xref: /aosp_15_r20/external/googleapis/google/api/distribution.proto (revision d5c09012810ac0c9f33fe448fb6da8260d444cc9)
1// Copyright 2023 Google LLC
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15syntax = "proto3";
16
17package google.api;
18
19import "google/protobuf/any.proto";
20import "google/protobuf/timestamp.proto";
21
22option go_package = "google.golang.org/genproto/googleapis/api/distribution;distribution";
23option java_multiple_files = true;
24option java_outer_classname = "DistributionProto";
25option java_package = "com.google.api";
26option objc_class_prefix = "GAPI";
27
28// `Distribution` contains summary statistics for a population of values. It
29// optionally contains a histogram representing the distribution of those values
30// across a set of buckets.
31//
32// The summary statistics are the count, mean, sum of the squared deviation from
33// the mean, the minimum, and the maximum of the set of population of values.
34// The histogram is based on a sequence of buckets and gives a count of values
35// that fall into each bucket. The boundaries of the buckets are given either
36// explicitly or by formulas for buckets of fixed or exponentially increasing
37// widths.
38//
39// Although it is not forbidden, it is generally a bad idea to include
40// non-finite values (infinities or NaNs) in the population of values, as this
41// will render the `mean` and `sum_of_squared_deviation` fields meaningless.
42message Distribution {
43  // The range of the population values.
44  message Range {
45    // The minimum of the population values.
46    double min = 1;
47
48    // The maximum of the population values.
49    double max = 2;
50  }
51
52  // `BucketOptions` describes the bucket boundaries used to create a histogram
53  // for the distribution. The buckets can be in a linear sequence, an
54  // exponential sequence, or each bucket can be specified explicitly.
55  // `BucketOptions` does not include the number of values in each bucket.
56  //
57  // A bucket has an inclusive lower bound and exclusive upper bound for the
58  // values that are counted for that bucket. The upper bound of a bucket must
59  // be strictly greater than the lower bound. The sequence of N buckets for a
60  // distribution consists of an underflow bucket (number 0), zero or more
61  // finite buckets (number 1 through N - 2) and an overflow bucket (number N -
62  // 1). The buckets are contiguous: the lower bound of bucket i (i > 0) is the
63  // same as the upper bound of bucket i - 1. The buckets span the whole range
64  // of finite values: lower bound of the underflow bucket is -infinity and the
65  // upper bound of the overflow bucket is +infinity. The finite buckets are
66  // so-called because both bounds are finite.
67  message BucketOptions {
68    // Specifies a linear sequence of buckets that all have the same width
69    // (except overflow and underflow). Each bucket represents a constant
70    // absolute uncertainty on the specific value in the bucket.
71    //
72    // There are `num_finite_buckets + 2` (= N) buckets. Bucket `i` has the
73    // following boundaries:
74    //
75    //    Upper bound (0 <= i < N-1):     offset + (width * i).
76    //
77    //    Lower bound (1 <= i < N):       offset + (width * (i - 1)).
78    message Linear {
79      // Must be greater than 0.
80      int32 num_finite_buckets = 1;
81
82      // Must be greater than 0.
83      double width = 2;
84
85      // Lower bound of the first bucket.
86      double offset = 3;
87    }
88
89    // Specifies an exponential sequence of buckets that have a width that is
90    // proportional to the value of the lower bound. Each bucket represents a
91    // constant relative uncertainty on a specific value in the bucket.
92    //
93    // There are `num_finite_buckets + 2` (= N) buckets. Bucket `i` has the
94    // following boundaries:
95    //
96    //    Upper bound (0 <= i < N-1):     scale * (growth_factor ^ i).
97    //
98    //    Lower bound (1 <= i < N):       scale * (growth_factor ^ (i - 1)).
99    message Exponential {
100      // Must be greater than 0.
101      int32 num_finite_buckets = 1;
102
103      // Must be greater than 1.
104      double growth_factor = 2;
105
106      // Must be greater than 0.
107      double scale = 3;
108    }
109
110    // Specifies a set of buckets with arbitrary widths.
