xref: /aosp_15_r20/external/golang-protobuf/proto/encode.go (revision 1c12ee1efe575feb122dbf939ff15148a3b3e8f2)
1// Copyright 2019 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package proto
6
7import (
8	"google.golang.org/protobuf/encoding/protowire"
9	"google.golang.org/protobuf/internal/encoding/messageset"
10	"google.golang.org/protobuf/internal/order"
11	"google.golang.org/protobuf/internal/pragma"
12	"google.golang.org/protobuf/reflect/protoreflect"
13	"google.golang.org/protobuf/runtime/protoiface"
14)
15
16// MarshalOptions configures the marshaler.
17//
18// Example usage:
19//
20//	b, err := MarshalOptions{Deterministic: true}.Marshal(m)
21type MarshalOptions struct {
22	pragma.NoUnkeyedLiterals
23
24	// AllowPartial allows messages that have missing required fields to marshal
25	// without returning an error. If AllowPartial is false (the default),
26	// Marshal will return an error if there are any missing required fields.
27	AllowPartial bool
28
29	// Deterministic controls whether the same message will always be
30	// serialized to the same bytes within the same binary.
31	//
32	// Setting this option guarantees that repeated serialization of
33	// the same message will return the same bytes, and that different
34	// processes of the same binary (which may be executing on different
35	// machines) will serialize equal messages to the same bytes.
36	// It has no effect on the resulting size of the encoded message compared
37	// to a non-deterministic marshal.
38	//
39	// Note that the deterministic serialization is NOT canonical across
40	// languages. It is not guaranteed to remain stable over time. It is
41	// unstable across different builds with schema changes due to unknown
42	// fields. Users who need canonical serialization (e.g., persistent
43	// storage in a canonical form, fingerprinting, etc.) must define
44	// their own canonicalization specification and implement their own
45	// serializer rather than relying on this API.
46	//
47	// If deterministic serialization is requested, map entries will be
48	// sorted by keys in lexographical order. This is an implementation
49	// detail and subject to change.
50	Deterministic bool
51
52	// UseCachedSize indicates that the result of a previous Size call
53	// may be reused.
54	//
55	// Setting this option asserts that:
56	//
57	// 1. Size has previously been called on this message with identical
58	// options (except for UseCachedSize itself).
59	//
60	// 2. The message and all its submessages have not changed in any
61	// way since the Size call.
62	//
63	// If either of these invariants is violated,
64	// the results are undefined and may include panics or corrupted output.
65	//
66	// Implementations MAY take this option into account to provide
67	// better performance, but there is no guarantee that they will do so.
68	// There is absolutely no guarantee that Size followed by Marshal with
69	// UseCachedSize set will perform equivalently to Marshal alone.
70	UseCachedSize bool
71}
72
73// Marshal returns the wire-format encoding of m.
74func Marshal(m Message) ([]byte, error) {
75	// Treat nil message interface as an empty message; nothing to output.
76	if m == nil {
77		return nil, nil
78	}
79
80	out, err := MarshalOptions{}.marshal(nil, m.ProtoReflect())
81	if len(out.Buf) == 0 && err == nil {
82		out.Buf = emptyBytesForMessage(m)
83	}
84	return out.Buf, err
85}
86
87// Marshal returns the wire-format encoding of m.
88func (o MarshalOptions) Marshal(m Message) ([]byte, error) {
89	// Treat nil message interface as an empty message; nothing to output.
90	if m == nil {
91		return nil, nil
92	}
93
94	out, err := o.marshal(nil, m.ProtoReflect())
95	if len(out.Buf) == 0 && err == nil {
96		out.Buf = emptyBytesForMessage(m)
97	}
98	return out.Buf, err
99}
100
101// emptyBytesForMessage returns a nil buffer if and only if m is invalid,
102// otherwise it returns a non-nil empty buffer.
