 2090 // (0-based) argument, which can be either a pointer or an 2091 // iterator. The action does not take ownership of the elements in the 2092 // source range. 2093 template <size_t k, typename I1, typename I2> 2094 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, 2095 I2 last) { 2096 return {first, last}; 2097 } 2098 2099 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock 2100 // function. 2101 template <size_t k> 2102 internal::DeleteArgAction<k> DeleteArg() { 2103 return {}; 2104 } 2105 2106 // This action returns the value pointed to by 'pointer'. 2107 template <typename Ptr> 2108 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { 2109 return {pointer}; 2110 } 2111 2112 #if GTEST_HAS_EXCEPTIONS 2113 // Action Throw(exception) can be used in a mock function of any type 2114 // to throw the given exception. Any copyable value can be thrown, 2115 // except for std::exception_ptr, which is likely a mistake if 2116 // thrown directly. 2117 template <typename T> 2118 typename std::enable_if< 2119 !std::is_base_of<std::exception_ptr, typename std::decay<T>::type>::value, 2120 internal::ThrowAction<typename std::decay<T>::type>>::type 2121 Throw(T&& exception) { 2122 return {std::forward<T>(exception)}; 2123 } 2124 // Action Rethrow(exception_ptr) can be used in a mock function of any type 2125 // to rethrow any exception_ptr. Note that the same object is thrown each time. 2126 inline internal::RethrowAction Rethrow(std::exception_ptr exception) { 2127 return {std::move(exception)}; 2128 } 2129 #endif // GTEST_HAS_EXCEPTIONS 2130 2131 namespace internal { 2132 2133 // A macro from the ACTION* family (defined later in gmock-generated-actions.h) 2134 // defines an action that can be used in a mock function. Typically, 2135 // these actions only care about a subset of the arguments of the mock 2136 // function. For example, if such an action only uses the second 2137 // argument, it can be used in any mock function that takes >= 2 2138 // arguments where the type of the second argument is compatible. 2139 // 2140 // Therefore, the action implementation must be prepared to take more 2141 // arguments than it needs. The ExcessiveArg type is used to 2142 // represent those excessive arguments. In order to keep the compiler 2143 // error messages tractable, we define it in the testing namespace 2144 // instead of testing::internal. However, this is an INTERNAL TYPE 2145 // and subject to change without notice, so a user MUST NOT USE THIS 2146 // TYPE DIRECTLY. 2147 struct ExcessiveArg {}; 2148 2149 // Builds an implementation of an Action<> for some particular signature, using 2150 // a class defined by an ACTION* macro. 2151 template <typename F, typename Impl> 2152 struct ActionImpl; 2153 2154 template <typename Impl> 2155 struct ImplBase { 2156 struct Holder { 2157 // Allows each copy of the Action<> to get to the Impl. 2158 explicit operator const Impl&() const { return *ptr; } 2159 std::shared_ptr<Impl> ptr; 2160 }; 2161 using type = typename std::conditional<std::is_constructible<Impl>::value, 2162 Impl, Holder>::type; 2163 }; 2164 2165 template <typename R, typename... Args, typename Impl> 2166 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { 2167 using Base = typename ImplBase<Impl>::type; 2168 using function_type = R(Args...); 2169 using args_type = std::tuple<Args...>; 2170 2171 ActionImpl() = default; // Only defined if appropriate for Base. 2172 explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} 2173 2174 R operator()(Args&&... arg) const { 2175 static constexpr size_t kMaxArgs = 2176 sizeof...(Args) <= 10 ? sizeof...(Args) : 10; 2177 return Apply(std::make_index_sequence<kMaxArgs>{}, 2178 std::make_index_sequence<10 - kMaxArgs>{}, 2179 args_type{std::forward<Args>(arg)...}); 2180 } 2181 2182 template <std::size_t... arg_id, std::size_t... excess_id> 2183 R Apply(std::index_sequence<arg_id...>, std::index_sequence<excess_id...>, 2184 const args_type& args) const { 2185 // Impl need not be specific to the signature of action being implemented; 2186 // only the implementing function body needs to have all of the specific 2187 // types instantiated. Up to 10 of the args that are provided by the 2188 // args_type get passed, followed by a dummy of unspecified type for the 2189 // remainder up to 10 explicit args. 2190 static constexpr ExcessiveArg kExcessArg{}; 2191 return static_cast<const Impl&>(*this) 2192 .template gmock_PerformImpl< 2193 /*function_type=*/function_type, /*return_type=*/R, 2194 /*args_type=*/args_type, 2195 /*argN_type=*/ 2196 typename std::tuple_element<arg_id, args_type>::type...>( 2197 /*args=*/args, std::get<arg_id>(args)..., 2198 ((void)excess_id, kExcessArg)...); 2199 } 2200 }; 2201 2202 // Stores a default-constructed Impl as part of the Action<>'s 2203 // std::function<>. The Impl should be trivial to copy. 2204 template <typename F, typename Impl> 2205 ::testing::Action<F> MakeAction() { 2206 return ::testing::Action<F>(ActionImpl<F, Impl>()); 2207 } 2208 2209 // Stores just the one given instance of Impl. 2210 template <typename F, typename Impl> 2211 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { 2212 return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); 2213 } 2214 2215 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ 2216 , GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const arg##i##_type& arg##i 2217 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ 2218 GTEST_INTERNAL_ATTRIBUTE_MAYBE_UNUSED const args_type& args GMOCK_PP_REPEAT( \ 2219 GMOCK_INTERNAL_ARG_UNUSED, , 10) 2220 2221 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i 