xref: /aosp_15_r20/external/google-benchmark/docs/user_guide.md (revision dbb99499c3810fa1611fa2242a2fc446be01a57c)
1# User Guide
2
3## Command Line
4
5[Output Formats](#output-formats)
6
7[Output Files](#output-files)
8
9[Running Benchmarks](#running-benchmarks)
10
11[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
12
13[Result Comparison](#result-comparison)
14
15[Extra Context](#extra-context)
16
17## Library
18
19[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
20
21[Setup/Teardown](#setupteardown)
22
23[Passing Arguments](#passing-arguments)
24
25[Custom Benchmark Name](#custom-benchmark-name)
26
27[Calculating Asymptotic Complexity](#asymptotic-complexity)
28
29[Templated Benchmarks](#templated-benchmarks)
30
31[Templated Benchmarks that take arguments](#templated-benchmarks-with-arguments)
32
33[Fixtures](#fixtures)
34
35[Custom Counters](#custom-counters)
36
37[Multithreaded Benchmarks](#multithreaded-benchmarks)
38
39[CPU Timers](#cpu-timers)
40
41[Manual Timing](#manual-timing)
42
43[Setting the Time Unit](#setting-the-time-unit)
44
45[Random Interleaving](random_interleaving.md)
46
47[User-Requested Performance Counters](perf_counters.md)
48
49[Preventing Optimization](#preventing-optimization)
50
51[Reporting Statistics](#reporting-statistics)
52
53[Custom Statistics](#custom-statistics)
54
55[Memory Usage](#memory-usage)
56
57[Using RegisterBenchmark](#using-register-benchmark)
58
59[Exiting with an Error](#exiting-with-an-error)
60
61[A Faster `KeepRunning` Loop](#a-faster-keep-running-loop)
62
63## Benchmarking Tips
64
65[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
66
67[Reducing Variance in Benchmarks](reducing_variance.md)
68
69<a name="output-formats" />
70
71## Output Formats
72
73The library supports multiple output formats. Use the
74`--benchmark_format=<console|json|csv>` flag (or set the
75`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
76the format type. `console` is the default format.
77
78The Console format is intended to be a human readable format. By default
79the format generates color output. Context is output on stderr and the
80tabular data on stdout. Example tabular output looks like:
81
82```
83Benchmark                               Time(ns)    CPU(ns) Iterations
84----------------------------------------------------------------------
85BM_SetInsert/1024/1                        28928      29349      23853  133.097kB/s   33.2742k items/s
86BM_SetInsert/1024/8                        32065      32913      21375  949.487kB/s   237.372k items/s
87BM_SetInsert/1024/10                       33157      33648      21431  1.13369MB/s   290.225k items/s
88```
89
90The JSON format outputs human readable json split into two top level attributes.
91The `context` attribute contains information about the run in general, including
92information about the CPU and the date.
93The `benchmarks` attribute contains a list of every benchmark run. Example json
94output looks like:
95
96```json
97{
98  "context": {
99    "date": "2015/03/17-18:40:25",
100    "num_cpus": 40,
101    "mhz_per_cpu": 2801,
102    "cpu_scaling_enabled": false,
103    "build_type": "debug"
104  },
105  "benchmarks": [
106    {
107      "name": "BM_SetInsert/1024/1",
108      "iterations": 94877,
109      "real_time": 29275,
110      "cpu_time": 29836,
111      "bytes_per_second": 134066,
112      "items_per_second": 33516
113    },
114    {
115      "name": "BM_SetInsert/1024/8",
116      "iterations": 21609,
117      "real_time": 32317,
118      "cpu_time": 32429,
119      "bytes_per_second": 986770,
120      "items_per_second": 246693
121    },
122    {
123      "name": "BM_SetInsert/1024/10",
124      "iterations": 21393,
125      "real_time": 32724,
126      "cpu_time": 33355,
127      "bytes_per_second": 1199226,
128      "items_per_second": 299807
129    }
130  ]
131}
132```
133
134The CSV format outputs comma-separated values. The `context` is output on stderr
135and the CSV itself on stdout. Example CSV output looks like:
136
137```
138name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
139"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
140"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
141"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
142```
143
144<a name="output-files" />
145
146## Output Files
147
148Write benchmark results to a file with the `--benchmark_out=<filename>` option
149(or set `BENCHMARK_OUT`). Specify the output format with
150`--benchmark_out_format={json|console|csv}` (or set
151`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that the 'csv' reporter is
152deprecated and the saved `.csv` file
153[is not parsable](https://github.com/google/benchmark/issues/794) by csv
154parsers.
155
156Specifying `--benchmark_out` does not suppress the console output.
157
158<a name="running-benchmarks" />
159
160## Running Benchmarks
161
162Benchmarks are executed by running the produced binaries. Benchmarks binaries,
163by default, accept options that may be specified either through their command
164line interface or by setting environment variables before execution. For every
165`--option_flag=<value>` CLI switch, a corresponding environment variable
166`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
167 prevails). A complete list of CLI options is available running benchmarks
168 with the `--help` switch.
169
170<a name="running-a-subset-of-benchmarks" />
171
172## Running a Subset of Benchmarks
173
174The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
175environment variable) can be used to only run the benchmarks that match
176the specified `<regex>`. For example:
177
178```bash
179$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
180Run on (1 X 2300 MHz CPU )
1812016-06-25 19:34:24
182Benchmark              Time           CPU Iterations
183----------------------------------------------------
184BM_memcpy/32          11 ns         11 ns   79545455
185BM_memcpy/32k       2181 ns       2185 ns     324074
186BM_memcpy/32          12 ns         12 ns   54687500
187BM_memcpy/32k       1834 ns       1837 ns     357143
188```
189
190## Disabling Benchmarks
191
192It is possible to temporarily disable benchmarks by renaming the benchmark
193function to have the prefix "DISABLED_". This will cause the benchmark to
194be skipped at runtime.