103//
104// This is to assist the edge-case where user-code does the following:
105//
106//	m1.OptionalBytes, _ = proto.Marshal(m2)
107//
108// where they expect the proto2 "optional_bytes" field to be populated
109// if any only if m2 is a valid message.
110func emptyBytesForMessage(m Message) []byte {
111	if m == nil || !m.ProtoReflect().IsValid() {
112		return nil
113	}
114	return emptyBuf[:]
115}
116
117// MarshalAppend appends the wire-format encoding of m to b,
118// returning the result.
119func (o MarshalOptions) MarshalAppend(b []byte, m Message) ([]byte, error) {
120	// Treat nil message interface as an empty message; nothing to append.
121	if m == nil {
122		return b, nil
123	}
124
125	out, err := o.marshal(b, m.ProtoReflect())
126	return out.Buf, err
127}
128
129// MarshalState returns the wire-format encoding of a message.
130//
131// This method permits fine-grained control over the marshaler.
132// Most users should use Marshal instead.
133func (o MarshalOptions) MarshalState(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
134	return o.marshal(in.Buf, in.Message)
135}
136
137// marshal is a centralized function that all marshal operations go through.
138// For profiling purposes, avoid changing the name of this function or
139// introducing other code paths for marshal that do not go through this.
140func (o MarshalOptions) marshal(b []byte, m protoreflect.Message) (out protoiface.MarshalOutput, err error) {
141	allowPartial := o.AllowPartial
142	o.AllowPartial = true
143	if methods := protoMethods(m); methods != nil && methods.Marshal != nil &&
144		!(o.Deterministic && methods.Flags&protoiface.SupportMarshalDeterministic == 0) {
145		in := protoiface.MarshalInput{
146			Message: m,
147			Buf:     b,
148		}
149		if o.Deterministic {
150			in.Flags |= protoiface.MarshalDeterministic
151		}
152		if o.UseCachedSize {
153			in.Flags |= protoiface.MarshalUseCachedSize
154		}
155		if methods.Size != nil {
156			sout := methods.Size(protoiface.SizeInput{
157				Message: m,
158				Flags:   in.Flags,
159			})
160			if cap(b) < len(b)+sout.Size {
161				in.Buf = make([]byte, len(b), growcap(cap(b), len(b)+sout.Size))
162				copy(in.Buf, b)
163			}
164			in.Flags |= protoiface.MarshalUseCachedSize
165		}
166		out, err = methods.Marshal(in)
167	} else {
168		out.Buf, err = o.marshalMessageSlow(b, m)
169	}
170	if err != nil {
171		return out, err
172	}
173	if allowPartial {
174		return out, nil
175	}
176	return out, checkInitialized(m)
177}
178
179func (o MarshalOptions) marshalMessage(b []byte, m protoreflect.Message) ([]byte, error) {
180	out, err := o.marshal(b, m)
181	return out.Buf, err
182}
183
184// growcap scales up the capacity of a slice.
185//
186// Given a slice with a current capacity of oldcap and a desired
187// capacity of wantcap, growcap returns a new capacity >= wantcap.
188//
189// The algorithm is mostly identical to the one used by append as of Go 1.14.
190func growcap(oldcap, wantcap int) (newcap int) {
191	if wantcap > oldcap*2 {
192		newcap = wantcap
193	} else if oldcap < 1024 {
194		// The Go 1.14 runtime takes this case when len(s) < 1024,
195		// not when cap(s) < 1024. The difference doesn't seem
196		// significant here.
197		newcap = oldcap * 2
198	} else {
199		newcap = oldcap
200		for 0 < newcap && newcap < wantcap {
201			newcap += newcap / 4
202		}
203		if newcap <= 0 {
204			newcap = wantcap
205		}
206	}
207	return newcap
208}
209
210func (o MarshalOptions) marshalMessageSlow(b []byte, m protoreflect.Message) ([]byte, error) {
211	if messageset.IsMessageSet(m.Descriptor()) {
212		return o.marshalMessageSet(b, m)
213	}
214	fieldOrder := order.AnyFieldOrder
215	if o.Deterministic {
216		// TODO: This should use a more natural ordering like NumberFieldOrder,
217		// but doing so breaks golden tests that make invalid assumption about
218		// output stability of this implementation.