111    //
112    // There are `size(bounds) + 1` (= N) buckets. Bucket `i` has the following
113    // boundaries:
114    //
115    //    Upper bound (0 <= i < N-1):     bounds[i]
116    //    Lower bound (1 <= i < N);       bounds[i - 1]
117    //
118    // The `bounds` field must contain at least one element. If `bounds` has
119    // only one element, then there are no finite buckets, and that single
120    // element is the common boundary of the overflow and underflow buckets.
121    message Explicit {
122      // The values must be monotonically increasing.
123      repeated double bounds = 1;
124    }
125
126    // Exactly one of these three fields must be set.
127    oneof options {
128      // The linear bucket.
129      Linear linear_buckets = 1;
130
131      // The exponential buckets.
132      Exponential exponential_buckets = 2;
133
134      // The explicit buckets.
135      Explicit explicit_buckets = 3;
136    }
137  }
138
139  // Exemplars are example points that may be used to annotate aggregated
140  // distribution values. They are metadata that gives information about a
141  // particular value added to a Distribution bucket, such as a trace ID that
142  // was active when a value was added. They may contain further information,
143  // such as a example values and timestamps, origin, etc.
144  message Exemplar {
145    // Value of the exemplar point. This value determines to which bucket the
146    // exemplar belongs.
147    double value = 1;
148
149    // The observation (sampling) time of the above value.
150    google.protobuf.Timestamp timestamp = 2;
151
152    // Contextual information about the example value. Examples are:
153    //
154    //   Trace: type.googleapis.com/google.monitoring.v3.SpanContext
155    //
156    //   Literal string: type.googleapis.com/google.protobuf.StringValue
157    //
158    //   Labels dropped during aggregation:
159    //     type.googleapis.com/google.monitoring.v3.DroppedLabels
160    //
161    // There may be only a single attachment of any given message type in a
162    // single exemplar, and this is enforced by the system.
163    repeated google.protobuf.Any attachments = 3;
164  }
165
166  // The number of values in the population. Must be non-negative. This value
167  // must equal the sum of the values in `bucket_counts` if a histogram is
168  // provided.
169  int64 count = 1;
170
171  // The arithmetic mean of the values in the population. If `count` is zero
172  // then this field must be zero.
173  double mean = 2;
174
175  // The sum of squared deviations from the mean of the values in the
176  // population. For values x_i this is:
177  //
178  //     Sum[i=1..n]((x_i - mean)^2)
179  //
180  // Knuth, "The Art of Computer Programming", Vol. 2, page 232, 3rd edition
181  // describes Welford's method for accumulating this sum in one pass.
182  //
183  // If `count` is zero then this field must be zero.
184  double sum_of_squared_deviation = 3;
185
186  // If specified, contains the range of the population values. The field
187  // must not be present if the `count` is zero.
188  Range range = 4;
189
190  // Defines the histogram bucket boundaries. If the distribution does not
191  // contain a histogram, then omit this field.
192  BucketOptions bucket_options = 6;
193
194  // The number of values in each bucket of the histogram, as described in
195  // `bucket_options`. If the distribution does not have a histogram, then omit
196  // this field. If there is a histogram, then the sum of the values in
197  // `bucket_counts` must equal the value in the `count` field of the
198  // distribution.
199  //
200  // If present, `bucket_counts` should contain N values, where N is the number
201  // of buckets specified in `bucket_options`. If you supply fewer than N
202  // values, the remaining values are assumed to be 0.
203  //
204  // The order of the values in `bucket_counts` follows the bucket numbering
205  // schemes described for the three bucket types. The first value must be the
206  // count for the underflow bucket (number 0). The next N-2 values are the
207  // counts for the finite buckets (number 1 through N-2). The N'th value in
208  // `bucket_counts` is the count for the overflow bucket (number N-1).
209  repeated int64 bucket_counts = 7;
210
211  // Must be in increasing order of `value` field.
212  repeated Exemplar exemplars = 10;
213}
214