195
196<a name="result-comparison" />
197
198## Result comparison
199
200It is possible to compare the benchmarking results.
201See [Additional Tooling Documentation](tools.md)
202
203<a name="extra-context" />
204
205## Extra Context
206
207Sometimes it's useful to add extra context to the content printed before the
208results. By default this section includes information about the CPU on which
209the benchmarks are running. If you do want to add more context, you can use
210the `benchmark_context` command line flag:
211
212```bash
213$ ./run_benchmarks --benchmark_context=pwd=`pwd`
214Run on (1 x 2300 MHz CPU)
215pwd: /home/user/benchmark/
216Benchmark              Time           CPU Iterations
217----------------------------------------------------
218BM_memcpy/32          11 ns         11 ns   79545455
219BM_memcpy/32k       2181 ns       2185 ns     324074
220```
221
222You can get the same effect with the API:
223
224```c++
225  benchmark::AddCustomContext("foo", "bar");
226```
227
228Note that attempts to add a second value with the same key will fail with an
229error message.
230
231<a name="runtime-and-reporting-considerations" />
232
233## Runtime and Reporting Considerations
234
235When the benchmark binary is executed, each benchmark function is run serially.
236The number of iterations to run is determined dynamically by running the
237benchmark a few times and measuring the time taken and ensuring that the
238ultimate result will be statistically stable. As such, faster benchmark
239functions will be run for more iterations than slower benchmark functions, and
240the number of iterations is thus reported.
241
242In all cases, the number of iterations for which the benchmark is run is
243governed by the amount of time the benchmark takes. Concretely, the number of
244iterations is at least one, not more than 1e9, until CPU time is greater than
245the minimum time, or the wallclock time is 5x minimum time. The minimum time is
246set per benchmark by calling `MinTime` on the registered benchmark object.
247
248Furthermore warming up a benchmark might be necessary in order to get
249stable results because of e.g caching effects of the code under benchmark.
250Warming up means running the benchmark a given amount of time, before
251results are actually taken into account. The amount of time for which
252the warmup should be run can be set per benchmark by calling
253`MinWarmUpTime` on the registered benchmark object or for all benchmarks
254using the `--benchmark_min_warmup_time` command-line option. Note that
255`MinWarmUpTime` will overwrite the value of `--benchmark_min_warmup_time`
256for the single benchmark. How many iterations the warmup run of each
257benchmark takes is determined the same way as described in the paragraph
258above. Per default the warmup phase is set to 0 seconds and is therefore
259disabled.
260
261Average timings are then reported over the iterations run. If multiple
262repetitions are requested using the `--benchmark_repetitions` command-line
263option, or at registration time, the benchmark function will be run several
264times and statistical results across these repetitions will also be reported.
265
266As well as the per-benchmark entries, a preamble in the report will include
267information about the machine on which the benchmarks are run.
268
269<a name="setup-teardown" />
270
271## Setup/Teardown
272
273Global setup/teardown specific to each benchmark can be done by
274passing a callback to Setup/Teardown:
275
276The setup/teardown callbacks will be invoked once for each benchmark. If the
277benchmark is multi-threaded (will run in k threads), they will be invoked
278exactly once before each run with k threads.
279
280If the benchmark uses different size groups of threads, the above will be true
281for each size group.
282
283Eg.,
284
285```c++
286static void DoSetup(const benchmark::State& state) {
287}
288
289static void DoTeardown(const benchmark::State& state) {
290}
291
292static void BM_func(benchmark::State& state) {...}
293
294BENCHMARK(BM_func)->Arg(1)->Arg(3)->Threads(16)->Threads(32)->Setup(DoSetup)->Teardown(DoTeardown);
295
296```
297
298In this example, `DoSetup` and `DoTearDown` will be invoked 4 times each,
299specifically, once for each of this family:
300 - BM_func_Arg_1_Threads_16, BM_func_Arg_1_Threads_32
301 - BM_func_Arg_3_Threads_16, BM_func_Arg_3_Threads_32
302
303<a name="passing-arguments" />
304
305## Passing Arguments
306
307Sometimes a family of benchmarks can be implemented with just one routine that
308takes an extra argument to specify which one of the family of benchmarks to
309run. For example, the following code defines a family of benchmarks for
310measuring the speed of `memcpy()` calls of different lengths:
311
312```c++
313static void BM_memcpy(benchmark::State& state) {
314  char* src = new char[state.range(0)];
315  char* dst = new char[state.range(0)];
316  memset(src, 'x', state.range(0));
317  for (auto _ : state)
318    memcpy(dst, src, state.range(0));
319  state.SetBytesProcessed(int64_t(state.iterations()) *
320                          int64_t(state.range(0)));
321  delete[] src;
322  delete[] dst;
323}
324BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(4<<10)->Arg(8<<10);
325```
326
327The preceding code is quite repetitive, and can be replaced with the following
328short-hand. The following invocation will pick a few appropriate arguments in
329the specified range and will generate a benchmark for each such argument.
330
331```c++
332BENCHMARK(BM_memcpy)->Range(8, 8<<10);
333```
334
335By default the arguments in the range are generated in multiples of eight and
336the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
337range multiplier is changed to multiples of two.
338
339```c++
340BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
341```
342
343Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
344
345The preceding code shows a method of defining a sparse range.  The following
346example shows a method of defining a dense range. It is then used to benchmark
347the performance of `std::vector` initialization for uniformly increasing sizes.
