1// Copyright 2023 Google LLC 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// http://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15syntax = "proto3"; 16 17package google.api; 18 19import "google/protobuf/any.proto"; 20import "google/protobuf/timestamp.proto"; 21 22option go_package = "google.golang.org/genproto/googleapis/api/distribution;distribution"; 23option java_multiple_files = true; 24option java_outer_classname = "DistributionProto"; 25option java_package = "com.google.api"; 26option objc_class_prefix = "GAPI"; 27 28// `Distribution` contains summary statistics for a population of values. It 29// optionally contains a histogram representing the distribution of those values 30// across a set of buckets. 31// 32// The summary statistics are the count, mean, sum of the squared deviation from 33// the mean, the minimum, and the maximum of the set of population of values. 34// The histogram is based on a sequence of buckets and gives a count of values 35// that fall into each bucket. The boundaries of the buckets are given either 36// explicitly or by formulas for buckets of fixed or exponentially increasing 37// widths. 38// 39// Although it is not forbidden, it is generally a bad idea to include 40// non-finite values (infinities or NaNs) in the population of values, as this 41// will render the `mean` and `sum_of_squared_deviation` fields meaningless. 42message Distribution { 43 // The range of the population values. 44 message Range { 45 // The minimum of the population values. 46 double min = 1; 47 48 // The maximum of the population values. 49 double max = 2; 50 } 51 52 // `BucketOptions` describes the bucket boundaries used to create a histogram 53 // for the distribution. The buckets can be in a linear sequence, an 54 // exponential sequence, or each bucket can be specified explicitly. 55 // `BucketOptions` does not include the number of values in each bucket. 56 // 57 // A bucket has an inclusive lower bound and exclusive upper bound for the 58 // values that are counted for that bucket. The upper bound of a bucket must 59 // be strictly greater than the lower bound. The sequence of N buckets for a 60 // distribution consists of an underflow bucket (number 0), zero or more 61 // finite buckets (number 1 through N - 2) and an overflow bucket (number N - 62 // 1). The buckets are contiguous: the lower bound of bucket i (i > 0) is the 63 // same as the upper bound of bucket i - 1. The buckets span the whole range 64 // of finite values: lower bound of the underflow bucket is -infinity and the 65 // upper bound of the overflow bucket is +infinity. The finite buckets are 66 // so-called because both bounds are finite. 67 message BucketOptions { 68 // Specifies a linear sequence of buckets that all have the same width 69 // (except overflow and underflow). Each bucket represents a constant 70 // absolute uncertainty on the specific value in the bucket. 71 // 72 // There are `num_finite_buckets + 2` (= N) buckets. Bucket `i` has the 73 // following boundaries: 74 // 75 // Upper bound (0 <= i < N-1): offset + (width * i). 76 // 77 // Lower bound (1 <= i < N): offset + (width * (i - 1)). 78 message Linear { 79 // Must be greater than 0. 80 int32 num_finite_buckets = 1; 81 82 // Must be greater than 0. 83 double width = 2; 84 85 // Lower bound of the first bucket. 86 double offset = 3; 87 } 88 89 // Specifies an exponential sequence of buckets that have a width that is 90 // proportional to the value of the lower bound. Each bucket represents a 91 // constant relative uncertainty on a specific value in the bucket. 92 // 93 // There are `num_finite_buckets + 2` (= N) buckets. Bucket `i` has the 94 // following boundaries: 95 // 96 // Upper bound (0 <= i < N-1): scale * (growth_factor ^ i). 97 // 98 // Lower bound (1 <= i < N): scale * (growth_factor ^ (i - 1)). 99 message Exponential { 100 // Must be greater than 0. 101 int32 num_finite_buckets = 1; 102 103 // Must be greater than 1. 104 double growth_factor = 2; 105 106 // Must be greater than 0. 107 double scale = 3; 108 } 109 110 // Specifies a set of buckets with arbitrary widths. 