xref: /aosp_15_r20/external/fmtlib/test/gtest/gmock/gmock.h (revision 5c90c05cd622c0a81b57953a4d343e0e489f2e08)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This is the main header file a user should include.
34 
35 // GOOGLETEST_CM0002 DO NOT DELETE
36 
37 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
38 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
39 
40 // This file implements the following syntax:
41 //
42 //   ON_CALL(mock_object, Method(...))
43 //     .With(...) ?
44 //     .WillByDefault(...);
45 //
46 // where With() is optional and WillByDefault() must appear exactly
47 // once.
48 //
49 //   EXPECT_CALL(mock_object, Method(...))
50 //     .With(...) ?
51 //     .Times(...) ?
52 //     .InSequence(...) *
53 //     .WillOnce(...) *
54 //     .WillRepeatedly(...) ?
55 //     .RetiresOnSaturation() ? ;
56 //
57 // where all clauses are optional and WillOnce() can be repeated.
58 
59 // Copyright 2007, Google Inc.
60 // All rights reserved.
61 //
62 // Redistribution and use in source and binary forms, with or without
63 // modification, are permitted provided that the following conditions are
64 // met:
65 //
66 //     * Redistributions of source code must retain the above copyright
67 // notice, this list of conditions and the following disclaimer.
68 //     * Redistributions in binary form must reproduce the above
69 // copyright notice, this list of conditions and the following disclaimer
70 // in the documentation and/or other materials provided with the
71 // distribution.
72 //     * Neither the name of Google Inc. nor the names of its
73 // contributors may be used to endorse or promote products derived from
74 // this software without specific prior written permission.
75 //
76 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
77 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
78 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
79 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
80 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
81 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
82 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
83 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
84 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
85 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
86 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
87 
88 
89 // Google Mock - a framework for writing C++ mock classes.
90 //
91 // The ACTION* family of macros can be used in a namespace scope to
92 // define custom actions easily.  The syntax:
93 //
94 //   ACTION(name) { statements; }
95 //
96 // will define an action with the given name that executes the
97 // statements.  The value returned by the statements will be used as
98 // the return value of the action.  Inside the statements, you can
99 // refer to the K-th (0-based) argument of the mock function by
100 // 'argK', and refer to its type by 'argK_type'.  For example:
101 //
102 //   ACTION(IncrementArg1) {
103 //     arg1_type temp = arg1;
104 //     return ++(*temp);
105 //   }
106 //
107 // allows you to write
108 //
109 //   ...WillOnce(IncrementArg1());
110 //
111 // You can also refer to the entire argument tuple and its type by
112 // 'args' and 'args_type', and refer to the mock function type and its
113 // return type by 'function_type' and 'return_type'.
114 //
115 // Note that you don't need to specify the types of the mock function
116 // arguments.  However rest assured that your code is still type-safe:
117 // you'll get a compiler error if *arg1 doesn't support the ++
118 // operator, or if the type of ++(*arg1) isn't compatible with the
119 // mock function's return type, for example.
120 //
121 // Sometimes you'll want to parameterize the action.   For that you can use
122 // another macro:
123 //
124 //   ACTION_P(name, param_name) { statements; }
125 //
126 // For example:
127 //
128 //   ACTION_P(Add, n) { return arg0 + n; }
129 //
130 // will allow you to write:
131 //
132 //   ...WillOnce(Add(5));
133 //
134 // Note that you don't need to provide the type of the parameter
135 // either.  If you need to reference the type of a parameter named
136 // 'foo', you can write 'foo_type'.  For example, in the body of
137 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
138 // of 'n'.
139 //
140 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
141 // multi-parameter actions.
142 //
143 // For the purpose of typing, you can view
144 //
145 //   ACTION_Pk(Foo, p1, ..., pk) { ... }
146 //
147 // as shorthand for
148 //
149 //   template <typename p1_type, ..., typename pk_type>
150 //   FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
151 //
152 // In particular, you can provide the template type arguments
153 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
154 // although usually you can rely on the compiler to infer the types
155 // for you automatically.  You can assign the result of expression
156 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
157 // pk_type>.  This can be useful when composing actions.
158 //
159 // You can also overload actions with different numbers of parameters:
160 //
161 //   ACTION_P(Plus, a) { ... }
162 //   ACTION_P2(Plus, a, b) { ... }
163 //
164 // While it's tempting to always use the ACTION* macros when defining
165 // a new action, you should also consider implementing ActionInterface
166 // or using MakePolymorphicAction() instead, especially if you need to
167 // use the action a lot.  While these approaches require more work,
168 // they give you more control on the types of the mock function
169 // arguments and the action parameters, which in general leads to
170 // better compiler error messages that pay off in the long run.  They
171 // also allow overloading actions based on parameter types (as opposed
172 // to just based on the number of parameters).
173 //
174 // CAVEAT:
175 //
176 // ACTION*() can only be used in a namespace scope as templates cannot be
177 // declared inside of a local class.
178 // Users can, however, define any local functors (e.g. a lambda) that
179 // can be used as actions.
180 //
181 // MORE INFORMATION:
182 //
183 // To learn more about using these macros, please search for 'ACTION' on
184 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
185 
186 // GOOGLETEST_CM0002 DO NOT DELETE
187 
188 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
189 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
190 
191 #ifndef _WIN32_WCE
192 # include <errno.h>
193 #endif
194 
195 #include <algorithm>
196 #include <functional>
197 #include <memory>
198 #include <string>
199 #include <tuple>
200 #include <type_traits>
201 #include <utility>
202 
203 // Copyright 2007, Google Inc.
204 // All rights reserved.
205 //
206 // Redistribution and use in source and binary forms, with or without
207 // modification, are permitted provided that the following conditions are
208 // met:
209 //
210 //     * Redistributions of source code must retain the above copyright
211 // notice, this list of conditions and the following disclaimer.
212 //     * Redistributions in binary form must reproduce the above
213 // copyright notice, this list of conditions and the following disclaimer
214 // in the documentation and/or other materials provided with the
215 // distribution.
216 //     * Neither the name of Google Inc. nor the names of its
217 // contributors may be used to endorse or promote products derived from
218 // this software without specific prior written permission.
219 //
220 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
221 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
222 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
223 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
224 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
225 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
226 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
227 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
228 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
229 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
230 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
231 
232 
233 // Google Mock - a framework for writing C++ mock classes.
234 //
235 // This file defines some utilities useful for implementing Google
236 // Mock.  They are subject to change without notice, so please DO NOT
237 // USE THEM IN USER CODE.
238 
239 // GOOGLETEST_CM0002 DO NOT DELETE
240 
241 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
242 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
243 
244 #include <stdio.h>
245 #include <ostream>  // NOLINT
246 #include <string>
247 #include <type_traits>
248 // Copyright 2008, Google Inc.
249 // All rights reserved.
250 //
251 // Redistribution and use in source and binary forms, with or without
252 // modification, are permitted provided that the following conditions are
253 // met:
254 //
255 //     * Redistributions of source code must retain the above copyright
256 // notice, this list of conditions and the following disclaimer.
257 //     * Redistributions in binary form must reproduce the above
258 // copyright notice, this list of conditions and the following disclaimer
259 // in the documentation and/or other materials provided with the
260 // distribution.
261 //     * Neither the name of Google Inc. nor the names of its
262 // contributors may be used to endorse or promote products derived from
263 // this software without specific prior written permission.
264 //
265 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
266 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
267 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
268 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
269 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
270 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
271 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
272 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
273 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
274 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
275 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
276 
277 //
278 // Low-level types and utilities for porting Google Mock to various
279 // platforms.  All macros ending with _ and symbols defined in an
280 // internal namespace are subject to change without notice.  Code
281 // outside Google Mock MUST NOT USE THEM DIRECTLY.  Macros that don't
282 // end with _ are part of Google Mock's public API and can be used by
283 // code outside Google Mock.
284 
285 // GOOGLETEST_CM0002 DO NOT DELETE
286 
287 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
288 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
289 
290 #include <assert.h>
291 #include <stdlib.h>
292 #include <cstdint>
293 #include <iostream>
294 
295 // Most of the utilities needed for porting Google Mock are also
296 // required for Google Test and are defined in gtest-port.h.
297 //
298 // Note to maintainers: to reduce code duplication, prefer adding
299 // portability utilities to Google Test's gtest-port.h instead of
300 // here, as Google Mock depends on Google Test.  Only add a utility
301 // here if it's truly specific to Google Mock.
302 
303 #include "gtest/gtest.h"
304 // Copyright 2015, Google Inc.
305 // All rights reserved.
306 //
307 // Redistribution and use in source and binary forms, with or without
308 // modification, are permitted provided that the following conditions are
309 // met:
310 //
311 //     * Redistributions of source code must retain the above copyright
312 // notice, this list of conditions and the following disclaimer.
313 //     * Redistributions in binary form must reproduce the above
314 // copyright notice, this list of conditions and the following disclaimer
315 // in the documentation and/or other materials provided with the
316 // distribution.
317 //     * Neither the name of Google Inc. nor the names of its
318 // contributors may be used to endorse or promote products derived from
319 // this software without specific prior written permission.
320 //
321 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
322 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
323 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
324 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
325 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
326 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
327 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
328 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
329 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
330 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
331 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
332 //
333 // Injection point for custom user configurations. See README for details
334 //
335 // ** Custom implementation starts here **
336 
337 // GOOGLETEST_CM0002 DO NOT DELETE
338 
339 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
340 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
341 
342 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
343 
344 // For MS Visual C++, check the compiler version. At least VS 2015 is
345 // required to compile Google Mock.
346 #if defined(_MSC_VER) && _MSC_VER < 1900
347 # error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
348 #endif
349 
350 // Macro for referencing flags.  This is public as we want the user to
351 // use this syntax to reference Google Mock flags.
352 #define GMOCK_FLAG(name) FLAGS_gmock_##name
353 
354 #if !defined(GMOCK_DECLARE_bool_)
355 
356 // Macros for declaring flags.
357 # define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
358 # define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
359 # define GMOCK_DECLARE_string_(name) \
360     extern GTEST_API_ ::std::string GMOCK_FLAG(name)
361 
362 // Macros for defining flags.
363 # define GMOCK_DEFINE_bool_(name, default_val, doc) \
364     GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
365 # define GMOCK_DEFINE_int32_(name, default_val, doc) \
366     GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
367 # define GMOCK_DEFINE_string_(name, default_val, doc) \
368     GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
369 
370 #endif  // !defined(GMOCK_DECLARE_bool_)
371 
372 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
373 
374 namespace testing {
375 
376 template <typename>
377 class Matcher;
378 
379 namespace internal {
380 
381 // Silence MSVC C4100 (unreferenced formal parameter) and
382 // C4805('==': unsafe mix of type 'const int' and type 'const bool')
383 #ifdef _MSC_VER
384 # pragma warning(push)
385 # pragma warning(disable:4100)
386 # pragma warning(disable:4805)
387 #endif
388 
389 // Joins a vector of strings as if they are fields of a tuple; returns
390 // the joined string.
391 GTEST_API_ std::string JoinAsTuple(const Strings& fields);
392 
393 // Converts an identifier name to a space-separated list of lower-case
394 // words.  Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
395 // treated as one word.  For example, both "FooBar123" and
396 // "foo_bar_123" are converted to "foo bar 123".
397 GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
398 
399 // GetRawPointer(p) returns the raw pointer underlying p when p is a
400 // smart pointer, or returns p itself when p is already a raw pointer.
401 // The following default implementation is for the smart pointer case.
402 template <typename Pointer>
GetRawPointer(const Pointer & p)403 inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
404   return p.get();
405 }
406 // This overloaded version is for the raw pointer case.
407 template <typename Element>
GetRawPointer(Element * p)408 inline Element* GetRawPointer(Element* p) { return p; }
409 
410 // MSVC treats wchar_t as a native type usually, but treats it as the
411 // same as unsigned short when the compiler option /Zc:wchar_t- is
412 // specified.  It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
413 // is a native type.
414 #if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
415 // wchar_t is a typedef.
416 #else
417 # define GMOCK_WCHAR_T_IS_NATIVE_ 1
418 #endif
419 
420 // In what follows, we use the term "kind" to indicate whether a type
421 // is bool, an integer type (excluding bool), a floating-point type,
422 // or none of them.  This categorization is useful for determining
423 // when a matcher argument type can be safely converted to another
424 // type in the implementation of SafeMatcherCast.
425 enum TypeKind {
426   kBool, kInteger, kFloatingPoint, kOther
427 };
428 
429 // KindOf<T>::value is the kind of type T.
430 template <typename T> struct KindOf {
431   enum { value = kOther };  // The default kind.
432 };
433 
434 // This macro declares that the kind of 'type' is 'kind'.
435 #define GMOCK_DECLARE_KIND_(type, kind) \
436   template <> struct KindOf<type> { enum { value = kind }; }
437 
438 GMOCK_DECLARE_KIND_(bool, kBool);
439 
440 // All standard integer types.
441 GMOCK_DECLARE_KIND_(char, kInteger);
442 GMOCK_DECLARE_KIND_(signed char, kInteger);
443 GMOCK_DECLARE_KIND_(unsigned char, kInteger);
444 GMOCK_DECLARE_KIND_(short, kInteger);  // NOLINT
445 GMOCK_DECLARE_KIND_(unsigned short, kInteger);  // NOLINT
446 GMOCK_DECLARE_KIND_(int, kInteger);
447 GMOCK_DECLARE_KIND_(unsigned int, kInteger);
448 GMOCK_DECLARE_KIND_(long, kInteger);  // NOLINT
449 GMOCK_DECLARE_KIND_(unsigned long, kInteger);  // NOLINT
450 GMOCK_DECLARE_KIND_(long long, kInteger);  // NOLINT
451 GMOCK_DECLARE_KIND_(unsigned long long, kInteger);  // NOLINT
452 
453 #if GMOCK_WCHAR_T_IS_NATIVE_
454 GMOCK_DECLARE_KIND_(wchar_t, kInteger);
455 #endif
456 
457 // All standard floating-point types.
458 GMOCK_DECLARE_KIND_(float, kFloatingPoint);
459 GMOCK_DECLARE_KIND_(double, kFloatingPoint);
460 GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
461 
462 #undef GMOCK_DECLARE_KIND_
463 
464 // Evaluates to the kind of 'type'.
465 #define GMOCK_KIND_OF_(type) \
466   static_cast< ::testing::internal::TypeKind>( \
467       ::testing::internal::KindOf<type>::value)
468 
469 // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
470 // is true if and only if arithmetic type From can be losslessly converted to
471 // arithmetic type To.
472 //
473 // It's the user's responsibility to ensure that both From and To are
474 // raw (i.e. has no CV modifier, is not a pointer, and is not a
475 // reference) built-in arithmetic types, kFromKind is the kind of
476 // From, and kToKind is the kind of To; the value is
477 // implementation-defined when the above pre-condition is violated.
478 template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
479 using LosslessArithmeticConvertibleImpl = std::integral_constant<
480     bool,
481     // clang-format off
482       // Converting from bool is always lossless
483       (kFromKind == kBool) ? true
484       // Converting between any other type kinds will be lossy if the type
485       // kinds are not the same.
486     : (kFromKind != kToKind) ? false
487     : (kFromKind == kInteger &&
488        // Converting between integers of different widths is allowed so long
489        // as the conversion does not go from signed to unsigned.
490       (((sizeof(From) < sizeof(To)) &&
491         !(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
492        // Converting between integers of the same width only requires the
493        // two types to have the same signedness.