348
349```c++
350static void BM_DenseRange(benchmark::State& state) {
351  for(auto _ : state) {
352    std::vector<int> v(state.range(0), state.range(0));
353    auto data = v.data();
354    benchmark::DoNotOptimize(data);
355    benchmark::ClobberMemory();
356  }
357}
358BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
359```
360
361Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
362
363You might have a benchmark that depends on two or more inputs. For example, the
364following code defines a family of benchmarks for measuring the speed of set
365insertion.
366
367```c++
368static void BM_SetInsert(benchmark::State& state) {
369  std::set<int> data;
370  for (auto _ : state) {
371    state.PauseTiming();
372    data = ConstructRandomSet(state.range(0));
373    state.ResumeTiming();
374    for (int j = 0; j < state.range(1); ++j)
375      data.insert(RandomNumber());
376  }
377}
378BENCHMARK(BM_SetInsert)
379    ->Args({1<<10, 128})
380    ->Args({2<<10, 128})
381    ->Args({4<<10, 128})
382    ->Args({8<<10, 128})
383    ->Args({1<<10, 512})
384    ->Args({2<<10, 512})
385    ->Args({4<<10, 512})
386    ->Args({8<<10, 512});
387```
388
389The preceding code is quite repetitive, and can be replaced with the following
390short-hand. The following macro will pick a few appropriate arguments in the
391product of the two specified ranges and will generate a benchmark for each such
392pair.
393
394<!-- {% raw %} -->
395```c++
396BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
397```
398<!-- {% endraw %} -->
399
400Some benchmarks may require specific argument values that cannot be expressed
401with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
402benchmark input for each combination in the product of the supplied vectors.
403
404<!-- {% raw %} -->
405```c++
406BENCHMARK(BM_SetInsert)
407    ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
408// would generate the same benchmark arguments as
409BENCHMARK(BM_SetInsert)
410    ->Args({1<<10, 20})
411    ->Args({3<<10, 20})
412    ->Args({8<<10, 20})
413    ->Args({3<<10, 40})
414    ->Args({8<<10, 40})
415    ->Args({1<<10, 40})
416    ->Args({1<<10, 60})
417    ->Args({3<<10, 60})
418    ->Args({8<<10, 60})
419    ->Args({1<<10, 80})
420    ->Args({3<<10, 80})
421    ->Args({8<<10, 80});
422```
423<!-- {% endraw %} -->
424
425For the most common scenarios, helper methods for creating a list of
426integers for a given sparse or dense range are provided.
427
428```c++
429BENCHMARK(BM_SetInsert)
430    ->ArgsProduct({
431      benchmark::CreateRange(8, 128, /*multi=*/2),
432      benchmark::CreateDenseRange(1, 4, /*step=*/1)
433    })
434// would generate the same benchmark arguments as
435BENCHMARK(BM_SetInsert)
436    ->ArgsProduct({
437      {8, 16, 32, 64, 128},
438      {1, 2, 3, 4}
439    });
440```
441
442For more complex patterns of inputs, passing a custom function to `Apply` allows
443programmatic specification of an arbitrary set of arguments on which to run the
444benchmark. The following example enumerates a dense range on one parameter,
445and a sparse range on the second.
446
447```c++
448static void CustomArguments(benchmark::internal::Benchmark* b) {
449  for (int i = 0; i <= 10; ++i)
450    for (int j = 32; j <= 1024*1024; j *= 8)
451      b->Args({i, j});
452}
453BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
454```
455
456### Passing Arbitrary Arguments to a Benchmark
457
458In C++11 it is possible to define a benchmark that takes an arbitrary number
459of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
460macro creates a benchmark that invokes `func`  with the `benchmark::State` as
461the first argument followed by the specified `args...`.
462The `test_case_name` is appended to the name of the benchmark and
463should describe the values passed.
464
465```c++
466template <class ...Args>
467void BM_takes_args(benchmark::State& state, Args&&... args) {
468  auto args_tuple = std::make_tuple(std::move(args)...);
469  for (auto _ : state) {
470    std::cout << std::get<0>(args_tuple) << ": " << std::get<1>(args_tuple)
471              << '\n';
472    [...]
473  }
474}
475// Registers a benchmark named "BM_takes_args/int_string_test" that passes
476// the specified values to `args`.
477BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
478
479// Registers the same benchmark "BM_takes_args/int_test" that passes
480// the specified values to `args`.
481BENCHMARK_CAPTURE(BM_takes_args, int_test, 42, 43);
482```
483
484Note that elements of `...args` may refer to global variables. Users should
485avoid modifying global state inside of a benchmark.
486
487<a name="asymptotic-complexity" />
488
489## Calculating Asymptotic Complexity (Big O)
490
491Asymptotic complexity might be calculated for a family of benchmarks. The
492following code will calculate the coefficient for the high-order term in the
493running time and the normalized root-mean square error of string comparison.
494
495```c++
496static void BM_StringCompare(benchmark::State& state) {
497  std::string s1(state.range(0), '-');
498  std::string s2(state.range(0), '-');
499  for (auto _ : state) {
500    auto comparison_result = s1.compare(s2);
501    benchmark::DoNotOptimize(comparison_result);
502  }
503  state.SetComplexityN(state.range(0));
504}
505BENCHMARK(BM_StringCompare)
506    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
507```
508
509As shown in the following invocation, asymptotic complexity might also be
510calculated automatically.
511
512```c++
513BENCHMARK(BM_StringCompare)
514    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
515```
516
517The following code will specify asymptotic complexity with a lambda function,
518that might be used to customize high-order term calculation.