111 // 112 // There are `size(bounds) + 1` (= N) buckets. Bucket `i` has the following 113 // boundaries: 114 // 115 // Upper bound (0 <= i < N-1): bounds[i] 116 // Lower bound (1 <= i < N); bounds[i - 1] 117 // 118 // The `bounds` field must contain at least one element. If `bounds` has 119 // only one element, then there are no finite buckets, and that single 120 // element is the common boundary of the overflow and underflow buckets. 121 message Explicit { 122 // The values must be monotonically increasing. 123 repeated double bounds = 1; 124 } 125 126 // Exactly one of these three fields must be set. 127 oneof options { 128 // The linear bucket. 129 Linear linear_buckets = 1; 130 131 // The exponential buckets. 132 Exponential exponential_buckets = 2; 133 134 // The explicit buckets. 135 Explicit explicit_buckets = 3; 136 } 137 } 138 139 // Exemplars are example points that may be used to annotate aggregated 140 // distribution values. They are metadata that gives information about a 141 // particular value added to a Distribution bucket, such as a trace ID that 142 // was active when a value was added. They may contain further information, 143 // such as a example values and timestamps, origin, etc. 144 message Exemplar { 145 // Value of the exemplar point. This value determines to which bucket the 146 // exemplar belongs. 147 double value = 1; 148 149 // The observation (sampling) time of the above value. 150 google.protobuf.Timestamp timestamp = 2; 151 152 // Contextual information about the example value. Examples are: 153 // 154 // Trace: type.googleapis.com/google.monitoring.v3.SpanContext 155 // 156 // Literal string: type.googleapis.com/google.protobuf.StringValue 157 // 158 // Labels dropped during aggregation: 159 // type.googleapis.com/google.monitoring.v3.DroppedLabels 160 // 161 // There may be only a single attachment of any given message type in a 162 // single exemplar, and this is enforced by the system. 163 repeated google.protobuf.Any attachments = 3; 164 } 165 166 // The number of values in the population. Must be non-negative. This value 167 // must equal the sum of the values in `bucket_counts` if a histogram is 168 // provided. 169 int64 count = 1; 170 171 // The arithmetic mean of the values in the population. If `count` is zero 172 // then this field must be zero. 173 double mean = 2; 174 175 // The sum of squared deviations from the mean of the values in the 176 // population. For values x_i this is: 177 // 178 // Sum[i=1..n]((x_i - mean)^2) 179 // 180 // Knuth, "The Art of Computer Programming", Vol. 2, page 232, 3rd edition 181 // describes Welford's method for accumulating this sum in one pass. 182 // 183 // If `count` is zero then this field must be zero. 184 double sum_of_squared_deviation = 3; 185 186 // If specified, contains the range of the population values. The field 187 // must not be present if the `count` is zero. 188 Range range = 4; 189 190 // Defines the histogram bucket boundaries. If the distribution does not 191 // contain a histogram, then omit this field. 192 BucketOptions bucket_options = 6; 193 194 // The number of values in each bucket of the histogram, as described in 195 // `bucket_options`. If the distribution does not have a histogram, then omit 196 // this field. If there is a histogram, then the sum of the values in 197 // `bucket_counts` must equal the value in the `count` field of the 198 // distribution. 199 // 200 // If present, `bucket_counts` should contain N values, where N is the number 201 // of buckets specified in `bucket_options`. If you supply fewer than N 202 // values, the remaining values are assumed to be 0. 203 // 204 // The order of the values in `bucket_counts` follows the bucket numbering 205 // schemes described for the three bucket types. The first value must be the 206 // count for the underflow bucket (number 0). The next N-2 values are the 207 // counts for the finite buckets (number 1 through N-2). The N'th value in 208 // `bucket_counts` is the count for the overflow bucket (number N-1). 209 repeated int64 bucket_counts = 7; 210 211 // Must be in increasing order of `value` field. 212 repeated Exemplar exemplars = 10; 213} 214