494        ((sizeof(From) == sizeof(To)) &&
495         (std::is_signed<From>::value == std::is_signed<To>::value)))
496        ) ? true
497       // Floating point conversions are lossless if and only if `To` is at least
498       // as wide as `From`.
499     : (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
500     : false
501     // clang-format on
502     >;
503 
504 // LosslessArithmeticConvertible<From, To>::value is true if and only if
505 // arithmetic type From can be losslessly converted to arithmetic type To.
506 //
507 // It's the user's responsibility to ensure that both From and To are
508 // raw (i.e. has no CV modifier, is not a pointer, and is not a
509 // reference) built-in arithmetic types; the value is
510 // implementation-defined when the above pre-condition is violated.
511 template <typename From, typename To>
512 using LosslessArithmeticConvertible =
513     LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
514                                       GMOCK_KIND_OF_(To), To>;
515 
516 // This interface knows how to report a Google Mock failure (either
517 // non-fatal or fatal).
518 class FailureReporterInterface {
519  public:
520   // The type of a failure (either non-fatal or fatal).
521   enum FailureType {
522     kNonfatal, kFatal
523   };
524 
~FailureReporterInterface()525   virtual ~FailureReporterInterface() {}
526 
527   // Reports a failure that occurred at the given source file location.
528   virtual void ReportFailure(FailureType type, const char* file, int line,
529                              const std::string& message) = 0;
530 };
531 
532 // Returns the failure reporter used by Google Mock.
533 GTEST_API_ FailureReporterInterface* GetFailureReporter();
534 
535 // Asserts that condition is true; aborts the process with the given
536 // message if condition is false.  We cannot use LOG(FATAL) or CHECK()
537 // as Google Mock might be used to mock the log sink itself.  We
538 // inline this function to prevent it from showing up in the stack
539 // trace.
Assert(bool condition,const char * file,int line,const std::string & msg)540 inline void Assert(bool condition, const char* file, int line,
541                    const std::string& msg) {
542   if (!condition) {
543     GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
544                                         file, line, msg);
545   }
546 }
Assert(bool condition,const char * file,int line)547 inline void Assert(bool condition, const char* file, int line) {
548   Assert(condition, file, line, "Assertion failed.");
549 }
550 
551 // Verifies that condition is true; generates a non-fatal failure if
552 // condition is false.
Expect(bool condition,const char * file,int line,const std::string & msg)553 inline void Expect(bool condition, const char* file, int line,
554                    const std::string& msg) {
555   if (!condition) {
556     GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
557                                         file, line, msg);
558   }
559 }
Expect(bool condition,const char * file,int line)560 inline void Expect(bool condition, const char* file, int line) {
561   Expect(condition, file, line, "Expectation failed.");
562 }
563 
564 // Severity level of a log.
565 enum LogSeverity {
566   kInfo = 0,
567   kWarning = 1
568 };
569 
570 // Valid values for the --gmock_verbose flag.
571 
572 // All logs (informational and warnings) are printed.
573 const char kInfoVerbosity[] = "info";
574 // Only warnings are printed.
575 const char kWarningVerbosity[] = "warning";
576 // No logs are printed.
577 const char kErrorVerbosity[] = "error";
578 
579 // Returns true if and only if a log with the given severity is visible
580 // according to the --gmock_verbose flag.
581 GTEST_API_ bool LogIsVisible(LogSeverity severity);
582 
583 // Prints the given message to stdout if and only if 'severity' >= the level
584 // specified by the --gmock_verbose flag.  If stack_frames_to_skip >=
585 // 0, also prints the stack trace excluding the top
586 // stack_frames_to_skip frames.  In opt mode, any positive
587 // stack_frames_to_skip is treated as 0, since we don't know which
588 // function calls will be inlined by the compiler and need to be
589 // conservative.
590 GTEST_API_ void Log(LogSeverity severity, const std::string& message,
591                     int stack_frames_to_skip);
592 
593 // A marker class that is used to resolve parameterless expectations to the
594 // correct overload. This must not be instantiable, to prevent client code from
595 // accidentally resolving to the overload; for example:
596 //
597 //    ON_CALL(mock, Method({}, nullptr))...
598 //
599 class WithoutMatchers {
600  private:
WithoutMatchers()601   WithoutMatchers() {}
602   friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
603 };
604 
605 // Internal use only: access the singleton instance of WithoutMatchers.
606 GTEST_API_ WithoutMatchers GetWithoutMatchers();
607 
608 // Disable MSVC warnings for infinite recursion, since in this case the
609 // the recursion is unreachable.
610 #ifdef _MSC_VER
611 # pragma warning(push)
612 # pragma warning(disable:4717)
613 #endif
614 
615 // Invalid<T>() is usable as an expression of type T, but will terminate
616 // the program with an assertion failure if actually run.  This is useful
617 // when a value of type T is needed for compilation, but the statement
618 // will not really be executed (or we don't care if the statement
619 // crashes).
620 template <typename T>
Invalid()621 inline T Invalid() {
622   Assert(false, "", -1, "Internal error: attempt to return invalid value");
623   // This statement is unreachable, and would never terminate even if it
624   // could be reached. It is provided only to placate compiler warnings
625   // about missing return statements.
626   return Invalid<T>();
627 }
628 
629 #ifdef _MSC_VER
630 # pragma warning(pop)
631 #endif
632 
633 // Given a raw type (i.e. having no top-level reference or const
634 // modifier) RawContainer that's either an STL-style container or a
635 // native array, class StlContainerView<RawContainer> has the
636 // following members:
637 //
638 //   - type is a type that provides an STL-style container view to
639 //     (i.e. implements the STL container concept for) RawContainer;
640 //   - const_reference is a type that provides a reference to a const
641 //     RawContainer;
642 //   - ConstReference(raw_container) returns a const reference to an STL-style
643 //     container view to raw_container, which is a RawContainer.
644 //   - Copy(raw_container) returns an STL-style container view of a
645 //     copy of raw_container, which is a RawContainer.
646 //
647 // This generic version is used when RawContainer itself is already an
648 // STL-style container.
649 template <class RawContainer>
650 class StlContainerView {
651  public:
652   typedef RawContainer type;
653   typedef const type& const_reference;
654 
ConstReference(const RawContainer & container)655   static const_reference ConstReference(const RawContainer& container) {
656     static_assert(!std::is_const<RawContainer>::value,
657                   "RawContainer type must not be const");
658     return container;
659   }
Copy(const RawContainer & container)660   static type Copy(const RawContainer& container) { return container; }
661 };
662 
663 // This specialization is used when RawContainer is a native array type.
664 template <typename Element, size_t N>
665 class StlContainerView<Element[N]> {
666  public:
667   typedef typename std::remove_const<Element>::type RawElement;
668   typedef internal::NativeArray<RawElement> type;
669   // NativeArray<T> can represent a native array either by value or by
670   // reference (selected by a constructor argument), so 'const type'
671   // can be used to reference a const native array.  We cannot
672   // 'typedef const type& const_reference' here, as that would mean
673   // ConstReference() has to return a reference to a local variable.
674   typedef const type const_reference;
675 
ConstReference(const Element (& array)[N])676   static const_reference ConstReference(const Element (&array)[N]) {
677     static_assert(std::is_same<Element, RawElement>::value,
678                   "Element type must not be const");
679     return type(array, N, RelationToSourceReference());
680   }
Copy(const Element (& array)[N])681   static type Copy(const Element (&array)[N]) {
682     return type(array, N, RelationToSourceCopy());
683   }
684 };
685 
686 // This specialization is used when RawContainer is a native array
687 // represented as a (pointer, size) tuple.
688 template <typename ElementPointer, typename Size>
689 class StlContainerView< ::std::tuple<ElementPointer, Size> > {
690  public:
691   typedef typename std::remove_const<
692       typename std::pointer_traits<ElementPointer>::element_type>::type
693       RawElement;
694   typedef internal::NativeArray<RawElement> type;
695   typedef const type const_reference;
696 
ConstReference(const::std::tuple<ElementPointer,Size> & array)697   static const_reference ConstReference(
698       const ::std::tuple<ElementPointer, Size>& array) {
699     return type(std::get<0>(array), std::get<1>(array),
700                 RelationToSourceReference());
701   }
Copy(const::std::tuple<ElementPointer,Size> & array)702   static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
703     return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
704   }
705 };
706 
707 // The following specialization prevents the user from instantiating
708 // StlContainer with a reference type.
709 template <typename T> class StlContainerView<T&>;
710 
711 // A type transform to remove constness from the first part of a pair.
712 // Pairs like that are used as the value_type of associative containers,
713 // and this transform produces a similar but assignable pair.
714 template <typename T>
715 struct RemoveConstFromKey {
716   typedef T type;
717 };
718 
719 // Partially specialized to remove constness from std::pair<const K, V>.
720 template <typename K, typename V>
721 struct RemoveConstFromKey<std::pair<const K, V> > {
722   typedef std::pair<K, V> type;
723 };
724 
725 // Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
726 // reduce code size.
727 GTEST_API_ void IllegalDoDefault(const char* file, int line);
728 
729 template <typename F, typename Tuple, size_t... Idx>
730 auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
731     std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
732   return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
733 }
734 
735 // Apply the function to a tuple of arguments.
736 template <typename F, typename Tuple>
737 auto Apply(F&& f, Tuple&& args) -> decltype(
738     ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
739               MakeIndexSequence<std::tuple_size<
740                   typename std::remove_reference<Tuple>::type>::value>())) {
741   return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
742                    MakeIndexSequence<std::tuple_size<
743                        typename std::remove_reference<Tuple>::type>::value>());
744 }
745 
746 // Template struct Function<F>, where F must be a function type, contains
747 // the following typedefs:
748 //
749 //   Result:               the function's return type.
750 //   Arg<N>:               the type of the N-th argument, where N starts with 0.
751 //   ArgumentTuple:        the tuple type consisting of all parameters of F.
752 //   ArgumentMatcherTuple: the tuple type consisting of Matchers for all
753 //                         parameters of F.
754 //   MakeResultVoid:       the function type obtained by substituting void
755 //                         for the return type of F.
756 //   MakeResultIgnoredValue:
757 //                         the function type obtained by substituting Something
758 //                         for the return type of F.
759 template <typename T>
760 struct Function;
761 
762 template <typename R, typename... Args>
763 struct Function<R(Args...)> {
764   using Result = R;
765   static constexpr size_t ArgumentCount = sizeof...(Args);
766   template <size_t I>
767   using Arg = ElemFromList<I, Args...>;
768   using ArgumentTuple = std::tuple<Args...>;
769   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
770   using MakeResultVoid = void(Args...);
771   using MakeResultIgnoredValue = IgnoredValue(Args...);
772 };
773 
774 template <typename R, typename... Args>
775 constexpr size_t Function<R(Args...)>::ArgumentCount;
776 
777 #ifdef _MSC_VER
778 # pragma warning(pop)
779 #endif
780 
781 }  // namespace internal
782 }  // namespace testing
783 
784 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
785 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
786 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
787 
788 // Expands and concatenates the arguments. Constructed macros reevaluate.
789 #define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
790 
791 // Expands and stringifies the only argument.
792 #define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
793 
794 // Returns empty. Given a variadic number of arguments.
795 #define GMOCK_PP_EMPTY(...)
796 
797 // Returns a comma. Given a variadic number of arguments.
798 #define GMOCK_PP_COMMA(...) ,
799 
800 // Returns the only argument.
801 #define GMOCK_PP_IDENTITY(_1) _1
802 
803 // Evaluates to the number of arguments after expansion.
804 //
805 //   #define PAIR x, y
806 //
807 //   GMOCK_PP_NARG() => 1
808 //   GMOCK_PP_NARG(x) => 1
809 //   GMOCK_PP_NARG(x, y) => 2
810 //   GMOCK_PP_NARG(PAIR) => 2
811 //
812 // Requires: the number of arguments after expansion is at most 15.
813 #define GMOCK_PP_NARG(...) \
814   GMOCK_PP_INTERNAL_16TH(  \
815       (__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
816 
817 // Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
818 // returns 0. Requires no more than 15 unprotected commas.
819 #define GMOCK_PP_HAS_COMMA(...) \
820   GMOCK_PP_INTERNAL_16TH(       \
821       (__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
822 
823 // Returns the first argument.
824 #define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
825 
826 // Returns the tail. A variadic list of all arguments minus the first. Requires
827 // at least one argument.
828 #define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
829 
830 // Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
831 #define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
832   GMOCK_PP_IDENTITY(                        \
833       GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
834 
835 // If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
836 // evaluates to `0`.
837 //
838 // Requires: * the number of arguments after expansion is at most 15.
839 //           * If the argument is a macro, it must be able to be called with one
840 //             argument.
841 //
842 // Implementation details:
843 //
844 // There is one case when it generates a compile error: if the argument is macro
845 // that cannot be called with one argument.
846 //
847 //   #define M(a, b)  // it doesn't matter what it expands to
848 //
849 //   // Expected: expands to `0`.
850 //   // Actual: compile error.
851 //   GMOCK_PP_IS_EMPTY(M)
852 //
853 // There are 4 cases tested:
854 //
855 // * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
856 // * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
857 // * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
858 //   Expected 0
859 // * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
860 //   parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
861 //
862 // We trigger detection on '0001', i.e. on empty.
863 #define GMOCK_PP_IS_EMPTY(...)                                               \
864   GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__),                \
865                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
866                              GMOCK_PP_HAS_COMMA(__VA_ARGS__()),              \
867                              GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
868 
869 // Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
870 #define GMOCK_PP_IF(_Cond, _Then, _Else) \
871   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
872 
873 // Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
874 //
875 // GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
876 // GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
877 //
878 #define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
879   GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
880 
881 // Evaluates to the number of arguments after expansion. Identifies 'empty' as
882 // 0.
883 //
884 //   #define PAIR x, y
885 //
886 //   GMOCK_PP_NARG0() => 0
887 //   GMOCK_PP_NARG0(x) => 1
888 //   GMOCK_PP_NARG0(x, y) => 2
889 //   GMOCK_PP_NARG0(PAIR) => 2
890 //
891 // Requires: * the number of arguments after expansion is at most 15.
892 //           * If the argument is a macro, it must be able to be called with one
893 //             argument.
894 #define GMOCK_PP_NARG0(...) \
895   GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
896 
897 // Expands to 1 if the first argument starts with something in parentheses,
898 // otherwise to 0.
899 #define GMOCK_PP_IS_BEGIN_PARENS(...)                              \
900   GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
901                              GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
902 
903 // Expands to 1 is there is only one argument and it is enclosed in parentheses.
904 #define GMOCK_PP_IS_ENCLOSED_PARENS(...)             \
905   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
906               GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
907 
908 // Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
909 #define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
910 
911 // Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
912 // eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
913 // Requires: * |_Macro| can be called with 3 arguments.
914 //           * |_Tuple| expansion has no more than 15 elements.
915 #define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple)                        \
916   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
917   (0, _Macro, _Data, _Tuple)
918 
919 // Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
920 // Empty if _K = 0.
921 // Requires: * |_Macro| can be called with 3 arguments.
922 //           * |_K| literal between 0 and 15
923 #define GMOCK_PP_REPEAT(_Macro, _Data, _N)           \
924   GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
925   (0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
926 
927 // Increments the argument, requires the argument to be between 0 and 15.
928 #define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
929 
930 // Returns comma if _i != 0. Requires _i to be between 0 and 15.
931 #define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
932 
933 // Internal details follow. Do not use any of these symbols outside of this
934 // file or we will break your code.