519
520```c++
521BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
522    ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
523```
524
525<a name="custom-benchmark-name" />
526
527## Custom Benchmark Name
528
529You can change the benchmark's name as follows:
530
531```c++
532BENCHMARK(BM_memcpy)->Name("memcpy")->RangeMultiplier(2)->Range(8, 8<<10);
533```
534
535The invocation will execute the benchmark as before using `BM_memcpy` but changes
536the prefix in the report to `memcpy`.
537
538<a name="templated-benchmarks" />
539
540## Templated Benchmarks
541
542This example produces and consumes messages of size `sizeof(v)` `range_x`
543times. It also outputs throughput in the absence of multiprogramming.
544
545```c++
546template <class Q> void BM_Sequential(benchmark::State& state) {
547  Q q;
548  typename Q::value_type v;
549  for (auto _ : state) {
550    for (int i = state.range(0); i--; )
551      q.push(v);
552    for (int e = state.range(0); e--; )
553      q.Wait(&v);
554  }
555  // actually messages, not bytes:
556  state.SetBytesProcessed(
557      static_cast<int64_t>(state.iterations())*state.range(0));
558}
559// C++03
560BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
561
562// C++11 or newer, you can use the BENCHMARK macro with template parameters:
563BENCHMARK(BM_Sequential<WaitQueue<int>>)->Range(1<<0, 1<<10);
564
565```
566
567Three macros are provided for adding benchmark templates.
568
569```c++
570#ifdef BENCHMARK_HAS_CXX11
571#define BENCHMARK(func<...>) // Takes any number of parameters.
572#else // C++ < C++11
573#define BENCHMARK_TEMPLATE(func, arg1)
574#endif
575#define BENCHMARK_TEMPLATE1(func, arg1)
576#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
577```
578
579<a name="templated-benchmarks-with-arguments" />
580
581## Templated Benchmarks that take arguments
582
583Sometimes there is a need to template benchmarks, and provide arguments to them.
584
585```c++
586template <class Q> void BM_Sequential_With_Step(benchmark::State& state, int step) {
587  Q q;
588  typename Q::value_type v;
589  for (auto _ : state) {
590    for (int i = state.range(0); i-=step; )
591      q.push(v);
592    for (int e = state.range(0); e-=step; )
593      q.Wait(&v);
594  }
595  // actually messages, not bytes:
596  state.SetBytesProcessed(
597      static_cast<int64_t>(state.iterations())*state.range(0));
598}
599
600BENCHMARK_TEMPLATE1_CAPTURE(BM_Sequential, WaitQueue<int>, Step1, 1)->Range(1<<0, 1<<10);
601```
602
603<a name="fixtures" />
604
605## Fixtures
606
607Fixture tests are created by first defining a type that derives from
608`::benchmark::Fixture` and then creating/registering the tests using the
609following macros:
610
611* `BENCHMARK_F(ClassName, Method)`
612* `BENCHMARK_DEFINE_F(ClassName, Method)`
613* `BENCHMARK_REGISTER_F(ClassName, Method)`
614
615For Example:
616
617```c++
618class MyFixture : public benchmark::Fixture {
619public:
620  void SetUp(::benchmark::State& state) {
621  }
622
623  void TearDown(::benchmark::State& state) {
624  }
625};
626
627// Defines and registers `FooTest` using the class `MyFixture`.
628BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
629   for (auto _ : st) {
630     ...
631  }
632}
633
634// Only defines `BarTest` using the class `MyFixture`.
635BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
636   for (auto _ : st) {
637     ...
638  }
639}
640// `BarTest` is NOT registered.
641BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
642// `BarTest` is now registered.
643```
644
645### Templated Fixtures
646
647Also you can create templated fixture by using the following macros:
648
649* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
650* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
651
652For example:
653
654```c++
655template<typename T>
656class MyFixture : public benchmark::Fixture {};
657
658// Defines and registers `IntTest` using the class template `MyFixture<int>`.
659BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
660   for (auto _ : st) {
661     ...
662  }
663}
664
665// Only defines `DoubleTest` using the class template `MyFixture<double>`.
666BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
667   for (auto _ : st) {
668     ...
669  }
670}
671// `DoubleTest` is NOT registered.
672BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
673// `DoubleTest` is now registered.
674```
675
676<a name="custom-counters" />
677
678## Custom Counters
679
680You can add your own counters with user-defined names. The example below
681will add columns "Foo", "Bar" and "Baz" in its output:
682
683```c++
684static void UserCountersExample1(benchmark::State& state) {
685  double numFoos = 0, numBars = 0, numBazs = 0;
686  for (auto _ : state) {
687    // ... count Foo,Bar,Baz events
688  }
689  state.counters["Foo"] = numFoos;
690  state.counters["Bar"] = numBars;
691  state.counters["Baz"] = numBazs;
692}
693```
694
695The `state.counters` object is a `std::map` with `std::string` keys
696and `Counter` values. The latter is a `double`-like class, via an implicit
697conversion to `double&`. Thus you can use all of the standard arithmetic
698assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
699
700In multithreaded benchmarks, each counter is set on the calling thread only.
701When the benchmark finishes, the counters from each thread will be summed;
702the resulting sum is the value which will be shown for the benchmark.
703
704The `Counter` constructor accepts three parameters: the value as a `double`
705; a bit flag which allows you to show counters as rates, and/or as per-thread
706iteration, and/or as per-thread averages, and/or iteration invariants,
707and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
708is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
709(`benchmark::Counter::OneK::kIs1024`)?