219		fieldOrder = order.LegacyFieldOrder
220	}
221	var err error
222	order.RangeFields(m, fieldOrder, func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
223		b, err = o.marshalField(b, fd, v)
224		return err == nil
225	})
226	if err != nil {
227		return b, err
228	}
229	b = append(b, m.GetUnknown()...)
230	return b, nil
231}
232
233func (o MarshalOptions) marshalField(b []byte, fd protoreflect.FieldDescriptor, value protoreflect.Value) ([]byte, error) {
234	switch {
235	case fd.IsList():
236		return o.marshalList(b, fd, value.List())
237	case fd.IsMap():
238		return o.marshalMap(b, fd, value.Map())
239	default:
240		b = protowire.AppendTag(b, fd.Number(), wireTypes[fd.Kind()])
241		return o.marshalSingular(b, fd, value)
242	}
243}
244
245func (o MarshalOptions) marshalList(b []byte, fd protoreflect.FieldDescriptor, list protoreflect.List) ([]byte, error) {
246	if fd.IsPacked() && list.Len() > 0 {
247		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
248		b, pos := appendSpeculativeLength(b)
249		for i, llen := 0, list.Len(); i < llen; i++ {
250			var err error
251			b, err = o.marshalSingular(b, fd, list.Get(i))
252			if err != nil {
253				return b, err
254			}
255		}
256		b = finishSpeculativeLength(b, pos)
257		return b, nil
258	}
259
260	kind := fd.Kind()
261	for i, llen := 0, list.Len(); i < llen; i++ {
262		var err error
263		b = protowire.AppendTag(b, fd.Number(), wireTypes[kind])
264		b, err = o.marshalSingular(b, fd, list.Get(i))
265		if err != nil {
266			return b, err
267		}
268	}
269	return b, nil
270}
271
272func (o MarshalOptions) marshalMap(b []byte, fd protoreflect.FieldDescriptor, mapv protoreflect.Map) ([]byte, error) {
273	keyf := fd.MapKey()
274	valf := fd.MapValue()
275	keyOrder := order.AnyKeyOrder
276	if o.Deterministic {
277		keyOrder = order.GenericKeyOrder
278	}
279	var err error
280	order.RangeEntries(mapv, keyOrder, func(key protoreflect.MapKey, value protoreflect.Value) bool {
281		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
282		var pos int
283		b, pos = appendSpeculativeLength(b)
284
285		b, err = o.marshalField(b, keyf, key.Value())
286		if err != nil {
287			return false
288		}
289		b, err = o.marshalField(b, valf, value)
290		if err != nil {
291			return false
292		}
293		b = finishSpeculativeLength(b, pos)
294		return true
295	})
296	return b, err
297}
298
299// When encoding length-prefixed fields, we speculatively set aside some number of bytes
300// for the length, encode the data, and then encode the length (shifting the data if necessary
301// to make room).
302const speculativeLength = 1
303
304func appendSpeculativeLength(b []byte) ([]byte, int) {
305	pos := len(b)
306	b = append(b, "\x00\x00\x00\x00"[:speculativeLength]...)
307	return b, pos
308}
309
310func finishSpeculativeLength(b []byte, pos int) []byte {
311	mlen := len(b) - pos - speculativeLength
312	msiz := protowire.SizeVarint(uint64(mlen))
313	if msiz != speculativeLength {
314		for i := 0; i < msiz-speculativeLength; i++ {
315			b = append(b, 0)
316		}
317		copy(b[pos+msiz:], b[pos+speculativeLength:])
318		b = b[:pos+msiz+mlen]
319	}
320	protowire.AppendVarint(b[:pos], uint64(mlen))
321	return b
322}
323