935 #define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
936 #define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
937 #define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
938 #define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
939 #define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4)                             \
940   GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
941                                              _1, _2, _3, _4))
942 #define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
943 #define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
944 #define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
945 
946 // Because of MSVC treating a token with a comma in it as a single token when
947 // passed to another macro, we need to force it to evaluate it as multiple
948 // tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
949 // define one per possible macro that relies on this behavior. Note "_Args" must
950 // be parenthesized.
951 #define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
952                                         _10, _11, _12, _13, _14, _15, _16,  \
953                                         ...)                                \
954   _16
955 #define GMOCK_PP_INTERNAL_16TH(_Args) \
956   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
957 #define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
958 #define GMOCK_PP_INTERNAL_HEAD(_Args) \
959   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
960 #define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
961 #define GMOCK_PP_INTERNAL_TAIL(_Args) \
962   GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
963 
964 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
965 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
966 #define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
967   0,
968 #define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
969 #define GMOCK_PP_INTERNAL_INC_0 1
970 #define GMOCK_PP_INTERNAL_INC_1 2
971 #define GMOCK_PP_INTERNAL_INC_2 3
972 #define GMOCK_PP_INTERNAL_INC_3 4
973 #define GMOCK_PP_INTERNAL_INC_4 5
974 #define GMOCK_PP_INTERNAL_INC_5 6
975 #define GMOCK_PP_INTERNAL_INC_6 7
976 #define GMOCK_PP_INTERNAL_INC_7 8
977 #define GMOCK_PP_INTERNAL_INC_8 9
978 #define GMOCK_PP_INTERNAL_INC_9 10
979 #define GMOCK_PP_INTERNAL_INC_10 11
980 #define GMOCK_PP_INTERNAL_INC_11 12
981 #define GMOCK_PP_INTERNAL_INC_12 13
982 #define GMOCK_PP_INTERNAL_INC_13 14
983 #define GMOCK_PP_INTERNAL_INC_14 15
984 #define GMOCK_PP_INTERNAL_INC_15 16
985 #define GMOCK_PP_INTERNAL_COMMA_IF_0
986 #define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
987 #define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
988 #define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
989 #define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
990 #define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
991 #define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
992 #define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
993 #define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
994 #define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
995 #define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
996 #define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
997 #define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
998 #define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
999 #define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
1000 #define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
1001 #define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
1002   _Macro(_i, _Data, _element)
1003 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
1004 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
1005   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
1006 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple)    \
1007   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1008   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data,    \
1009                                     (GMOCK_PP_TAIL _Tuple))
1010 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple)    \
1011   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1012   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data,    \
1013                                     (GMOCK_PP_TAIL _Tuple))
1014 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple)    \
1015   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1016   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data,    \
1017                                     (GMOCK_PP_TAIL _Tuple))
1018 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple)    \
1019   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1020   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data,    \
1021                                     (GMOCK_PP_TAIL _Tuple))
1022 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple)    \
1023   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1024   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data,    \
1025                                     (GMOCK_PP_TAIL _Tuple))
1026 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple)    \
1027   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1028   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data,    \
1029                                     (GMOCK_PP_TAIL _Tuple))
1030 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple)    \
1031   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1032   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data,    \
1033                                     (GMOCK_PP_TAIL _Tuple))
1034 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple)    \
1035   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1036   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data,    \
1037                                     (GMOCK_PP_TAIL _Tuple))
1038 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple)   \
1039   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1040   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data,    \
1041                                     (GMOCK_PP_TAIL _Tuple))
1042 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple)   \
1043   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1044   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data,   \
1045                                      (GMOCK_PP_TAIL _Tuple))
1046 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple)   \
1047   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1048   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data,   \
1049                                      (GMOCK_PP_TAIL _Tuple))
1050 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple)   \
1051   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1052   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data,   \
1053                                      (GMOCK_PP_TAIL _Tuple))
1054 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple)   \
1055   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1056   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data,   \
1057                                      (GMOCK_PP_TAIL _Tuple))
1058 #define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple)   \
1059   GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
1060   GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data,   \
1061                                      (GMOCK_PP_TAIL _Tuple))
1062 
1063 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
1064 
1065 #ifdef _MSC_VER
1066 # pragma warning(push)
1067 # pragma warning(disable:4100)
1068 #endif
1069 
1070 namespace testing {
1071 
1072 // To implement an action Foo, define:
1073 //   1. a class FooAction that implements the ActionInterface interface, and
1074 //   2. a factory function that creates an Action object from a
1075 //      const FooAction*.
1076 //
1077 // The two-level delegation design follows that of Matcher, providing
1078 // consistency for extension developers.  It also eases ownership
1079 // management as Action objects can now be copied like plain values.
1080 
1081 namespace internal {
1082 
1083 // BuiltInDefaultValueGetter<T, true>::Get() returns a
1084 // default-constructed T value.  BuiltInDefaultValueGetter<T,
1085 // false>::Get() crashes with an error.
1086 //
1087 // This primary template is used when kDefaultConstructible is true.
1088 template <typename T, bool kDefaultConstructible>
1089 struct BuiltInDefaultValueGetter {
1090   static T Get() { return T(); }
1091 };
1092 template <typename T>
1093 struct BuiltInDefaultValueGetter<T, false> {
1094   static T Get() {
1095     Assert(false, __FILE__, __LINE__,
1096            "Default action undefined for the function return type.");
1097     return internal::Invalid<T>();
1098     // The above statement will never be reached, but is required in
1099     // order for this function to compile.
1100   }
1101 };
1102 
1103 // BuiltInDefaultValue<T>::Get() returns the "built-in" default value
1104 // for type T, which is NULL when T is a raw pointer type, 0 when T is
1105 // a numeric type, false when T is bool, or "" when T is string or
1106 // std::string.  In addition, in C++11 and above, it turns a
1107 // default-constructed T value if T is default constructible.  For any
1108 // other type T, the built-in default T value is undefined, and the
1109 // function will abort the process.
1110 template <typename T>
1111 class BuiltInDefaultValue {
1112  public:
1113   // This function returns true if and only if type T has a built-in default
1114   // value.
1115   static bool Exists() {
1116     return ::std::is_default_constructible<T>::value;
1117   }
1118 
1119   static T Get() {
1120     return BuiltInDefaultValueGetter<
1121         T, ::std::is_default_constructible<T>::value>::Get();
1122   }
1123 };
1124 
1125 // This partial specialization says that we use the same built-in
1126 // default value for T and const T.
1127 template <typename T>
1128 class BuiltInDefaultValue<const T> {
1129  public:
1130   static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
1131   static T Get() { return BuiltInDefaultValue<T>::Get(); }
1132 };
1133 
1134 // This partial specialization defines the default values for pointer
1135 // types.
1136 template <typename T>
1137 class BuiltInDefaultValue<T*> {
1138  public:
1139   static bool Exists() { return true; }
1140   static T* Get() { return nullptr; }
1141 };
1142 
1143 // The following specializations define the default values for
1144 // specific types we care about.
1145 #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
1146   template <> \
1147   class BuiltInDefaultValue<type> { \
1148    public: \
1149     static bool Exists() { return true; } \
1150     static type Get() { return value; } \
1151   }
1152 
1153 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
1154 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
1155 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
1156 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
1157 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
1158 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
1159 
1160 // There's no need for a default action for signed wchar_t, as that
1161 // type is the same as wchar_t for gcc, and invalid for MSVC.
1162 //
1163 // There's also no need for a default action for unsigned wchar_t, as
1164 // that type is the same as unsigned int for gcc, and invalid for
1165 // MSVC.
1166 #if GMOCK_WCHAR_T_IS_NATIVE_
1167 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
1168 #endif
1169 
1170 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
1171 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
1172 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
1173 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
1174 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
1175 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
1176 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0);  // NOLINT
1177 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0);  // NOLINT
1178 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
1179 GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
1180 
1181 #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
1182 
1183 // Simple two-arg form of std::disjunction.
1184 template <typename P, typename Q>
1185 using disjunction = typename ::std::conditional<P::value, P, Q>::type;
1186 
1187 }  // namespace internal
1188 
1189 // When an unexpected function call is encountered, Google Mock will
1190 // let it return a default value if the user has specified one for its
1191 // return type, or if the return type has a built-in default value;
1192 // otherwise Google Mock won't know what value to return and will have
1193 // to abort the process.
1194 //
1195 // The DefaultValue<T> class allows a user to specify the
1196 // default value for a type T that is both copyable and publicly
1197 // destructible (i.e. anything that can be used as a function return
1198 // type).  The usage is:
1199 //
1200 //   // Sets the default value for type T to be foo.
1201 //   DefaultValue<T>::Set(foo);
1202 template <typename T>
1203 class DefaultValue {
1204  public:
1205   // Sets the default value for type T; requires T to be
1206   // copy-constructable and have a public destructor.
1207   static void Set(T x) {
1208     delete producer_;
1209     producer_ = new FixedValueProducer(x);
1210   }
1211 
1212   // Provides a factory function to be called to generate the default value.
1213   // This method can be used even if T is only move-constructible, but it is not
1214   // limited to that case.
1215   typedef T (*FactoryFunction)();
1216   static void SetFactory(FactoryFunction factory) {
1217     delete producer_;
1218     producer_ = new FactoryValueProducer(factory);
1219   }
1220 
1221   // Unsets the default value for type T.
1222   static void Clear() {
1223     delete producer_;
1224     producer_ = nullptr;
1225   }
1226 
1227   // Returns true if and only if the user has set the default value for type T.
1228   static bool IsSet() { return producer_ != nullptr; }
1229 
1230   // Returns true if T has a default return value set by the user or there
1231   // exists a built-in default value.
1232   static bool Exists() {
1233     return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
1234   }
1235 
1236   // Returns the default value for type T if the user has set one;
1237   // otherwise returns the built-in default value. Requires that Exists()
1238   // is true, which ensures that the return value is well-defined.
1239   static T Get() {
1240     return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
1241                                 : producer_->Produce();
1242   }
1243 
1244  private:
1245   class ValueProducer {
1246    public:
1247     virtual ~ValueProducer() {}
1248     virtual T Produce() = 0;
1249   };
1250 
1251   class FixedValueProducer : public ValueProducer {
1252    public:
1253     explicit FixedValueProducer(T value) : value_(value) {}
1254     T Produce() override { return value_; }
1255 
1256    private:
1257     const T value_;
1258     GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
1259   };
1260 
1261   class FactoryValueProducer : public ValueProducer {
1262    public:
1263     explicit FactoryValueProducer(FactoryFunction factory)
1264         : factory_(factory) {}
1265     T Produce() override { return factory_(); }
1266 
1267    private:
1268     const FactoryFunction factory_;
1269     GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
1270   };
1271 
1272   static ValueProducer* producer_;
1273 };
1274 
1275 // This partial specialization allows a user to set default values for
1276 // reference types.
1277 template <typename T>
1278 class DefaultValue<T&> {
1279  public:
1280   // Sets the default value for type T&.
1281   static void Set(T& x) {  // NOLINT
1282     address_ = &x;
1283   }
1284 
1285   // Unsets the default value for type T&.
1286   static void Clear() { address_ = nullptr; }
1287 
1288   // Returns true if and only if the user has set the default value for type T&.
1289   static bool IsSet() { return address_ != nullptr; }
1290 
1291   // Returns true if T has a default return value set by the user or there
1292   // exists a built-in default value.
1293   static bool Exists() {
1294     return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
1295   }
1296 
1297   // Returns the default value for type T& if the user has set one;
1298   // otherwise returns the built-in default value if there is one;
1299   // otherwise aborts the process.
1300   static T& Get() {
1301     return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
1302                                : *address_;
1303   }
1304 
1305  private:
1306   static T* address_;
1307 };
1308 
1309 // This specialization allows DefaultValue<void>::Get() to
1310 // compile.
1311 template <>
1312 class DefaultValue<void> {
1313  public:
1314   static bool Exists() { return true; }
1315   static void Get() {}
1316 };
1317 
1318 // Points to the user-set default value for type T.
1319 template <typename T>
1320 typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
1321 
1322 // Points to the user-set default value for type T&.
1323 template <typename T>
1324 T* DefaultValue<T&>::address_ = nullptr;
1325 
1326 // Implement this interface to define an action for function type F.
1327 template <typename F>
1328 class ActionInterface {
1329  public:
1330   typedef typename internal::Function<F>::Result Result;
1331   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1332 
1333   ActionInterface() {}
1334   virtual ~ActionInterface() {}
1335 
1336   // Performs the action.  This method is not const, as in general an
1337   // action can have side effects and be stateful.  For example, a
1338   // get-the-next-element-from-the-collection action will need to
1339   // remember the current element.
1340   virtual Result Perform(const ArgumentTuple& args) = 0;
1341 
1342  private:
1343   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
1344 };
1345 
1346 // An Action<F> is a copyable and IMMUTABLE (except by assignment)
1347 // object that represents an action to be taken when a mock function
1348 // of type F is called.  The implementation of Action<T> is just a
1349 // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
1350 // You can view an object implementing ActionInterface<F> as a
1351 // concrete action (including its current state), and an Action<F>
1352 // object as a handle to it.
1353 template <typename F>
1354 class Action {
1355   // Adapter class to allow constructing Action from a legacy ActionInterface.
1356   // New code should create Actions from functors instead.
1357   struct ActionAdapter {
1358     // Adapter must be copyable to satisfy std::function requirements.
1359     ::std::shared_ptr<ActionInterface<F>> impl_;
1360 
1361     template <typename... Args>
1362     typename internal::Function<F>::Result operator()(Args&&... args) {
1363       return impl_->Perform(
1364           ::std::forward_as_tuple(::std::forward<Args>(args)...));
1365     }
1366   };
1367 
1368   template <typename G>
1369   using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
1370 
1371  public:
1372   typedef typename internal::Function<F>::Result Result;
1373   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1374 
1375   // Constructs a null Action.  Needed for storing Action objects in
1376   // STL containers.
1377   Action() {}
1378 
1379   // Construct an Action from a specified callable.
1380   // This cannot take std::function directly, because then Action would not be
1381   // directly constructible from lambda (it would require two conversions).
1382   template <
1383       typename G,
1384       typename = typename std::enable_if<internal::disjunction<
1385           IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
1386                                                         G>>::value>::type>
1387   Action(G&& fun) {  // NOLINT
1388     Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
1389   }
1390 
1391   // Constructs an Action from its implementation.
1392   explicit Action(ActionInterface<F>* impl)
1393       : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
1394 
1395   // This constructor allows us to turn an Action<Func> object into an
1396   // Action<F>, as long as F's arguments can be implicitly converted
1397   // to Func's and Func's return type can be implicitly converted to F's.
1398   template <typename Func>
1399   explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
1400 
1401   // Returns true if and only if this is the DoDefault() action.
1402   bool IsDoDefault() const { return fun_ == nullptr; }
1403 
1404   // Performs the action.  Note that this method is const even though
1405   // the corresponding method in ActionInterface is not.  The reason
1406   // is that a const Action<F> means that it cannot be re-bound to
1407   // another concrete action, not that the concrete action it binds to
1408   // cannot change state.  (Think of the difference between a const
1409   // pointer and a pointer to const.)