710
711```c++
712  // sets a simple counter
713  state.counters["Foo"] = numFoos;
714
715  // Set the counter as a rate. It will be presented divided
716  // by the duration of the benchmark.
717  // Meaning: per one second, how many 'foo's are processed?
718  state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
719
720  // Set the counter as a rate. It will be presented divided
721  // by the duration of the benchmark, and the result inverted.
722  // Meaning: how many seconds it takes to process one 'foo'?
723  state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
724
725  // Set the counter as a thread-average quantity. It will
726  // be presented divided by the number of threads.
727  state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
728
729  // There's also a combined flag:
730  state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
731
732  // This says that we process with the rate of state.range(0) bytes every iteration:
733  state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
734```
735
736When you're compiling in C++11 mode or later you can use `insert()` with
737`std::initializer_list`:
738
739<!-- {% raw %} -->
740```c++
741  // With C++11, this can be done:
742  state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
743  // ... instead of:
744  state.counters["Foo"] = numFoos;
745  state.counters["Bar"] = numBars;
746  state.counters["Baz"] = numBazs;
747```
748<!-- {% endraw %} -->
749
750### Counter Reporting
751
752When using the console reporter, by default, user counters are printed at
753the end after the table, the same way as ``bytes_processed`` and
754``items_processed``. This is best for cases in which there are few counters,
755or where there are only a couple of lines per benchmark. Here's an example of
756the default output:
757
758```
759------------------------------------------------------------------------------
760Benchmark                        Time           CPU Iterations UserCounters...
761------------------------------------------------------------------------------
762BM_UserCounter/threads:8      2248 ns      10277 ns      68808 Bar=16 Bat=40 Baz=24 Foo=8
763BM_UserCounter/threads:1      9797 ns       9788 ns      71523 Bar=2 Bat=5 Baz=3 Foo=1024m
764BM_UserCounter/threads:2      4924 ns       9842 ns      71036 Bar=4 Bat=10 Baz=6 Foo=2
765BM_UserCounter/threads:4      2589 ns      10284 ns      68012 Bar=8 Bat=20 Baz=12 Foo=4
766BM_UserCounter/threads:8      2212 ns      10287 ns      68040 Bar=16 Bat=40 Baz=24 Foo=8
767BM_UserCounter/threads:16     1782 ns      10278 ns      68144 Bar=32 Bat=80 Baz=48 Foo=16
768BM_UserCounter/threads:32     1291 ns      10296 ns      68256 Bar=64 Bat=160 Baz=96 Foo=32
769BM_UserCounter/threads:4      2615 ns      10307 ns      68040 Bar=8 Bat=20 Baz=12 Foo=4
770BM_Factorial                    26 ns         26 ns   26608979 40320
771BM_Factorial/real_time          26 ns         26 ns   26587936 40320
772BM_CalculatePiRange/1           16 ns         16 ns   45704255 0
773BM_CalculatePiRange/8           73 ns         73 ns    9520927 3.28374
774BM_CalculatePiRange/64         609 ns        609 ns    1140647 3.15746
775BM_CalculatePiRange/512       4900 ns       4901 ns     142696 3.14355
776```
777
778If this doesn't suit you, you can print each counter as a table column by
779passing the flag `--benchmark_counters_tabular=true` to the benchmark
780application. This is best for cases in which there are a lot of counters, or
781a lot of lines per individual benchmark. Note that this will trigger a
782reprinting of the table header any time the counter set changes between
783individual benchmarks. Here's an example of corresponding output when
784`--benchmark_counters_tabular=true` is passed:
785
786```
787---------------------------------------------------------------------------------------
788Benchmark                        Time           CPU Iterations    Bar   Bat   Baz   Foo
789---------------------------------------------------------------------------------------
790BM_UserCounter/threads:8      2198 ns       9953 ns      70688     16    40    24     8
791BM_UserCounter/threads:1      9504 ns       9504 ns      73787      2     5     3     1
792BM_UserCounter/threads:2      4775 ns       9550 ns      72606      4    10     6     2
793BM_UserCounter/threads:4      2508 ns       9951 ns      70332      8    20    12     4
794BM_UserCounter/threads:8      2055 ns       9933 ns      70344     16    40    24     8
795BM_UserCounter/threads:16     1610 ns       9946 ns      70720     32    80    48    16
796BM_UserCounter/threads:32     1192 ns       9948 ns      70496     64   160    96    32
797BM_UserCounter/threads:4      2506 ns       9949 ns      70332      8    20    12     4
798--------------------------------------------------------------
799Benchmark                        Time           CPU Iterations
800--------------------------------------------------------------
801BM_Factorial                    26 ns         26 ns   26392245 40320
802BM_Factorial/real_time          26 ns         26 ns   26494107 40320
803BM_CalculatePiRange/1           15 ns         15 ns   45571597 0
804BM_CalculatePiRange/8           74 ns         74 ns    9450212 3.28374
805BM_CalculatePiRange/64         595 ns        595 ns    1173901 3.15746
806BM_CalculatePiRange/512       4752 ns       4752 ns     147380 3.14355
807BM_CalculatePiRange/4k       37970 ns      37972 ns      18453 3.14184
808BM_CalculatePiRange/32k     303733 ns     303744 ns       2305 3.14162
809BM_CalculatePiRange/256k   2434095 ns    2434186 ns        288 3.1416
810BM_CalculatePiRange/1024k  9721140 ns    9721413 ns         71 3.14159
811BM_CalculatePi/threads:8      2255 ns       9943 ns      70936
812```
813
814Note above the additional header printed when the benchmark changes from
815``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
816not have the same counter set as ``BM_UserCounter``.