2222 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ 2223 const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) 2224 2225 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type 2226 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ 2227 GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) 2228 2229 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type 2230 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ 2231 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) 2232 2233 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type 2234 #define GMOCK_ACTION_TYPE_PARAMS_(params) \ 2235 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) 2236 2237 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ 2238 , param##_type gmock_p##i 2239 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ 2240 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) 2241 2242 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ 2243 , std::forward<param##_type>(gmock_p##i) 2244 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ 2245 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) 2246 2247 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ 2248 , param(::std::forward<param##_type>(gmock_p##i)) 2249 #define GMOCK_ACTION_INIT_PARAMS_(params) \ 2250 GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) 2251 2252 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; 2253 #define GMOCK_ACTION_FIELD_PARAMS_(params) \ 2254 GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) 2255 2256 #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ 2257 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2258 class full_name { \ 2259 public: \ 2260 explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2261 : impl_(std::make_shared<gmock_Impl>( \ 2262 GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ 2263 full_name(const full_name&) = default; \ 2264 full_name(full_name&&) noexcept = default; \ 2265 template <typename F> \ 2266 operator ::testing::Action<F>() const { \ 2267 return ::testing::internal::MakeAction<F>(impl_); \ 2268 } \ 2269 \ 2270 private: \ 2271 class gmock_Impl { \ 2272 public: \ 2273 explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ 2274 : GMOCK_ACTION_INIT_PARAMS_(params) {} \ 2275 template <typename function_type, typename return_type, \ 2276 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2277 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2278 GMOCK_ACTION_FIELD_PARAMS_(params) \ 2279 }; \ 2280 std::shared_ptr<const gmock_Impl> impl_; \ 2281 }; \ 2282 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2283 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2284 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ 2285 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2286 inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ 2287 GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ 2288 return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ 2289 GMOCK_ACTION_GVALUE_PARAMS_(params)); \ 2290 } \ 2291 template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ 2292 template <typename function_type, typename return_type, typename args_type, \ 2293 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2294 return_type \ 2295 full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ 2296 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2297 2298 } // namespace internal 2299 2300 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. 2301 #define ACTION(name) \ 2302 class name##Action { \ 2303 public: \ 2304 explicit name##Action() noexcept {} \ 2305 name##Action(const name##Action&) noexcept {} \ 2306 template <typename F> \ 2307 operator ::testing::Action<F>() const { \ 2308 return ::testing::internal::MakeAction<F, gmock_Impl>(); \ 2309 } \ 2310 \ 2311 private: \ 2312 class gmock_Impl { \ 2313 public: \ 2314 template <typename function_type, typename return_type, \ 2315 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2316 return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ 2317 }; \ 2318 }; \ 2319 inline name##Action name() GTEST_MUST_USE_RESULT_; \ 2320 inline name##Action name() { return name##Action(); } \ 2321 template <typename function_type, typename return_type, typename args_type, \ 2322 GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ 2323 return_type name##Action::gmock_Impl::gmock_PerformImpl( \ 2324 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const 2325 2326 #define ACTION_P(name, ...) \ 2327 GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) 2328 2329 #define ACTION_P2(name, ...) \ 2330 GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) 2331 2332 #define ACTION_P3(name, ...) \ 2333 GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) 2334 2335 #define ACTION_P4(name, ...) \ 2336 GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) 2337 2338 #define ACTION_P5(name, ...) \ 2339 GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) 2340 2341 #define ACTION_P6(name, ...) \ 2342 GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) 2343 2344 #define ACTION_P7(name, ...) \ 2345 GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) 2346 2347 #define ACTION_P8(name, ...) \ 2348 GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) 2349 2350 #define ACTION_P9(name, ...) \ 2351 GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) 2352 2353 #define ACTION_P10(name, ...) \ 2354 GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) 2355 2356 } // namespace testing 2357 2358 GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 2359 2360 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ 2361