1410   Result Perform(ArgumentTuple args) const {
1411     if (IsDoDefault()) {
1412       internal::IllegalDoDefault(__FILE__, __LINE__);
1413     }
1414     return internal::Apply(fun_, ::std::move(args));
1415   }
1416 
1417  private:
1418   template <typename G>
1419   friend class Action;
1420 
1421   template <typename G>
1422   void Init(G&& g, ::std::true_type) {
1423     fun_ = ::std::forward<G>(g);
1424   }
1425 
1426   template <typename G>
1427   void Init(G&& g, ::std::false_type) {
1428     fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
1429   }
1430 
1431   template <typename FunctionImpl>
1432   struct IgnoreArgs {
1433     template <typename... Args>
1434     Result operator()(const Args&...) const {
1435       return function_impl();
1436     }
1437 
1438     FunctionImpl function_impl;
1439   };
1440 
1441   // fun_ is an empty function if and only if this is the DoDefault() action.
1442   ::std::function<F> fun_;
1443 };
1444 
1445 // The PolymorphicAction class template makes it easy to implement a
1446 // polymorphic action (i.e. an action that can be used in mock
1447 // functions of than one type, e.g. Return()).
1448 //
1449 // To define a polymorphic action, a user first provides a COPYABLE
1450 // implementation class that has a Perform() method template:
1451 //
1452 //   class FooAction {
1453 //    public:
1454 //     template <typename Result, typename ArgumentTuple>
1455 //     Result Perform(const ArgumentTuple& args) const {
1456 //       // Processes the arguments and returns a result, using
1457 //       // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
1458 //     }
1459 //     ...
1460 //   };
1461 //
1462 // Then the user creates the polymorphic action using
1463 // MakePolymorphicAction(object) where object has type FooAction.  See
1464 // the definition of Return(void) and SetArgumentPointee<N>(value) for
1465 // complete examples.
1466 template <typename Impl>
1467 class PolymorphicAction {
1468  public:
1469   explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
1470 
1471   template <typename F>
1472   operator Action<F>() const {
1473     return Action<F>(new MonomorphicImpl<F>(impl_));
1474   }
1475 
1476  private:
1477   template <typename F>
1478   class MonomorphicImpl : public ActionInterface<F> {
1479    public:
1480     typedef typename internal::Function<F>::Result Result;
1481     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1482 
1483     explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
1484 
1485     Result Perform(const ArgumentTuple& args) override {
1486       return impl_.template Perform<Result>(args);
1487     }
1488 
1489    private:
1490     Impl impl_;
1491   };
1492 
1493   Impl impl_;
1494 };
1495 
1496 // Creates an Action from its implementation and returns it.  The
1497 // created Action object owns the implementation.
1498 template <typename F>
1499 Action<F> MakeAction(ActionInterface<F>* impl) {
1500   return Action<F>(impl);
1501 }
1502 
1503 // Creates a polymorphic action from its implementation.  This is
1504 // easier to use than the PolymorphicAction<Impl> constructor as it
1505 // doesn't require you to explicitly write the template argument, e.g.
1506 //
1507 //   MakePolymorphicAction(foo);
1508 // vs
1509 //   PolymorphicAction<TypeOfFoo>(foo);
1510 template <typename Impl>
1511 inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
1512   return PolymorphicAction<Impl>(impl);
1513 }
1514 
1515 namespace internal {
1516 
1517 // Helper struct to specialize ReturnAction to execute a move instead of a copy
1518 // on return. Useful for move-only types, but could be used on any type.
1519 template <typename T>
1520 struct ByMoveWrapper {
1521   explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
1522   T payload;
1523 };
1524 
1525 // Implements the polymorphic Return(x) action, which can be used in
1526 // any function that returns the type of x, regardless of the argument
1527 // types.
1528 //
1529 // Note: The value passed into Return must be converted into
1530 // Function<F>::Result when this action is cast to Action<F> rather than
1531 // when that action is performed. This is important in scenarios like
1532 //
1533 // MOCK_METHOD1(Method, T(U));
1534 // ...
1535 // {
1536 //   Foo foo;
1537 //   X x(&foo);
1538 //   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
1539 // }
1540 //
1541 // In the example above the variable x holds reference to foo which leaves
1542 // scope and gets destroyed.  If copying X just copies a reference to foo,
1543 // that copy will be left with a hanging reference.  If conversion to T
1544 // makes a copy of foo, the above code is safe. To support that scenario, we
1545 // need to make sure that the type conversion happens inside the EXPECT_CALL
1546 // statement, and conversion of the result of Return to Action<T(U)> is a
1547 // good place for that.
1548 //
1549 // The real life example of the above scenario happens when an invocation
1550 // of gtl::Container() is passed into Return.
1551 //
1552 template <typename R>
1553 class ReturnAction {
1554  public:
1555   // Constructs a ReturnAction object from the value to be returned.
1556   // 'value' is passed by value instead of by const reference in order
1557   // to allow Return("string literal") to compile.
1558   explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
1559 
1560   // This template type conversion operator allows Return(x) to be
1561   // used in ANY function that returns x's type.
1562   template <typename F>
1563   operator Action<F>() const {  // NOLINT
1564     // Assert statement belongs here because this is the best place to verify
1565     // conditions on F. It produces the clearest error messages
1566     // in most compilers.
1567     // Impl really belongs in this scope as a local class but can't
1568     // because MSVC produces duplicate symbols in different translation units
1569     // in this case. Until MS fixes that bug we put Impl into the class scope
1570     // and put the typedef both here (for use in assert statement) and
1571     // in the Impl class. But both definitions must be the same.
1572     typedef typename Function<F>::Result Result;
1573     GTEST_COMPILE_ASSERT_(
1574         !std::is_reference<Result>::value,
1575         use_ReturnRef_instead_of_Return_to_return_a_reference);
1576     static_assert(!std::is_void<Result>::value,
1577                   "Can't use Return() on an action expected to return `void`.");
1578     return Action<F>(new Impl<R, F>(value_));
1579   }
1580 
1581  private:
1582   // Implements the Return(x) action for a particular function type F.
1583   template <typename R_, typename F>
1584   class Impl : public ActionInterface<F> {
1585    public:
1586     typedef typename Function<F>::Result Result;
1587     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1588 
1589     // The implicit cast is necessary when Result has more than one
1590     // single-argument constructor (e.g. Result is std::vector<int>) and R
1591     // has a type conversion operator template.  In that case, value_(value)
1592     // won't compile as the compiler doesn't known which constructor of
1593     // Result to call.  ImplicitCast_ forces the compiler to convert R to
1594     // Result without considering explicit constructors, thus resolving the
1595     // ambiguity. value_ is then initialized using its copy constructor.
1596     explicit Impl(const std::shared_ptr<R>& value)
1597         : value_before_cast_(*value),
1598           value_(ImplicitCast_<Result>(value_before_cast_)) {}
1599 
1600     Result Perform(const ArgumentTuple&) override { return value_; }
1601 
1602    private:
1603     GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
1604                           Result_cannot_be_a_reference_type);
1605     // We save the value before casting just in case it is being cast to a
1606     // wrapper type.
1607     R value_before_cast_;
1608     Result value_;
1609 
1610     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
1611   };
1612 
1613   // Partially specialize for ByMoveWrapper. This version of ReturnAction will
1614   // move its contents instead.
1615   template <typename R_, typename F>
1616   class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
1617    public:
1618     typedef typename Function<F>::Result Result;
1619     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1620 
1621     explicit Impl(const std::shared_ptr<R>& wrapper)
1622         : performed_(false), wrapper_(wrapper) {}
1623 
1624     Result Perform(const ArgumentTuple&) override {
1625       GTEST_CHECK_(!performed_)
1626           << "A ByMove() action should only be performed once.";
1627       performed_ = true;
1628       return std::move(wrapper_->payload);
1629     }
1630 
1631    private:
1632     bool performed_;
1633     const std::shared_ptr<R> wrapper_;
1634   };
1635 
1636   const std::shared_ptr<R> value_;
1637 };
1638 
1639 // Implements the ReturnNull() action.
1640 class ReturnNullAction {
1641  public:
1642   // Allows ReturnNull() to be used in any pointer-returning function. In C++11
1643   // this is enforced by returning nullptr, and in non-C++11 by asserting a
1644   // pointer type on compile time.
1645   template <typename Result, typename ArgumentTuple>
1646   static Result Perform(const ArgumentTuple&) {
1647     return nullptr;
1648   }
1649 };
1650 
1651 // Implements the Return() action.
1652 class ReturnVoidAction {
1653  public:
1654   // Allows Return() to be used in any void-returning function.
1655   template <typename Result, typename ArgumentTuple>
1656   static void Perform(const ArgumentTuple&) {
1657     static_assert(std::is_void<Result>::value, "Result should be void.");
1658   }
1659 };
1660 
1661 // Implements the polymorphic ReturnRef(x) action, which can be used
1662 // in any function that returns a reference to the type of x,
1663 // regardless of the argument types.
1664 template <typename T>
1665 class ReturnRefAction {
1666  public:
1667   // Constructs a ReturnRefAction object from the reference to be returned.
1668   explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
1669 
1670   // This template type conversion operator allows ReturnRef(x) to be
1671   // used in ANY function that returns a reference to x's type.
1672   template <typename F>
1673   operator Action<F>() const {
1674     typedef typename Function<F>::Result Result;
1675     // Asserts that the function return type is a reference.  This
1676     // catches the user error of using ReturnRef(x) when Return(x)
1677     // should be used, and generates some helpful error message.
1678     GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
1679                           use_Return_instead_of_ReturnRef_to_return_a_value);
1680     return Action<F>(new Impl<F>(ref_));
1681   }
1682 
1683  private:
1684   // Implements the ReturnRef(x) action for a particular function type F.
1685   template <typename F>
1686   class Impl : public ActionInterface<F> {
1687    public:
1688     typedef typename Function<F>::Result Result;
1689     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1690 
1691     explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
1692 
1693     Result Perform(const ArgumentTuple&) override { return ref_; }
1694 
1695    private:
1696     T& ref_;
1697   };
1698 
1699   T& ref_;
1700 };
1701 
1702 // Implements the polymorphic ReturnRefOfCopy(x) action, which can be
1703 // used in any function that returns a reference to the type of x,
1704 // regardless of the argument types.
1705 template <typename T>
1706 class ReturnRefOfCopyAction {
1707  public:
1708   // Constructs a ReturnRefOfCopyAction object from the reference to
1709   // be returned.
1710   explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
1711 
1712   // This template type conversion operator allows ReturnRefOfCopy(x) to be
1713   // used in ANY function that returns a reference to x's type.
1714   template <typename F>
1715   operator Action<F>() const {
1716     typedef typename Function<F>::Result Result;
1717     // Asserts that the function return type is a reference.  This
1718     // catches the user error of using ReturnRefOfCopy(x) when Return(x)
1719     // should be used, and generates some helpful error message.
1720     GTEST_COMPILE_ASSERT_(
1721         std::is_reference<Result>::value,
1722         use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
1723     return Action<F>(new Impl<F>(value_));
1724   }
1725 
1726  private:
1727   // Implements the ReturnRefOfCopy(x) action for a particular function type F.
1728   template <typename F>
1729   class Impl : public ActionInterface<F> {
1730    public:
1731     typedef typename Function<F>::Result Result;
1732     typedef typename Function<F>::ArgumentTuple ArgumentTuple;
1733 
1734     explicit Impl(const T& value) : value_(value) {}  // NOLINT
1735 
1736     Result Perform(const ArgumentTuple&) override { return value_; }
1737 
1738    private:
1739     T value_;
1740   };
1741 
1742   const T value_;
1743 };
1744 
1745 // Implements the polymorphic ReturnRoundRobin(v) action, which can be
1746 // used in any function that returns the element_type of v.
1747 template <typename T>
1748 class ReturnRoundRobinAction {
1749  public:
1750   explicit ReturnRoundRobinAction(std::vector<T> values) {
1751     GTEST_CHECK_(!values.empty())
1752         << "ReturnRoundRobin requires at least one element.";
1753     state_->values = std::move(values);
1754   }
1755 
1756   template <typename... Args>
1757   T operator()(Args&&...) const {
1758      return state_->Next();
1759   }
1760 
1761  private:
1762   struct State {
1763     T Next() {
1764       T ret_val = values[i++];
1765       if (i == values.size()) i = 0;
1766       return ret_val;
1767     }
1768 
1769     std::vector<T> values;
1770     size_t i = 0;
1771   };
1772   std::shared_ptr<State> state_ = std::make_shared<State>();
1773 };
1774 
1775 // Implements the polymorphic DoDefault() action.
1776 class DoDefaultAction {
1777  public:
1778   // This template type conversion operator allows DoDefault() to be
1779   // used in any function.
1780   template <typename F>
1781   operator Action<F>() const { return Action<F>(); }  // NOLINT
1782 };
1783 
1784 // Implements the Assign action to set a given pointer referent to a
1785 // particular value.
1786 template <typename T1, typename T2>
1787 class AssignAction {
1788  public:
1789   AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
1790 
1791   template <typename Result, typename ArgumentTuple>
1792   void Perform(const ArgumentTuple& /* args */) const {
1793     *ptr_ = value_;
1794   }
1795 
1796  private:
1797   T1* const ptr_;
1798   const T2 value_;
1799 };
1800 
1801 #if !GTEST_OS_WINDOWS_MOBILE
1802 
1803 // Implements the SetErrnoAndReturn action to simulate return from
1804 // various system calls and libc functions.
1805 template <typename T>
1806 class SetErrnoAndReturnAction {
1807  public:
1808   SetErrnoAndReturnAction(int errno_value, T result)
1809       : errno_(errno_value),
1810         result_(result) {}
1811   template <typename Result, typename ArgumentTuple>
1812   Result Perform(const ArgumentTuple& /* args */) const {
1813     errno = errno_;
1814     return result_;
1815   }
1816 
1817  private:
1818   const int errno_;
1819   const T result_;
1820 };
1821 
1822 #endif  // !GTEST_OS_WINDOWS_MOBILE
1823 
1824 // Implements the SetArgumentPointee<N>(x) action for any function
1825 // whose N-th argument (0-based) is a pointer to x's type.
1826 template <size_t N, typename A, typename = void>
1827 struct SetArgumentPointeeAction {
1828   A value;
1829 
1830   template <typename... Args>
1831   void operator()(const Args&... args) const {
1832     *::std::get<N>(std::tie(args...)) = value;
1833   }
1834 };
1835 
1836 // Implements the Invoke(object_ptr, &Class::Method) action.
1837 template <class Class, typename MethodPtr>
1838 struct InvokeMethodAction {
1839   Class* const obj_ptr;
1840   const MethodPtr method_ptr;
1841 
1842   template <typename... Args>
1843   auto operator()(Args&&... args) const
1844       -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
1845     return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
1846   }
1847 };
1848 
1849 // Implements the InvokeWithoutArgs(f) action.  The template argument
1850 // FunctionImpl is the implementation type of f, which can be either a
1851 // function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
1852 // Action<F> as long as f's type is compatible with F.
1853 template <typename FunctionImpl>
1854 struct InvokeWithoutArgsAction {
1855   FunctionImpl function_impl;
1856 
1857   // Allows InvokeWithoutArgs(f) to be used as any action whose type is
1858   // compatible with f.
1859   template <typename... Args>
1860   auto operator()(const Args&...) -> decltype(function_impl()) {
1861     return function_impl();
1862   }
1863 };
1864 
1865 // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
1866 template <class Class, typename MethodPtr>
1867 struct InvokeMethodWithoutArgsAction {
1868   Class* const obj_ptr;
1869   const MethodPtr method_ptr;
1870 
1871   using ReturnType =
1872       decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
1873 
1874   template <typename... Args>
1875   ReturnType operator()(const Args&...) const {
1876     return (obj_ptr->*method_ptr)();
1877   }
1878 };
1879 
1880 // Implements the IgnoreResult(action) action.