817
818<a name="multithreaded-benchmarks"/>
819
820## Multithreaded Benchmarks
821
822In a multithreaded test (benchmark invoked by multiple threads simultaneously),
823it is guaranteed that none of the threads will start until all have reached
824the start of the benchmark loop, and all will have finished before any thread
825exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
826API) As such, any global setup or teardown can be wrapped in a check against the thread
827index:
828
829```c++
830static void BM_MultiThreaded(benchmark::State& state) {
831  if (state.thread_index() == 0) {
832    // Setup code here.
833  }
834  for (auto _ : state) {
835    // Run the test as normal.
836  }
837  if (state.thread_index() == 0) {
838    // Teardown code here.
839  }
840}
841BENCHMARK(BM_MultiThreaded)->Threads(2);
842```
843
844To run the benchmark across a range of thread counts, instead of `Threads`, use
845`ThreadRange`. This takes two parameters (`min_threads` and `max_threads`) and
846runs the benchmark once for values in the inclusive range. For example:
847
848```c++
849BENCHMARK(BM_MultiThreaded)->ThreadRange(1, 8);
850```
851
852will run `BM_MultiThreaded` with thread counts 1, 2, 4, and 8.
853
854If the benchmarked code itself uses threads and you want to compare it to
855single-threaded code, you may want to use real-time ("wallclock") measurements
856for latency comparisons:
857
858```c++
859BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
860```
861
862Without `UseRealTime`, CPU time is used by default.
863
864<a name="cpu-timers" />
865
866## CPU Timers
867
868By default, the CPU timer only measures the time spent by the main thread.
869If the benchmark itself uses threads internally, this measurement may not
870be what you are looking for. Instead, there is a way to measure the total
871CPU usage of the process, by all the threads.
872
873```c++
874void callee(int i);
875
876static void MyMain(int size) {
877#pragma omp parallel for
878  for(int i = 0; i < size; i++)
879    callee(i);
880}
881
882static void BM_OpenMP(benchmark::State& state) {
883  for (auto _ : state)
884    MyMain(state.range(0));
885}
886
887// Measure the time spent by the main thread, use it to decide for how long to
888// run the benchmark loop. Depending on the internal implementation detail may
889// measure to anywhere from near-zero (the overhead spent before/after work
890// handoff to worker thread[s]) to the whole single-thread time.
891BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
892
893// Measure the user-visible time, the wall clock (literally, the time that
894// has passed on the clock on the wall), use it to decide for how long to
895// run the benchmark loop. This will always be meaningful, and will match the
896// time spent by the main thread in single-threaded case, in general decreasing
897// with the number of internal threads doing the work.
898BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
899
900// Measure the total CPU consumption, use it to decide for how long to
901// run the benchmark loop. This will always measure to no less than the
902// time spent by the main thread in single-threaded case.
903BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
904
905// A mixture of the last two. Measure the total CPU consumption, but use the
906// wall clock to decide for how long to run the benchmark loop.
907BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
908```
909
910### Controlling Timers
911
912Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
913is measured. But sometimes, it is necessary to do some work inside of
914that loop, every iteration, but without counting that time to the benchmark time.
915That is possible, although it is not recommended, since it has high overhead.
916
917<!-- {% raw %} -->
918```c++
919static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
920  std::set<int> data;
921  for (auto _ : state) {
922    state.PauseTiming(); // Stop timers. They will not count until they are resumed.
923    data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
924    state.ResumeTiming(); // And resume timers. They are now counting again.
925    // The rest will be measured.
926    for (int j = 0; j < state.range(1); ++j)
927      data.insert(RandomNumber());
928  }
929}
930BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
931```
932<!-- {% endraw %} -->
933
934<a name="manual-timing" />
935
936## Manual Timing
937
938For benchmarking something for which neither CPU time nor real-time are
939correct or accurate enough, completely manual timing is supported using
940the `UseManualTime` function.
941
942When `UseManualTime` is used, the benchmarked code must call
943`SetIterationTime` once per iteration of the benchmark loop to
944report the manually measured time.
945
946An example use case for this is benchmarking GPU execution (e.g. OpenCL
947or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
948be accurately measured using CPU time or real-time. Instead, they can be
949measured accurately using a dedicated API, and these measurement results
950can be reported back with `SetIterationTime`.
951
952```c++
953static void BM_ManualTiming(benchmark::State& state) {
954  int microseconds = state.range(0);
955  std::chrono::duration<double, std::micro> sleep_duration {
956    static_cast<double>(microseconds)
957  };
958
959  for (auto _ : state) {
960    auto start = std::chrono::high_resolution_clock::now();
961    // Simulate some useful workload with a sleep
962    std::this_thread::sleep_for(sleep_duration);
963    auto end = std::chrono::high_resolution_clock::now();
964
965    auto elapsed_seconds =
966      std::chrono::duration_cast<std::chrono::duration<double>>(
967        end - start);
968
969    state.SetIterationTime(elapsed_seconds.count());
970  }
971}
972BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
973```
974
975<a name="setting-the-time-unit" />
976
977## Setting the Time Unit
978
979If a benchmark runs a few milliseconds it may be hard to visually compare the
980measured times, since the output data is given in nanoseconds per default. In
981order to manually set the time unit, you can specify it manually:
982
983```c++
984BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
985```
986
987Additionally the default time unit can be set globally with the
988`--benchmark_time_unit={ns|us|ms|s}` command line argument. The argument only
989affects benchmarks where the time unit is not set explicitly.
990
991<a name="preventing-optimization" />
992
993## Preventing Optimization
994
995To prevent a value or expression from being optimized away by the compiler
996the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
997functions can be used.