1881 template <typename A>
1882 class IgnoreResultAction {
1883  public:
1884   explicit IgnoreResultAction(const A& action) : action_(action) {}
1885 
1886   template <typename F>
1887   operator Action<F>() const {
1888     // Assert statement belongs here because this is the best place to verify
1889     // conditions on F. It produces the clearest error messages
1890     // in most compilers.
1891     // Impl really belongs in this scope as a local class but can't
1892     // because MSVC produces duplicate symbols in different translation units
1893     // in this case. Until MS fixes that bug we put Impl into the class scope
1894     // and put the typedef both here (for use in assert statement) and
1895     // in the Impl class. But both definitions must be the same.
1896     typedef typename internal::Function<F>::Result Result;
1897 
1898     // Asserts at compile time that F returns void.
1899     static_assert(std::is_void<Result>::value, "Result type should be void.");
1900 
1901     return Action<F>(new Impl<F>(action_));
1902   }
1903 
1904  private:
1905   template <typename F>
1906   class Impl : public ActionInterface<F> {
1907    public:
1908     typedef typename internal::Function<F>::Result Result;
1909     typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
1910 
1911     explicit Impl(const A& action) : action_(action) {}
1912 
1913     void Perform(const ArgumentTuple& args) override {
1914       // Performs the action and ignores its result.
1915       action_.Perform(args);
1916     }
1917 
1918    private:
1919     // Type OriginalFunction is the same as F except that its return
1920     // type is IgnoredValue.
1921     typedef typename internal::Function<F>::MakeResultIgnoredValue
1922         OriginalFunction;
1923 
1924     const Action<OriginalFunction> action_;
1925   };
1926 
1927   const A action_;
1928 };
1929 
1930 template <typename InnerAction, size_t... I>
1931 struct WithArgsAction {
1932   InnerAction action;
1933 
1934   // The inner action could be anything convertible to Action<X>.
1935   // We use the conversion operator to detect the signature of the inner Action.
1936   template <typename R, typename... Args>
1937   operator Action<R(Args...)>() const {  // NOLINT
1938     using TupleType = std::tuple<Args...>;
1939     Action<R(typename std::tuple_element<I, TupleType>::type...)>
1940         converted(action);
1941 
1942     return [converted](Args... args) -> R {
1943       return converted.Perform(std::forward_as_tuple(
1944         std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
1945     };
1946   }
1947 };
1948 
1949 template <typename... Actions>
1950 struct DoAllAction {
1951  private:
1952   template <typename T>
1953   using NonFinalType =
1954       typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
1955 
1956   template <typename ActionT, size_t... I>
1957   std::vector<ActionT> Convert(IndexSequence<I...>) const {
1958     return {ActionT(std::get<I>(actions))...};
1959   }
1960 
1961  public:
1962   std::tuple<Actions...> actions;
1963 
1964   template <typename R, typename... Args>
1965   operator Action<R(Args...)>() const {  // NOLINT
1966     struct Op {
1967       std::vector<Action<void(NonFinalType<Args>...)>> converted;
1968       Action<R(Args...)> last;
1969       R operator()(Args... args) const {
1970         auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
1971         for (auto& a : converted) {
1972           a.Perform(tuple_args);
1973         }
1974         return last.Perform(std::move(tuple_args));
1975       }
1976     };
1977     return Op{Convert<Action<void(NonFinalType<Args>...)>>(
1978                   MakeIndexSequence<sizeof...(Actions) - 1>()),
1979               std::get<sizeof...(Actions) - 1>(actions)};
1980   }
1981 };
1982 
1983 template <typename T, typename... Params>
1984 struct ReturnNewAction {
1985   T* operator()() const {
1986     return internal::Apply(
1987         [](const Params&... unpacked_params) {
1988           return new T(unpacked_params...);
1989         },
1990         params);
1991   }
1992   std::tuple<Params...> params;
1993 };
1994 
1995 template <size_t k>
1996 struct ReturnArgAction {
1997   template <typename... Args>
1998   auto operator()(const Args&... args) const ->
1999       typename std::tuple_element<k, std::tuple<Args...>>::type {
2000     return std::get<k>(std::tie(args...));
2001   }
2002 };
2003 
2004 template <size_t k, typename Ptr>
2005 struct SaveArgAction {
2006   Ptr pointer;
2007 
2008   template <typename... Args>
2009   void operator()(const Args&... args) const {
2010     *pointer = std::get<k>(std::tie(args...));
2011   }
2012 };
2013 
2014 template <size_t k, typename Ptr>
2015 struct SaveArgPointeeAction {
2016   Ptr pointer;
2017 
2018   template <typename... Args>
2019   void operator()(const Args&... args) const {
2020     *pointer = *std::get<k>(std::tie(args...));
2021   }
2022 };
2023 
2024 template <size_t k, typename T>
2025 struct SetArgRefereeAction {
2026   T value;
2027 
2028   template <typename... Args>
2029   void operator()(Args&&... args) const {
2030     using argk_type =
2031         typename ::std::tuple_element<k, std::tuple<Args...>>::type;
2032     static_assert(std::is_lvalue_reference<argk_type>::value,
2033                   "Argument must be a reference type.");
2034     std::get<k>(std::tie(args...)) = value;
2035   }
2036 };
2037 
2038 template <size_t k, typename I1, typename I2>
2039 struct SetArrayArgumentAction {
2040   I1 first;
2041   I2 last;
2042 
2043   template <typename... Args>
2044   void operator()(const Args&... args) const {
2045     auto value = std::get<k>(std::tie(args...));
2046     for (auto it = first; it != last; ++it, (void)++value) {
2047       *value = *it;
2048     }
2049   }
2050 };
2051 
2052 template <size_t k>
2053 struct DeleteArgAction {
2054   template <typename... Args>
2055   void operator()(const Args&... args) const {
2056     delete std::get<k>(std::tie(args...));
2057   }
2058 };
2059 
2060 template <typename Ptr>
2061 struct ReturnPointeeAction {
2062   Ptr pointer;
2063   template <typename... Args>
2064   auto operator()(const Args&...) const -> decltype(*pointer) {
2065     return *pointer;
2066   }
2067 };
2068 
2069 #if GTEST_HAS_EXCEPTIONS
2070 template <typename T>
2071 struct ThrowAction {
2072   T exception;
2073   // We use a conversion operator to adapt to any return type.
2074   template <typename R, typename... Args>
2075   operator Action<R(Args...)>() const {  // NOLINT
2076     T copy = exception;
2077     return [copy](Args...) -> R { throw copy; };
2078   }
2079 };
2080 #endif  // GTEST_HAS_EXCEPTIONS
2081 
2082 }  // namespace internal
2083 
2084 // An Unused object can be implicitly constructed from ANY value.
2085 // This is handy when defining actions that ignore some or all of the
2086 // mock function arguments.  For example, given
2087 //
2088 //   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
2089 //   MOCK_METHOD3(Bar, double(int index, double x, double y));
2090 //
2091 // instead of
2092 //
2093 //   double DistanceToOriginWithLabel(const string& label, double x, double y) {
2094 //     return sqrt(x*x + y*y);
2095 //   }
2096 //   double DistanceToOriginWithIndex(int index, double x, double y) {
2097 //     return sqrt(x*x + y*y);
2098 //   }
2099 //   ...
2100 //   EXPECT_CALL(mock, Foo("abc", _, _))
2101 //       .WillOnce(Invoke(DistanceToOriginWithLabel));
2102 //   EXPECT_CALL(mock, Bar(5, _, _))
2103 //       .WillOnce(Invoke(DistanceToOriginWithIndex));
2104 //
2105 // you could write
2106 //
2107 //   // We can declare any uninteresting argument as Unused.
2108 //   double DistanceToOrigin(Unused, double x, double y) {
2109 //     return sqrt(x*x + y*y);
2110 //   }
2111 //   ...
2112 //   EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
2113 //   EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
2114 typedef internal::IgnoredValue Unused;
2115 
2116 // Creates an action that does actions a1, a2, ..., sequentially in
2117 // each invocation. All but the last action will have a readonly view of the
2118 // arguments.
2119 template <typename... Action>
2120 internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
2121     Action&&... action) {
2122   return {std::forward_as_tuple(std::forward<Action>(action)...)};
2123 }
2124 
2125 // WithArg<k>(an_action) creates an action that passes the k-th
2126 // (0-based) argument of the mock function to an_action and performs
2127 // it.  It adapts an action accepting one argument to one that accepts
2128 // multiple arguments.  For convenience, we also provide
2129 // WithArgs<k>(an_action) (defined below) as a synonym.
2130 template <size_t k, typename InnerAction>
2131 internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
2132 WithArg(InnerAction&& action) {
2133   return {std::forward<InnerAction>(action)};
2134 }
2135 
2136 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
2137 // the selected arguments of the mock function to an_action and
2138 // performs it.  It serves as an adaptor between actions with
2139 // different argument lists.
2140 template <size_t k, size_t... ks, typename InnerAction>
2141 internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
2142 WithArgs(InnerAction&& action) {
2143   return {std::forward<InnerAction>(action)};
2144 }
2145 
2146 // WithoutArgs(inner_action) can be used in a mock function with a
2147 // non-empty argument list to perform inner_action, which takes no
2148 // argument.  In other words, it adapts an action accepting no
2149 // argument to one that accepts (and ignores) arguments.
2150 template <typename InnerAction>
2151 internal::WithArgsAction<typename std::decay<InnerAction>::type>
2152 WithoutArgs(InnerAction&& action) {
2153   return {std::forward<InnerAction>(action)};
2154 }
2155 
2156 // Creates an action that returns 'value'.  'value' is passed by value
2157 // instead of const reference - otherwise Return("string literal")
2158 // will trigger a compiler error about using array as initializer.
2159 template <typename R>
2160 internal::ReturnAction<R> Return(R value) {
2161   return internal::ReturnAction<R>(std::move(value));
2162 }
2163 
2164 // Creates an action that returns NULL.
2165 inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
2166   return MakePolymorphicAction(internal::ReturnNullAction());
2167 }
2168 
2169 // Creates an action that returns from a void function.
2170 inline PolymorphicAction<internal::ReturnVoidAction> Return() {
2171   return MakePolymorphicAction(internal::ReturnVoidAction());
2172 }
2173 
2174 // Creates an action that returns the reference to a variable.
2175 template <typename R>
2176 inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
2177   return internal::ReturnRefAction<R>(x);
2178 }
2179 
2180 // Prevent using ReturnRef on reference to temporary.
2181 template <typename R, R* = nullptr>
2182 internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
2183 
2184 // Creates an action that returns the reference to a copy of the
2185 // argument.  The copy is created when the action is constructed and
2186 // lives as long as the action.
2187 template <typename R>
2188 inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
2189   return internal::ReturnRefOfCopyAction<R>(x);
2190 }
2191 
2192 // Modifies the parent action (a Return() action) to perform a move of the
2193 // argument instead of a copy.
2194 // Return(ByMove()) actions can only be executed once and will assert this
2195 // invariant.
2196 template <typename R>
2197 internal::ByMoveWrapper<R> ByMove(R x) {
2198   return internal::ByMoveWrapper<R>(std::move(x));
2199 }
2200 
2201 // Creates an action that returns an element of `vals`. Calling this action will
2202 // repeatedly return the next value from `vals` until it reaches the end and
2203 // will restart from the beginning.
2204 template <typename T>
2205 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
2206   return internal::ReturnRoundRobinAction<T>(std::move(vals));
2207 }
2208 
2209 // Creates an action that returns an element of `vals`. Calling this action will
2210 // repeatedly return the next value from `vals` until it reaches the end and
2211 // will restart from the beginning.
2212 template <typename T>
2213 internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
2214     std::initializer_list<T> vals) {
2215   return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
2216 }
2217 
2218 // Creates an action that does the default action for the give mock function.
2219 inline internal::DoDefaultAction DoDefault() {
2220   return internal::DoDefaultAction();
2221 }
2222 
2223 // Creates an action that sets the variable pointed by the N-th
2224 // (0-based) function argument to 'value'.
2225 template <size_t N, typename T>
2226 internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
2227   return {std::move(value)};
2228 }
2229 
2230 // The following version is DEPRECATED.
2231 template <size_t N, typename T>
2232 internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
2233   return {std::move(value)};
2234 }
2235 
2236 // Creates an action that sets a pointer referent to a given value.
2237 template <typename T1, typename T2>
2238 PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
2239   return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
2240 }
2241 
2242 #if !GTEST_OS_WINDOWS_MOBILE
2243 
2244 // Creates an action that sets errno and returns the appropriate error.
2245 template <typename T>
2246 PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
2247 SetErrnoAndReturn(int errval, T result) {
2248   return MakePolymorphicAction(
2249       internal::SetErrnoAndReturnAction<T>(errval, result));
2250 }
2251 
2252 #endif  // !GTEST_OS_WINDOWS_MOBILE
2253 
2254 // Various overloads for Invoke().
2255 
2256 // Legacy function.
2257 // Actions can now be implicitly constructed from callables. No need to create
2258 // wrapper objects.
2259 // This function exists for backwards compatibility.
2260 template <typename FunctionImpl>
2261 typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
2262   return std::forward<FunctionImpl>(function_impl);
2263 }
2264 
2265 // Creates an action that invokes the given method on the given object
2266 // with the mock function's arguments.
2267 template <class Class, typename MethodPtr>
2268 internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
2269                                                       MethodPtr method_ptr) {
2270   return {obj_ptr, method_ptr};
2271 }
2272 
2273 // Creates an action that invokes 'function_impl' with no argument.
2274 template <typename FunctionImpl>
2275 internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
2276 InvokeWithoutArgs(FunctionImpl function_impl) {
2277   return {std::move(function_impl)};
2278 }
2279 
2280 // Creates an action that invokes the given method on the given object
2281 // with no argument.
2282 template <class Class, typename MethodPtr>
2283 internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
2284     Class* obj_ptr, MethodPtr method_ptr) {
2285   return {obj_ptr, method_ptr};
2286 }
2287 
2288 // Creates an action that performs an_action and throws away its
2289 // result.  In other words, it changes the return type of an_action to
2290 // void.  an_action MUST NOT return void, or the code won't compile.
2291 template <typename A>
2292 inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
2293   return internal::IgnoreResultAction<A>(an_action);
2294 }
2295 
2296 // Creates a reference wrapper for the given L-value.  If necessary,
2297 // you can explicitly specify the type of the reference.  For example,
2298 // suppose 'derived' is an object of type Derived, ByRef(derived)
2299 // would wrap a Derived&.  If you want to wrap a const Base& instead,
2300 // where Base is a base class of Derived, just write:
2301 //
2302 //   ByRef<const Base>(derived)
2303 //
2304 // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
2305 // However, it may still be used for consistency with ByMove().
2306 template <typename T>
2307 inline ::std::reference_wrapper<T> ByRef(T& l_value) {  // NOLINT
2308   return ::std::reference_wrapper<T>(l_value);
2309 }
2310 
2311 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
2312 // instance of type T, constructed on the heap with constructor arguments
2313 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
2314 template <typename T, typename... Params>
2315 internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
2316     Params&&... params) {
2317   return {std::forward_as_tuple(std::forward<Params>(params)...)};
2318 }
2319 
2320 // Action ReturnArg<k>() returns the k-th argument of the mock function.
2321 template <size_t k>
2322 internal::ReturnArgAction<k> ReturnArg() {
2323   return {};
2324 }
2325 
2326 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
2327 // mock function to *pointer.
2328 template <size_t k, typename Ptr>
2329 internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
2330   return {pointer};
2331 }
2332 
2333 // Action SaveArgPointee<k>(pointer) saves the value pointed to
2334 // by the k-th (0-based) argument of the mock function to *pointer.
2335 template <size_t k, typename Ptr>
2336 internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
2337   return {pointer};
2338 }
2339 
2340 // Action SetArgReferee<k>(value) assigns 'value' to the variable
2341 // referenced by the k-th (0-based) argument of the mock function.
2342 template <size_t k, typename T>
2343 internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
2344     T&& value) {
2345   return {std::forward<T>(value)};
2346 }
2347 
2348 // Action SetArrayArgument<k>(first, last) copies the elements in
2349 // source range [first, last) to the array pointed to by the k-th
2350 // (0-based) argument, which can be either a pointer or an
2351 // iterator. The action does not take ownership of the elements in the
2352 // source range.
2353 template <size_t k, typename I1, typename I2>
2354 internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
2355                                                              I2 last) {
2356   return {first, last};
2357 }
2358 
2359 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
2360 // function.
2361 template <size_t k>
2362 internal::DeleteArgAction<k> DeleteArg() {
2363   return {};
2364 }
2365 
2366 // This action returns the value pointed to by 'pointer'.
2367 template <typename Ptr>
2368 internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
2369   return {pointer};
2370 }
2371 
2372 // Action Throw(exception) can be used in a mock function of any type
2373 // to throw the given exception.  Any copyable value can be thrown.
2374 #if GTEST_HAS_EXCEPTIONS
2375 template <typename T>
2376 internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
2377   return {std::forward<T>(exception)};
2378 }
2379 #endif  // GTEST_HAS_EXCEPTIONS
2380 
2381 namespace internal {
2382 
2383 // A macro from the ACTION* family (defined later in gmock-generated-actions.h)
2384 // defines an action that can be used in a mock function.  Typically,
2385 // these actions only care about a subset of the arguments of the mock
2386 // function.  For example, if such an action only uses the second
2387 // argument, it can be used in any mock function that takes >= 2
2388 // arguments where the type of the second argument is compatible.
2389 //
2390 // Therefore, the action implementation must be prepared to take more
2391 // arguments than it needs.  The ExcessiveArg type is used to
2392 // represent those excessive arguments.  In order to keep the compiler
2393 // error messages tractable, we define it in the testing namespace
2394 // instead of testing::internal.  However, this is an INTERNAL TYPE
2395 // and subject to change without notice, so a user MUST NOT USE THIS
2396 // TYPE DIRECTLY.
2397 struct ExcessiveArg {};
2398 
2399 // Builds an implementation of an Action<> for some particular signature, using
2400 // a class defined by an ACTION* macro.
2401 template <typename F, typename Impl> struct ActionImpl;
2402 
2403 template <typename Impl>
2404 struct ImplBase {
2405   struct Holder {
2406     // Allows each copy of the Action<> to get to the Impl.
2407     explicit operator const Impl&() const { return *ptr; }
2408     std::shared_ptr<Impl> ptr;
2409   };
2410   using type = typename std::conditional<std::is_constructible<Impl>::value,
2411                                          Impl, Holder>::type;
2412 };
2413 
2414 template <typename R, typename... Args, typename Impl>
2415 struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
2416   using Base = typename ImplBase<Impl>::type;
2417   using function_type = R(Args...);
2418   using args_type = std::tuple<Args...>;
2419 
2420   ActionImpl() = default;  // Only defined if appropriate for Base.
2421   explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
2422 
2423   R operator()(Args&&... arg) const {
2424     static constexpr size_t kMaxArgs =
2425         sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
2426     return Apply(MakeIndexSequence<kMaxArgs>{},
2427                  MakeIndexSequence<10 - kMaxArgs>{},
2428                  args_type{std::forward<Args>(arg)...});
2429   }
2430 
2431   template <std::size_t... arg_id, std::size_t... excess_id>
2432   R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
2433           const args_type& args) const {
2434     // Impl need not be specific to the signature of action being implemented;
2435     // only the implementing function body needs to have all of the specific
2436     // types instantiated.  Up to 10 of the args that are provided by the
2437     // args_type get passed, followed by a dummy of unspecified type for the
2438     // remainder up to 10 explicit args.
2439     static constexpr ExcessiveArg kExcessArg{};
2440     return static_cast<const Impl&>(*this).template gmock_PerformImpl<
2441         /*function_type=*/function_type, /*return_type=*/R,
2442         /*args_type=*/args_type,
2443         /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
2444         /*args=*/args, std::get<arg_id>(args)...,
2445         ((void)excess_id, kExcessArg)...);
2446   }
2447 };
2448 
2449 // Stores a default-constructed Impl as part of the Action<>'s
2450 // std::function<>. The Impl should be trivial to copy.
2451 template <typename F, typename Impl>
2452 ::testing::Action<F> MakeAction() {
2453   return ::testing::Action<F>(ActionImpl<F, Impl>());
2454 }
2455 
2456 // Stores just the one given instance of Impl.
2457 template <typename F, typename Impl>
2458 ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
2459   return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
2460 }
2461 
2462 #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
2463   , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
2464 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_           \
2465   const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
2466       GMOCK_INTERNAL_ARG_UNUSED, , 10)
2467 
2468 #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
2469 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
2470   const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
2471 
2472 #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
2473 #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
2474   GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
2475 
2476 #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
2477 #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
2478   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
2479 
2480 #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
2481 #define GMOCK_ACTION_TYPE_PARAMS_(params) \
2482   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
2483 
2484 #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
2485   , param##_type gmock_p##i
2486 #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
2487   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
2488 
2489 #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
2490   , std::forward<param##_type>(gmock_p##i)
2491 #define GMOCK_ACTION_GVALUE_PARAMS_(params) \
2492   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
2493 
2494 #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
2495   , param(::std::forward<param##_type>(gmock_p##i))
2496 #define GMOCK_ACTION_INIT_PARAMS_(params) \
2497   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
2498 
2499 #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
2500 #define GMOCK_ACTION_FIELD_PARAMS_(params) \
2501   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
2502 
2503 #define GMOCK_INTERNAL_ACTION(name, full_name, params)                        \
2504   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2505   class full_name {                                                           \
2506    public:                                                                    \
2507     explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))              \
2508         : impl_(std::make_shared<gmock_Impl>(                                 \
2509                 GMOCK_ACTION_GVALUE_PARAMS_(params))) { }                     \
2510     full_name(const full_name&) = default;                                    \
2511     full_name(full_name&&) noexcept = default;                                \
2512     template <typename F>                                                     \
2513     operator ::testing::Action<F>() const {                                   \
2514       return ::testing::internal::MakeAction<F>(impl_);                       \
2515     }                                                                         \
2516    private:                                                                   \
2517     class gmock_Impl {                                                        \
2518      public:                                                                  \
2519       explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params))           \
2520           : GMOCK_ACTION_INIT_PARAMS_(params) {}                              \
2521       template <typename function_type, typename return_type,                 \
2522                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2523       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2524       GMOCK_ACTION_FIELD_PARAMS_(params)                                      \
2525     };                                                                        \
2526     std::shared_ptr<const gmock_Impl> impl_;                                  \
2527   };                                                                          \
2528   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2529   inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name(                   \
2530       GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) {                             \
2531     return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>(                      \
2532         GMOCK_ACTION_GVALUE_PARAMS_(params));                                 \
2533   }                                                                           \
2534   template <GMOCK_ACTION_TYPENAME_PARAMS_(params)>                            \
2535   template <typename function_type, typename return_type, typename args_type, \
2536             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2537   return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::      \
2538   gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2539 
2540 }  // namespace internal
2541 
2542 // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
2543 #define ACTION(name)                                                          \
2544   class name##Action {                                                        \
2545    public:                                                                    \
2546    explicit name##Action() noexcept {}                                        \
2547    name##Action(const name##Action&) noexcept {}                              \
2548     template <typename F>                                                     \
2549     operator ::testing::Action<F>() const {                                   \
2550       return ::testing::internal::MakeAction<F, gmock_Impl>();                \
2551     }                                                                         \
2552    private:                                                                   \
2553     class gmock_Impl {                                                        \
2554      public:                                                                  \
2555       template <typename function_type, typename return_type,                 \
2556                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>        \
2557       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
2558     };                                                                        \
2559   };                                                                          \
2560   inline name##Action name() GTEST_MUST_USE_RESULT_;                          \
2561   inline name##Action name() { return name##Action(); }                       \
2562   template <typename function_type, typename return_type, typename args_type, \
2563             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                \
2564   return_type name##Action::gmock_Impl::gmock_PerformImpl(                    \
2565       GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
2566 
2567 #define ACTION_P(name, ...) \
2568   GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
2569 
2570 #define ACTION_P2(name, ...) \
2571   GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
2572 
2573 #define ACTION_P3(name, ...) \
2574   GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
2575 
2576 #define ACTION_P4(name, ...) \
2577   GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
2578 
2579 #define ACTION_P5(name, ...) \
2580   GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
2581 
2582 #define ACTION_P6(name, ...) \
2583   GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
2584 
2585 #define ACTION_P7(name, ...) \
2586   GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
2587 
2588 #define ACTION_P8(name, ...) \
2589   GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
2590 
2591 #define ACTION_P9(name, ...) \
2592   GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
2593 
2594 #define ACTION_P10(name, ...) \
2595   GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
2596 
2597 }  // namespace testing
2598 
2599 #ifdef _MSC_VER
2600 # pragma warning(pop)
2601 #endif
2602 
2603 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
2604 // Copyright 2007, Google Inc.
2605 // All rights reserved.
2606 //
2607 // Redistribution and use in source and binary forms, with or without
2608 // modification, are permitted provided that the following conditions are
2609 // met:
2610 //
2611 //     * Redistributions of source code must retain the above copyright
2612 // notice, this list of conditions and the following disclaimer.
2613 //     * Redistributions in binary form must reproduce the above
2614 // copyright notice, this list of conditions and the following disclaimer
2615 // in the documentation and/or other materials provided with the
2616 // distribution.
2617 //     * Neither the name of Google Inc. nor the names of its
2618 // contributors may be used to endorse or promote products derived from
2619 // this software without specific prior written permission.
2620 //
2621 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2622 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2623 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2624 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2625 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2626 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2627 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2628 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2629 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2630 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2631 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2632 
2633 
2634 // Google Mock - a framework for writing C++ mock classes.
2635 //
2636 // This file implements some commonly used cardinalities.  More
2637 // cardinalities can be defined by the user implementing the
2638 // CardinalityInterface interface if necessary.
2639 
2640 // GOOGLETEST_CM0002 DO NOT DELETE
2641 
2642 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2643 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2644 
2645 #include <limits.h>
2646 #include <memory>
2647 #include <ostream>  // NOLINT
2648 
2649 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
2650 /* class A needs to have dll-interface to be used by clients of class B */)
2651 
2652 namespace testing {
2653 
2654 // To implement a cardinality Foo, define:
2655 //   1. a class FooCardinality that implements the
2656 //      CardinalityInterface interface, and
2657 //   2. a factory function that creates a Cardinality object from a
2658 //      const FooCardinality*.
2659 //
2660 // The two-level delegation design follows that of Matcher, providing
2661 // consistency for extension developers.  It also eases ownership
2662 // management as Cardinality objects can now be copied like plain values.
2663 
2664 // The implementation of a cardinality.
2665 class CardinalityInterface {
2666  public:
2667   virtual ~CardinalityInterface() {}
2668 
2669   // Conservative estimate on the lower/upper bound of the number of
2670   // calls allowed.
2671   virtual int ConservativeLowerBound() const { return 0; }
2672   virtual int ConservativeUpperBound() const { return INT_MAX; }
2673 
2674   // Returns true if and only if call_count calls will satisfy this
2675   // cardinality.
2676   virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
2677 
2678   // Returns true if and only if call_count calls will saturate this
2679   // cardinality.
2680   virtual bool IsSaturatedByCallCount(int call_count) const = 0;
2681 
2682   // Describes self to an ostream.
2683   virtual void DescribeTo(::std::ostream* os) const = 0;
2684 };
2685 
2686 // A Cardinality is a copyable and IMMUTABLE (except by assignment)
2687 // object that specifies how many times a mock function is expected to
2688 // be called.  The implementation of Cardinality is just a std::shared_ptr
2689 // to const CardinalityInterface. Don't inherit from Cardinality!
2690 class GTEST_API_ Cardinality {
2691  public:
2692   // Constructs a null cardinality.  Needed for storing Cardinality
2693   // objects in STL containers.
2694   Cardinality() {}
2695 
2696   // Constructs a Cardinality from its implementation.
2697   explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
2698 
2699   // Conservative estimate on the lower/upper bound of the number of
2700   // calls allowed.
2701   int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
2702   int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
2703 
2704   // Returns true if and only if call_count calls will satisfy this
2705   // cardinality.
2706   bool IsSatisfiedByCallCount(int call_count) const {
2707     return impl_->IsSatisfiedByCallCount(call_count);
2708   }
2709 
2710   // Returns true if and only if call_count calls will saturate this
2711   // cardinality.
2712   bool IsSaturatedByCallCount(int call_count) const {
2713     return impl_->IsSaturatedByCallCount(call_count);
2714   }
2715 
2716   // Returns true if and only if call_count calls will over-saturate this
2717   // cardinality, i.e. exceed the maximum number of allowed calls.
2718   bool IsOverSaturatedByCallCount(int call_count) const {
2719     return impl_->IsSaturatedByCallCount(call_count) &&
2720         !impl_->IsSatisfiedByCallCount(call_count);
2721   }
2722 
2723   // Describes self to an ostream
2724   void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
2725 
2726   // Describes the given actual call count to an ostream.
2727   static void DescribeActualCallCountTo(int actual_call_count,
2728                                         ::std::ostream* os);
2729 
2730  private:
2731   std::shared_ptr<const CardinalityInterface> impl_;
2732 };
2733 
2734 // Creates a cardinality that allows at least n calls.
2735 GTEST_API_ Cardinality AtLeast(int n);
2736 
2737 // Creates a cardinality that allows at most n calls.
2738 GTEST_API_ Cardinality AtMost(int n);
2739 
2740 // Creates a cardinality that allows any number of calls.
2741 GTEST_API_ Cardinality AnyNumber();
2742 
2743 // Creates a cardinality that allows between min and max calls.
2744 GTEST_API_ Cardinality Between(int min, int max);
2745 
2746 // Creates a cardinality that allows exactly n calls.
2747 GTEST_API_ Cardinality Exactly(int n);
2748 
2749 // Creates a cardinality from its implementation.
2750 inline Cardinality MakeCardinality(const CardinalityInterface* c) {
2751   return Cardinality(c);
2752 }
2753 
2754 }  // namespace testing
2755 
2756 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
2757 
2758 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
2759 // Copyright 2007, Google Inc.
2760 // All rights reserved.
2761 //
2762 // Redistribution and use in source and binary forms, with or without
2763 // modification, are permitted provided that the following conditions are
2764 // met:
2765 //
2766 //     * Redistributions of source code must retain the above copyright
2767 // notice, this list of conditions and the following disclaimer.
2768 //     * Redistributions in binary form must reproduce the above
2769 // copyright notice, this list of conditions and the following disclaimer
2770 // in the documentation and/or other materials provided with the
2771 // distribution.
2772 //     * Neither the name of Google Inc. nor the names of its
2773 // contributors may be used to endorse or promote products derived from
2774 // this software without specific prior written permission.