998
999```c++
1000static void BM_test(benchmark::State& state) {
1001  for (auto _ : state) {
1002      int x = 0;
1003      for (int i=0; i < 64; ++i) {
1004        benchmark::DoNotOptimize(x += i);
1005      }
1006  }
1007}
1008```
1009
1010`DoNotOptimize(<expr>)` forces the  *result* of `<expr>` to be stored in either
1011memory or a register. For GNU based compilers it acts as read/write barrier
1012for global memory. More specifically it forces the compiler to flush pending
1013writes to memory and reload any other values as necessary.
1014
1015Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
1016in any way. `<expr>` may even be removed entirely when the result is already
1017known. For example:
1018
1019```c++
1020  // Example 1: `<expr>` is removed entirely.
1021  int foo(int x) { return x + 42; }
1022  while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
1023
1024  // Example 2: Result of '<expr>' is only reused.
1025  int bar(int) __attribute__((const));
1026  while (...) DoNotOptimize(bar(0)); // Optimized to:
1027  // int __result__ = bar(0);
1028  // while (...) DoNotOptimize(__result__);
1029```
1030
1031The second tool for preventing optimizations is `ClobberMemory()`. In essence
1032`ClobberMemory()` forces the compiler to perform all pending writes to global
1033memory. Memory managed by block scope objects must be "escaped" using
1034`DoNotOptimize(...)` before it can be clobbered. In the below example
1035`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
1036away.
1037
1038```c++
1039static void BM_vector_push_back(benchmark::State& state) {
1040  for (auto _ : state) {
1041    std::vector<int> v;
1042    v.reserve(1);
1043    auto data = v.data();           // Allow v.data() to be clobbered. Pass as non-const
1044    benchmark::DoNotOptimize(data); // lvalue to avoid undesired compiler optimizations
1045    v.push_back(42);
1046    benchmark::ClobberMemory(); // Force 42 to be written to memory.
1047  }
1048}
1049```
1050
1051Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
1052
1053<a name="reporting-statistics" />
1054
1055## Statistics: Reporting the Mean, Median and Standard Deviation / Coefficient of variation of Repeated Benchmarks
1056
1057By default each benchmark is run once and that single result is reported.
1058However benchmarks are often noisy and a single result may not be representative
1059of the overall behavior. For this reason it's possible to repeatedly rerun the
1060benchmark.
1061
1062The number of runs of each benchmark is specified globally by the
1063`--benchmark_repetitions` flag or on a per benchmark basis by calling
1064`Repetitions` on the registered benchmark object. When a benchmark is run more
1065than once the mean, median, standard deviation and coefficient of variation
1066of the runs will be reported.
1067
1068Additionally the `--benchmark_report_aggregates_only={true|false}`,
1069`--benchmark_display_aggregates_only={true|false}` flags or
1070`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
1071used to change how repeated tests are reported. By default the result of each
1072repeated run is reported. When `report aggregates only` option is `true`,
1073only the aggregates (i.e. mean, median, standard deviation and coefficient
1074of variation, maybe complexity measurements if they were requested) of the runs
1075is reported, to both the reporters - standard output (console), and the file.
1076However when only the `display aggregates only` option is `true`,
1077only the aggregates are displayed in the standard output, while the file
1078output still contains everything.
1079Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
1080registered benchmark object overrides the value of the appropriate flag for that
1081benchmark.
1082
1083<a name="custom-statistics" />
1084
1085## Custom Statistics
1086
1087While having these aggregates is nice, this may not be enough for everyone.
1088For example you may want to know what the largest observation is, e.g. because
1089you have some real-time constraints. This is easy. The following code will
1090specify a custom statistic to be calculated, defined by a lambda function.
1091
1092```c++
1093void BM_spin_empty(benchmark::State& state) {
1094  for (auto _ : state) {
1095    for (int x = 0; x < state.range(0); ++x) {
1096      benchmark::DoNotOptimize(x);
1097    }
1098  }
1099}
1100
1101BENCHMARK(BM_spin_empty)
1102  ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1103    return *(std::max_element(std::begin(v), std::end(v)));
1104  })
1105  ->Arg(512);
1106```
1107
1108While usually the statistics produce values in time units,
1109you can also produce percentages:
1110
1111```c++
1112void BM_spin_empty(benchmark::State& state) {
1113  for (auto _ : state) {
1114    for (int x = 0; x < state.range(0); ++x) {
1115      benchmark::DoNotOptimize(x);
1116    }
1117  }
1118}
1119
1120BENCHMARK(BM_spin_empty)
1121  ->ComputeStatistics("ratio", [](const std::vector<double>& v) -> double {
1122    return std::begin(v) / std::end(v);
1123  }, benchmark::StatisticUnit::kPercentage)
1124  ->Arg(512);
1125```
1126
1127<a name="memory-usage" />
1128
1129## Memory Usage
1130
1131It's often useful to also track memory usage for benchmarks, alongside CPU
1132performance. For this reason, benchmark offers the `RegisterMemoryManager`
1133method that allows a custom `MemoryManager` to be injected.
1134
1135If set, the `MemoryManager::Start` and `MemoryManager::Stop` methods will be
1136called at the start and end of benchmark runs to allow user code to fill out
1137a report on the number of allocations, bytes used, etc.
1138
1139This data will then be reported alongside other performance data, currently
1140only when using JSON output.
1141
1142<a name="profiling" />
1143
1144## Profiling
1145
1146It's often useful to also profile benchmarks in particular ways, in addition to
1147CPU performance. For this reason, benchmark offers the `RegisterProfilerManager`
1148method that allows a custom `ProfilerManager` to be injected.