2775 //
2776 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2777 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2778 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2779 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2780 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2781 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2782 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2783 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2784 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2785 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2786 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2787 
2788 // Google Mock - a framework for writing C++ mock classes.
2789 //
2790 // This file implements MOCK_METHOD.
2791 
2792 // GOOGLETEST_CM0002 DO NOT DELETE
2793 
2794 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT
2795 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_  // NOLINT
2796 
2797 #include <type_traits>  // IWYU pragma: keep
2798 #include <utility>      // IWYU pragma: keep
2799 
2800 // Copyright 2007, Google Inc.
2801 // All rights reserved.
2802 //
2803 // Redistribution and use in source and binary forms, with or without
2804 // modification, are permitted provided that the following conditions are
2805 // met:
2806 //
2807 //     * Redistributions of source code must retain the above copyright
2808 // notice, this list of conditions and the following disclaimer.
2809 //     * Redistributions in binary form must reproduce the above
2810 // copyright notice, this list of conditions and the following disclaimer
2811 // in the documentation and/or other materials provided with the
2812 // distribution.
2813 //     * Neither the name of Google Inc. nor the names of its
2814 // contributors may be used to endorse or promote products derived from
2815 // this software without specific prior written permission.
2816 //
2817 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2818 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2819 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2820 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2821 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2822 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2823 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2824 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2825 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2826 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2827 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2828 
2829 
2830 // Google Mock - a framework for writing C++ mock classes.
2831 //
2832 // This file implements the ON_CALL() and EXPECT_CALL() macros.
2833 //
2834 // A user can use the ON_CALL() macro to specify the default action of
2835 // a mock method.  The syntax is:
2836 //
2837 //   ON_CALL(mock_object, Method(argument-matchers))
2838 //       .With(multi-argument-matcher)
2839 //       .WillByDefault(action);
2840 //
2841 //  where the .With() clause is optional.
2842 //
2843 // A user can use the EXPECT_CALL() macro to specify an expectation on
2844 // a mock method.  The syntax is:
2845 //
2846 //   EXPECT_CALL(mock_object, Method(argument-matchers))
2847 //       .With(multi-argument-matchers)
2848 //       .Times(cardinality)
2849 //       .InSequence(sequences)
2850 //       .After(expectations)
2851 //       .WillOnce(action)
2852 //       .WillRepeatedly(action)
2853 //       .RetiresOnSaturation();
2854 //
2855 // where all clauses are optional, and .InSequence()/.After()/
2856 // .WillOnce() can appear any number of times.
2857 
2858 // GOOGLETEST_CM0002 DO NOT DELETE
2859 
2860 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2861 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
2862 
2863 #include <cstdint>
2864 #include <functional>
2865 #include <map>
2866 #include <memory>
2867 #include <set>
2868 #include <sstream>
2869 #include <string>
2870 #include <type_traits>
2871 #include <utility>
2872 #include <vector>
2873 // Copyright 2007, Google Inc.
2874 // All rights reserved.
2875 //
2876 // Redistribution and use in source and binary forms, with or without
2877 // modification, are permitted provided that the following conditions are
2878 // met:
2879 //
2880 //     * Redistributions of source code must retain the above copyright
2881 // notice, this list of conditions and the following disclaimer.
2882 //     * Redistributions in binary form must reproduce the above
2883 // copyright notice, this list of conditions and the following disclaimer
2884 // in the documentation and/or other materials provided with the
2885 // distribution.
2886 //     * Neither the name of Google Inc. nor the names of its
2887 // contributors may be used to endorse or promote products derived from
2888 // this software without specific prior written permission.
2889 //
2890 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2891 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2892 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2893 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2894 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2895 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2896 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2897 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2898 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2899 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2900 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2901 
2902 
2903 // Google Mock - a framework for writing C++ mock classes.
2904 //
2905 // The MATCHER* family of macros can be used in a namespace scope to
2906 // define custom matchers easily.
2907 //
2908 // Basic Usage
2909 // ===========
2910 //
2911 // The syntax
2912 //
2913 //   MATCHER(name, description_string) { statements; }
2914 //
2915 // defines a matcher with the given name that executes the statements,
2916 // which must return a bool to indicate if the match succeeds.  Inside
2917 // the statements, you can refer to the value being matched by 'arg',
2918 // and refer to its type by 'arg_type'.
2919 //
2920 // The description string documents what the matcher does, and is used
2921 // to generate the failure message when the match fails.  Since a
2922 // MATCHER() is usually defined in a header file shared by multiple
2923 // C++ source files, we require the description to be a C-string
2924 // literal to avoid possible side effects.  It can be empty, in which
2925 // case we'll use the sequence of words in the matcher name as the
2926 // description.
2927 //
2928 // For example:
2929 //
2930 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
2931 //
2932 // allows you to write
2933 //
2934 //   // Expects mock_foo.Bar(n) to be called where n is even.
2935 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
2936 //
2937 // or,
2938 //
2939 //   // Verifies that the value of some_expression is even.
2940 //   EXPECT_THAT(some_expression, IsEven());
2941 //
2942 // If the above assertion fails, it will print something like:
2943 //
2944 //   Value of: some_expression
2945 //   Expected: is even
2946 //     Actual: 7
2947 //
2948 // where the description "is even" is automatically calculated from the
2949 // matcher name IsEven.
2950 //
2951 // Argument Type
2952 // =============
2953 //
2954 // Note that the type of the value being matched (arg_type) is
2955 // determined by the context in which you use the matcher and is
2956 // supplied to you by the compiler, so you don't need to worry about
2957 // declaring it (nor can you).  This allows the matcher to be
2958 // polymorphic.  For example, IsEven() can be used to match any type
2959 // where the value of "(arg % 2) == 0" can be implicitly converted to
2960 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
2961 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
2962 // 'arg_type' will be unsigned long; and so on.
2963 //
2964 // Parameterizing Matchers
2965 // =======================
2966 //
2967 // Sometimes you'll want to parameterize the matcher.  For that you
2968 // can use another macro:
2969 //
2970 //   MATCHER_P(name, param_name, description_string) { statements; }
2971 //
2972 // For example:
2973 //
2974 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
2975 //
2976 // will allow you to write:
2977 //
2978 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
2979 //
2980 // which may lead to this message (assuming n is 10):
2981 //
2982 //   Value of: Blah("a")
2983 //   Expected: has absolute value 10
2984 //     Actual: -9
2985 //
2986 // Note that both the matcher description and its parameter are
2987 // printed, making the message human-friendly.
2988 //
2989 // In the matcher definition body, you can write 'foo_type' to
2990 // reference the type of a parameter named 'foo'.  For example, in the
2991 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
2992 // 'value_type' to refer to the type of 'value'.
2993 //
2994 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
2995 // support multi-parameter matchers.
2996 //
2997 // Describing Parameterized Matchers
2998 // =================================
2999 //
3000 // The last argument to MATCHER*() is a string-typed expression.  The
3001 // expression can reference all of the matcher's parameters and a
3002 // special bool-typed variable named 'negation'.  When 'negation' is
3003 // false, the expression should evaluate to the matcher's description;
3004 // otherwise it should evaluate to the description of the negation of
3005 // the matcher.  For example,
3006 //
3007 //   using testing::PrintToString;
3008 //
3009 //   MATCHER_P2(InClosedRange, low, hi,
3010 //       std::string(negation ? "is not" : "is") + " in range [" +
3011 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
3012 //     return low <= arg && arg <= hi;
3013 //   }
3014 //   ...
3015 //   EXPECT_THAT(3, InClosedRange(4, 6));
3016 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3017 //
3018 // would generate two failures that contain the text:
3019 //
3020 //   Expected: is in range [4, 6]
3021 //   ...
3022 //   Expected: is not in range [2, 4]
3023 //
3024 // If you specify "" as the description, the failure message will
3025 // contain the sequence of words in the matcher name followed by the
3026 // parameter values printed as a tuple.  For example,
3027 //
3028 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
3029 //   ...
3030 //   EXPECT_THAT(3, InClosedRange(4, 6));
3031 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
3032 //
3033 // would generate two failures that contain the text:
3034 //
3035 //   Expected: in closed range (4, 6)
3036 //   ...
3037 //   Expected: not (in closed range (2, 4))
3038 //
3039 // Types of Matcher Parameters
3040 // ===========================
3041 //
3042 // For the purpose of typing, you can view
3043 //
3044 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
3045 //
3046 // as shorthand for
3047 //
3048 //   template <typename p1_type, ..., typename pk_type>
3049 //   FooMatcherPk<p1_type, ..., pk_type>
3050 //   Foo(p1_type p1, ..., pk_type pk) { ... }
3051 //
3052 // When you write Foo(v1, ..., vk), the compiler infers the types of
3053 // the parameters v1, ..., and vk for you.  If you are not happy with
3054 // the result of the type inference, you can specify the types by
3055 // explicitly instantiating the template, as in Foo<long, bool>(5,
3056 // false).  As said earlier, you don't get to (or need to) specify
3057 // 'arg_type' as that's determined by the context in which the matcher
3058 // is used.  You can assign the result of expression Foo(p1, ..., pk)
3059 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
3060 // can be useful when composing matchers.
3061 //
3062 // While you can instantiate a matcher template with reference types,
3063 // passing the parameters by pointer usually makes your code more
3064 // readable.  If, however, you still want to pass a parameter by
3065 // reference, be aware that in the failure message generated by the
3066 // matcher you will see the value of the referenced object but not its
3067 // address.
3068 //
3069 // Explaining Match Results
3070 // ========================
3071 //
3072 // Sometimes the matcher description alone isn't enough to explain why
3073 // the match has failed or succeeded.  For example, when expecting a
3074 // long string, it can be very helpful to also print the diff between
3075 // the expected string and the actual one.  To achieve that, you can
3076 // optionally stream additional information to a special variable
3077 // named result_listener, whose type is a pointer to class
3078 // MatchResultListener:
3079 //
3080 //   MATCHER_P(EqualsLongString, str, "") {
3081 //     if (arg == str) return true;
3082 //
3083 //     *result_listener << "the difference: "
3084 ///                     << DiffStrings(str, arg);
3085 //     return false;
3086 //   }
3087 //
3088 // Overloading Matchers
3089 // ====================
3090 //
3091 // You can overload matchers with different numbers of parameters:
3092 //
3093 //   MATCHER_P(Blah, a, description_string1) { ... }
3094 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
3095 //
3096 // Caveats
3097 // =======
3098 //
3099 // When defining a new matcher, you should also consider implementing
3100 // MatcherInterface or using MakePolymorphicMatcher().  These
3101 // approaches require more work than the MATCHER* macros, but also
3102 // give you more control on the types of the value being matched and
3103 // the matcher parameters, which may leads to better compiler error
3104 // messages when the matcher is used wrong.  They also allow
3105 // overloading matchers based on parameter types (as opposed to just
3106 // based on the number of parameters).
3107 //
3108 // MATCHER*() can only be used in a namespace scope as templates cannot be
3109 // declared inside of a local class.
3110 //
3111 // More Information
3112 // ================
3113 //
3114 // To learn more about using these macros, please search for 'MATCHER'
3115 // on
3116 // https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
3117 //
3118 // This file also implements some commonly used argument matchers.  More
3119 // matchers can be defined by the user implementing the
3120 // MatcherInterface<T> interface if necessary.
3121 //
3122 // See googletest/include/gtest/gtest-matchers.h for the definition of class
3123 // Matcher, class MatcherInterface, and others.
3124 
3125 // GOOGLETEST_CM0002 DO NOT DELETE
3126 
3127 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3128 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3129 
3130 #include <algorithm>
3131 #include <cmath>
3132 #include <initializer_list>
3133 #include <iterator>
3134 #include <limits>
3135 #include <memory>
3136 #include <ostream>  // NOLINT
3137 #include <sstream>
3138 #include <string>
3139 #include <type_traits>
3140 #include <utility>
3141 #include <vector>
3142 
3143 
3144 // MSVC warning C5046 is new as of VS2017 version 15.8.
3145 #if defined(_MSC_VER) && _MSC_VER >= 1915
3146 #define GMOCK_MAYBE_5046_ 5046
3147 #else
3148 #define GMOCK_MAYBE_5046_
3149 #endif
3150 
3151 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
3152     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
3153                               clients of class B */
3154     /* Symbol involving type with internal linkage not defined */)
3155 
3156 namespace testing {
3157 
3158 // To implement a matcher Foo for type T, define:
3159 //   1. a class FooMatcherImpl that implements the
3160 //      MatcherInterface<T> interface, and
3161 //   2. a factory function that creates a Matcher<T> object from a
3162 //      FooMatcherImpl*.
3163 //
3164 // The two-level delegation design makes it possible to allow a user
3165 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
3166 // is impossible if we pass matchers by pointers.  It also eases
3167 // ownership management as Matcher objects can now be copied like
3168 // plain values.
3169 
3170 // A match result listener that stores the explanation in a string.
3171 class StringMatchResultListener : public MatchResultListener {
3172  public:
3173   StringMatchResultListener() : MatchResultListener(&ss_) {}
3174 
3175   // Returns the explanation accumulated so far.
3176   std::string str() const { return ss_.str(); }
3177 
3178   // Clears the explanation accumulated so far.
3179   void Clear() { ss_.str(""); }
3180 
3181  private:
3182   ::std::stringstream ss_;
3183 
3184   GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
3185 };
3186 
3187 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3188 // and MUST NOT BE USED IN USER CODE!!!
3189 namespace internal {
3190 
3191 // The MatcherCastImpl class template is a helper for implementing
3192 // MatcherCast().  We need this helper in order to partially
3193 // specialize the implementation of MatcherCast() (C++ allows
3194 // class/struct templates to be partially specialized, but not
3195 // function templates.).
3196 
3197 // This general version is used when MatcherCast()'s argument is a
3198 // polymorphic matcher (i.e. something that can be converted to a
3199 // Matcher but is not one yet; for example, Eq(value)) or a value (for
3200 // example, "hello").
3201 template <typename T, typename M>
3202 class MatcherCastImpl {
3203  public:
3204   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
3205     // M can be a polymorphic matcher, in which case we want to use
3206     // its conversion operator to create Matcher<T>.  Or it can be a value
3207     // that should be passed to the Matcher<T>'s constructor.
3208     //
3209     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
3210     // polymorphic matcher because it'll be ambiguous if T has an implicit
3211     // constructor from M (this usually happens when T has an implicit
3212     // constructor from any type).
3213     //
3214     // It won't work to unconditionally implicit_cast
3215     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
3216     // a user-defined conversion from M to T if one exists (assuming M is
3217     // a value).
3218     return CastImpl(polymorphic_matcher_or_value,
3219                     std::is_convertible<M, Matcher<T>>{},
3220                     std::is_convertible<M, T>{});
3221   }
3222 
3223  private:
3224   template <bool Ignore>
3225   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
3226                              std::true_type /* convertible_to_matcher */,
3227                              std::integral_constant<bool, Ignore>) {
3228     // M is implicitly convertible to Matcher<T>, which means that either
3229     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
3230     // from M.  In both cases using the implicit conversion will produce a
3231     // matcher.
3232     //
3233     // Even if T has an implicit constructor from M, it won't be called because
3234     // creating Matcher<T> would require a chain of two user-defined conversions
3235     // (first to create T from M and then to create Matcher<T> from T).
3236     return polymorphic_matcher_or_value;
3237   }
3238 
3239   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
3240   // matcher. It's a value of a type implicitly convertible to T. Use direct
3241   // initialization to create a matcher.