1149
1150If set, the `ProfilerManager::AfterSetupStart` and
1151`ProfilerManager::BeforeTeardownStop` methods will be called at the start and
1152end of a separate benchmark run to allow user code to collect and report
1153user-provided profile metrics.
1154
1155Output collected from this profiling run must be reported separately.
1156
1157<a name="using-register-benchmark" />
1158
1159## Using RegisterBenchmark(name, fn, args...)
1160
1161The `RegisterBenchmark(name, func, args...)` function provides an alternative
1162way to create and register benchmarks.
1163`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1164pointer to a new benchmark with the specified `name` that invokes
1165`func(st, args...)` where `st` is a `benchmark::State` object.
1166
1167Unlike the `BENCHMARK` registration macros, which can only be used at the global
1168scope, the `RegisterBenchmark` can be called anywhere. This allows for
1169benchmark tests to be registered programmatically.
1170
1171Additionally `RegisterBenchmark` allows any callable object to be registered
1172as a benchmark. Including capturing lambdas and function objects.
1173
1174For Example:
1175```c++
1176auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1177
1178int main(int argc, char** argv) {
1179  for (auto& test_input : { /* ... */ })
1180      benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1181  benchmark::Initialize(&argc, argv);
1182  benchmark::RunSpecifiedBenchmarks();
1183  benchmark::Shutdown();
1184}
1185```
1186
1187<a name="exiting-with-an-error" />
1188
1189## Exiting with an Error
1190
1191When errors caused by external influences, such as file I/O and network
1192communication, occur within a benchmark the
1193`State::SkipWithError(const std::string& msg)` function can be used to skip that run
1194of benchmark and report the error. Note that only future iterations of the
1195`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1196Users must explicitly exit the loop, otherwise all iterations will be performed.
1197Users may explicitly return to exit the benchmark immediately.
1198
1199The `SkipWithError(...)` function may be used at any point within the benchmark,
1200including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1201has been used, it is not required to reach the benchmark loop and one may return
1202from the benchmark function early.
1203
1204For example:
1205
1206```c++
1207static void BM_test(benchmark::State& state) {
1208  auto resource = GetResource();
1209  if (!resource.good()) {
1210    state.SkipWithError("Resource is not good!");
1211    // KeepRunning() loop will not be entered.
1212  }
1213  while (state.KeepRunning()) {
1214    auto data = resource.read_data();
1215    if (!resource.good()) {
1216      state.SkipWithError("Failed to read data!");
1217      break; // Needed to skip the rest of the iteration.
1218    }
1219    do_stuff(data);
1220  }
1221}
1222
1223static void BM_test_ranged_fo(benchmark::State & state) {
1224  auto resource = GetResource();
1225  if (!resource.good()) {
1226    state.SkipWithError("Resource is not good!");
1227    return; // Early return is allowed when SkipWithError() has been used.
1228  }
1229  for (auto _ : state) {
1230    auto data = resource.read_data();
1231    if (!resource.good()) {
1232      state.SkipWithError("Failed to read data!");
1233      break; // REQUIRED to prevent all further iterations.
1234    }
1235    do_stuff(data);
1236  }
1237}
1238```
1239<a name="a-faster-keep-running-loop" />
1240
1241## A Faster KeepRunning Loop
1242
1243In C++11 mode, a ranged-based for loop should be used in preference to
1244the `KeepRunning` loop for running the benchmarks. For example:
1245
1246```c++
1247static void BM_Fast(benchmark::State &state) {
1248  for (auto _ : state) {
1249    FastOperation();
1250  }
1251}
1252BENCHMARK(BM_Fast);
1253```
1254
1255The reason the ranged-for loop is faster than using `KeepRunning`, is
1256because `KeepRunning` requires a memory load and store of the iteration count
1257ever iteration, whereas the ranged-for variant is able to keep the iteration count
1258in a register.
1259
1260For example, an empty inner loop of using the ranged-based for method looks like:
1261
1262```asm
1263# Loop Init
1264  mov rbx, qword ptr [r14 + 104]
1265  call benchmark::State::StartKeepRunning()
1266  test rbx, rbx
1267  je .LoopEnd
1268.LoopHeader: # =>This Inner Loop Header: Depth=1
1269  add rbx, -1
1270  jne .LoopHeader
1271.LoopEnd:
1272```
1273
1274Compared to an empty `KeepRunning` loop, which looks like:
1275
1276```asm
1277.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1278  cmp byte ptr [rbx], 1
1279  jne .LoopInit
1280.LoopBody: # =>This Inner Loop Header: Depth=1
1281  mov rax, qword ptr [rbx + 8]
1282  lea rcx, [rax + 1]
1283  mov qword ptr [rbx + 8], rcx
1284  cmp rax, qword ptr [rbx + 104]
1285  jb .LoopHeader
1286  jmp .LoopEnd
1287.LoopInit:
1288  mov rdi, rbx
1289  call benchmark::State::StartKeepRunning()
1290  jmp .LoopBody
1291.LoopEnd:
1292```
1293
1294Unless C++03 compatibility is required, the ranged-for variant of writing
1295the benchmark loop should be preferred.
1296
1297<a name="disabling-cpu-frequency-scaling" />
1298
1299## Disabling CPU Frequency Scaling
1300
1301If you see this error:
1302
1303```
1304***WARNING*** CPU scaling is enabled, the benchmark real time measurements may
1305be noisy and will incur extra overhead.
1306```
1307
1308you might want to disable the CPU frequency scaling while running the
1309benchmark, as well as consider other ways to stabilize the performance of
1310your system while benchmarking.
1311
1312See [Reducing Variance](reducing_variance.md) for more information.
1313