3242   static Matcher<T> CastImpl(const M& value,
3243                              std::false_type /* convertible_to_matcher */,
3244                              std::true_type /* convertible_to_T */) {
3245     return Matcher<T>(ImplicitCast_<T>(value));
3246   }
3247 
3248   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
3249   // polymorphic matcher Eq(value) in this case.
3250   //
3251   // Note that we first attempt to perform an implicit cast on the value and
3252   // only fall back to the polymorphic Eq() matcher afterwards because the
3253   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
3254   // which might be undefined even when Rhs is implicitly convertible to Lhs
3255   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
3256   //
3257   // We don't define this method inline as we need the declaration of Eq().
3258   static Matcher<T> CastImpl(const M& value,
3259                              std::false_type /* convertible_to_matcher */,
3260                              std::false_type /* convertible_to_T */);
3261 };
3262 
3263 // This more specialized version is used when MatcherCast()'s argument
3264 // is already a Matcher.  This only compiles when type T can be
3265 // statically converted to type U.
3266 template <typename T, typename U>
3267 class MatcherCastImpl<T, Matcher<U> > {
3268  public:
3269   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
3270     return Matcher<T>(new Impl(source_matcher));
3271   }
3272 
3273  private:
3274   class Impl : public MatcherInterface<T> {
3275    public:
3276     explicit Impl(const Matcher<U>& source_matcher)
3277         : source_matcher_(source_matcher) {}
3278 
3279     // We delegate the matching logic to the source matcher.
3280     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3281       using FromType = typename std::remove_cv<typename std::remove_pointer<
3282           typename std::remove_reference<T>::type>::type>::type;
3283       using ToType = typename std::remove_cv<typename std::remove_pointer<
3284           typename std::remove_reference<U>::type>::type>::type;
3285       // Do not allow implicitly converting base*/& to derived*/&.
3286       static_assert(
3287           // Do not trigger if only one of them is a pointer. That implies a
3288           // regular conversion and not a down_cast.
3289           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
3290            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
3291               std::is_same<FromType, ToType>::value ||
3292               !std::is_base_of<FromType, ToType>::value,
3293           "Can't implicitly convert from <base> to <derived>");
3294 
3295       // Do the cast to `U` explicitly if necessary.
3296       // Otherwise, let implicit conversions do the trick.
3297       using CastType =
3298           typename std::conditional<std::is_convertible<T&, const U&>::value,
3299                                     T&, U>::type;
3300 
3301       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
3302                                              listener);
3303     }
3304 
3305     void DescribeTo(::std::ostream* os) const override {
3306       source_matcher_.DescribeTo(os);
3307     }
3308 
3309     void DescribeNegationTo(::std::ostream* os) const override {
3310       source_matcher_.DescribeNegationTo(os);
3311     }
3312 
3313    private:
3314     const Matcher<U> source_matcher_;
3315   };
3316 };
3317 
3318 // This even more specialized version is used for efficiently casting
3319 // a matcher to its own type.
3320 template <typename T>
3321 class MatcherCastImpl<T, Matcher<T> > {
3322  public:
3323   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
3324 };
3325 
3326 // Template specialization for parameterless Matcher.
3327 template <typename Derived>
3328 class MatcherBaseImpl {
3329  public:
3330   MatcherBaseImpl() = default;
3331 
3332   template <typename T>
3333   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
3334     return ::testing::Matcher<T>(new
3335                                  typename Derived::template gmock_Impl<T>());
3336   }
3337 };
3338 
3339 // Template specialization for Matcher with parameters.
3340 template <template <typename...> class Derived, typename... Ts>
3341 class MatcherBaseImpl<Derived<Ts...>> {
3342  public:
3343   // Mark the constructor explicit for single argument T to avoid implicit
3344   // conversions.
3345   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
3346             typename E::type* = nullptr>
3347   explicit MatcherBaseImpl(Ts... params)
3348       : params_(std::forward<Ts>(params)...) {}
3349   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
3350             typename = typename E::type>
3351   MatcherBaseImpl(Ts... params)  // NOLINT
3352       : params_(std::forward<Ts>(params)...) {}
3353 
3354   template <typename F>
3355   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
3356     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
3357   }
3358 
3359  private:
3360   template <typename F, std::size_t... tuple_ids>
3361   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
3362     return ::testing::Matcher<F>(
3363         new typename Derived<Ts...>::template gmock_Impl<F>(
3364             std::get<tuple_ids>(params_)...));
3365   }
3366 
3367   const std::tuple<Ts...> params_;
3368 };
3369 
3370 }  // namespace internal
3371 
3372 // In order to be safe and clear, casting between different matcher
3373 // types is done explicitly via MatcherCast<T>(m), which takes a
3374 // matcher m and returns a Matcher<T>.  It compiles only when T can be
3375 // statically converted to the argument type of m.
3376 template <typename T, typename M>
3377 inline Matcher<T> MatcherCast(const M& matcher) {
3378   return internal::MatcherCastImpl<T, M>::Cast(matcher);
3379 }
3380 
3381 // This overload handles polymorphic matchers and values only since
3382 // monomorphic matchers are handled by the next one.
3383 template <typename T, typename M>
3384 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
3385   return MatcherCast<T>(polymorphic_matcher_or_value);
3386 }
3387 
3388 // This overload handles monomorphic matchers.
3389 //
3390 // In general, if type T can be implicitly converted to type U, we can
3391 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
3392 // contravariant): just keep a copy of the original Matcher<U>, convert the
3393 // argument from type T to U, and then pass it to the underlying Matcher<U>.
3394 // The only exception is when U is a reference and T is not, as the
3395 // underlying Matcher<U> may be interested in the argument's address, which
3396 // is not preserved in the conversion from T to U.
3397 template <typename T, typename U>
3398 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
3399   // Enforce that T can be implicitly converted to U.
3400   static_assert(std::is_convertible<const T&, const U&>::value,
3401                 "T must be implicitly convertible to U");
3402   // Enforce that we are not converting a non-reference type T to a reference
3403   // type U.
3404   GTEST_COMPILE_ASSERT_(
3405       std::is_reference<T>::value || !std::is_reference<U>::value,
3406       cannot_convert_non_reference_arg_to_reference);
3407   // In case both T and U are arithmetic types, enforce that the
3408   // conversion is not lossy.
3409   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
3410   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
3411   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
3412   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
3413   GTEST_COMPILE_ASSERT_(
3414       kTIsOther || kUIsOther ||
3415       (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
3416       conversion_of_arithmetic_types_must_be_lossless);
3417   return MatcherCast<T>(matcher);
3418 }
3419 
3420 // A<T>() returns a matcher that matches any value of type T.
3421 template <typename T>
3422 Matcher<T> A();
3423 
3424 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
3425 // and MUST NOT BE USED IN USER CODE!!!
3426 namespace internal {
3427 
3428 // If the explanation is not empty, prints it to the ostream.
3429 inline void PrintIfNotEmpty(const std::string& explanation,
3430                             ::std::ostream* os) {
3431   if (explanation != "" && os != nullptr) {
3432     *os << ", " << explanation;
3433   }
3434 }
3435 
3436 // Returns true if the given type name is easy to read by a human.
3437 // This is used to decide whether printing the type of a value might
3438 // be helpful.
3439 inline bool IsReadableTypeName(const std::string& type_name) {
3440   // We consider a type name readable if it's short or doesn't contain
3441   // a template or function type.
3442   return (type_name.length() <= 20 ||
3443           type_name.find_first_of("<(") == std::string::npos);
3444 }
3445 
3446 // Matches the value against the given matcher, prints the value and explains
3447 // the match result to the listener. Returns the match result.
3448 // 'listener' must not be NULL.
3449 // Value cannot be passed by const reference, because some matchers take a
3450 // non-const argument.
3451 template <typename Value, typename T>
3452 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
3453                           MatchResultListener* listener) {
3454   if (!listener->IsInterested()) {
3455     // If the listener is not interested, we do not need to construct the
3456     // inner explanation.
3457     return matcher.Matches(value);
3458   }
3459 
3460   StringMatchResultListener inner_listener;
3461   const bool match = matcher.MatchAndExplain(value, &inner_listener);
3462 
3463   UniversalPrint(value, listener->stream());
3464 #if GTEST_HAS_RTTI
3465   const std::string& type_name = GetTypeName<Value>();
3466   if (IsReadableTypeName(type_name))
3467     *listener->stream() << " (of type " << type_name << ")";
3468 #endif
3469   PrintIfNotEmpty(inner_listener.str(), listener->stream());
3470 
3471   return match;
3472 }
3473 
3474 // An internal helper class for doing compile-time loop on a tuple's
3475 // fields.
3476 template <size_t N>
3477 class TuplePrefix {
3478  public:
3479   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
3480   // if and only if the first N fields of matcher_tuple matches
3481   // the first N fields of value_tuple, respectively.
3482   template <typename MatcherTuple, typename ValueTuple>
3483   static bool Matches(const MatcherTuple& matcher_tuple,
3484                       const ValueTuple& value_tuple) {
3485     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
3486            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
3487   }
3488 
3489   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
3490   // describes failures in matching the first N fields of matchers
3491   // against the first N fields of values.  If there is no failure,
3492   // nothing will be streamed to os.
3493   template <typename MatcherTuple, typename ValueTuple>
3494   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
3495                                      const ValueTuple& values,
3496                                      ::std::ostream* os) {
3497     // First, describes failures in the first N - 1 fields.
3498     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
3499 
3500     // Then describes the failure (if any) in the (N - 1)-th (0-based)
3501     // field.
3502     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
3503         std::get<N - 1>(matchers);
3504     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
3505     const Value& value = std::get<N - 1>(values);
3506     StringMatchResultListener listener;
3507     if (!matcher.MatchAndExplain(value, &listener)) {
3508       *os << "  Expected arg #" << N - 1 << ": ";
3509       std::get<N - 1>(matchers).DescribeTo(os);
3510       *os << "\n           Actual: ";
3511       // We remove the reference in type Value to prevent the
3512       // universal printer from printing the address of value, which
3513       // isn't interesting to the user most of the time.  The
3514       // matcher's MatchAndExplain() method handles the case when
3515       // the address is interesting.
3516       internal::UniversalPrint(value, os);
3517       PrintIfNotEmpty(listener.str(), os);
3518       *os << "\n";
3519     }
3520   }
3521 };
3522 
3523 // The base case.
3524 template <>
3525 class TuplePrefix<0> {
3526  public:
3527   template <typename MatcherTuple, typename ValueTuple>
3528   static bool Matches(const MatcherTuple& /* matcher_tuple */,
3529                       const ValueTuple& /* value_tuple */) {
3530     return true;
3531   }
3532 
3533   template <typename MatcherTuple, typename ValueTuple>
3534   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
3535                                      const ValueTuple& /* values */,
3536                                      ::std::ostream* /* os */) {}
3537 };
3538 
3539 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
3540 // all matchers in matcher_tuple match the corresponding fields in
3541 // value_tuple.  It is a compiler error if matcher_tuple and
3542 // value_tuple have different number of fields or incompatible field
3543 // types.
3544 template <typename MatcherTuple, typename ValueTuple>
3545 bool TupleMatches(const MatcherTuple& matcher_tuple,
3546                   const ValueTuple& value_tuple) {
3547   // Makes sure that matcher_tuple and value_tuple have the same
3548   // number of fields.
3549   GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
3550                             std::tuple_size<ValueTuple>::value,
3551                         matcher_and_value_have_different_numbers_of_fields);
3552   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
3553                                                                   value_tuple);
3554 }
3555 
3556 // Describes failures in matching matchers against values.  If there
3557 // is no failure, nothing will be streamed to os.
3558 template <typename MatcherTuple, typename ValueTuple>
3559 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
3560                                 const ValueTuple& values,
3561                                 ::std::ostream* os) {
3562   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
3563       matchers, values, os);
3564 }
3565 
3566 // TransformTupleValues and its helper.
3567 //
3568 // TransformTupleValuesHelper hides the internal machinery that
3569 // TransformTupleValues uses to implement a tuple traversal.
3570 template <typename Tuple, typename Func, typename OutIter>
3571 class TransformTupleValuesHelper {
3572  private:
3573   typedef ::std::tuple_size<Tuple> TupleSize;
3574 
3575  public:
3576   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
3577   // Returns the final value of 'out' in case the caller needs it.
3578   static OutIter Run(Func f, const Tuple& t, OutIter out) {
3579     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
3580   }
3581 
3582  private:
3583   template <typename Tup, size_t kRemainingSize>
3584   struct IterateOverTuple {
3585     OutIter operator() (Func f, const Tup& t, OutIter out) const {
3586       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
3587       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
3588     }
3589   };
3590   template <typename Tup>
3591   struct IterateOverTuple<Tup, 0> {
3592     OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
3593       return out;
3594     }
3595   };
3596 };
3597 
3598 // Successively invokes 'f(element)' on each element of the tuple 't',
3599 // appending each result to the 'out' iterator. Returns the final value
3600 // of 'out'.
3601 template <typename Tuple, typename Func, typename OutIter>
3602 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
3603   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
3604 }
3605 
3606 // Implements _, a matcher that matches any value of any
3607 // type.  This is a polymorphic matcher, so we need a template type
3608 // conversion operator to make it appearing as a Matcher<T> for any
3609 // type T.
3610 class AnythingMatcher {
3611  public:
3612   using is_gtest_matcher = void;
3613 
3614   template <typename T>
3615   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
3616     return true;
3617   }
3618   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
3619   void DescribeNegationTo(::std::ostream* os) const {
3620     // This is mostly for completeness' sake, as it's not very useful
3621     // to write Not(A<bool>()).  However we cannot completely rule out
3622     // such a possibility, and it doesn't hurt to be prepared.
3623     *os << "never matches";
3624   }
3625 };
3626 
3627 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
3628 // pointer that is NULL.
3629 class IsNullMatcher {
3630  public:
3631   template <typename Pointer>
3632   bool MatchAndExplain(const Pointer& p,
3633                        MatchResultListener* /* listener */) const {
3634     return p == nullptr;
3635   }
3636 
3637   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
3638   void DescribeNegationTo(::std::ostream* os) const {
3639     *os << "isn't NULL";
3640   }
3641 };
3642 
3643 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
3644 // pointer that is not NULL.
3645 class NotNullMatcher {
3646  public:
3647   template <typename Pointer>
3648   bool MatchAndExplain(const Pointer& p,
3649                        MatchResultListener* /* listener */) const {
3650     return p != nullptr;
3651   }
3652 
3653   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
3654   void DescribeNegationTo(::std::ostream* os) const {
3655     *os << "is NULL";
3656   }
3657 };
3658 
3659 // Ref(variable) matches any argument that is a reference to
3660 // 'variable'.  This matcher is polymorphic as it can match any
3661 // super type of the type of 'variable'.
3662 //
3663 // The RefMatcher template class implements Ref(variable).  It can
3664 // only be instantiated with a reference type.  This prevents a user
3665 // from mistakenly using Ref(x) to match a non-reference function
3666 // argument.  For example, the following will righteously cause a
3667 // compiler error:
3668 //
3669 //   int n;
3670 //   Matcher<int> m1 = Ref(n);   // This won't compile.
3671 //   Matcher<int&> m2 = Ref(n);  // This will compile.
3672 template <typename T>
3673 class RefMatcher;
3674 
3675 template <typename T>
3676 class RefMatcher<T&> {
3677   // Google Mock is a generic framework and thus needs to support
3678   // mocking any function types, including those that take non-const
3679   // reference arguments.  Therefore the template parameter T (and
3680   // Super below) can be instantiated to either a const type or a
3681   // non-const type.
3682  public:
3683   // RefMatcher() takes a T& instead of const T&, as we want the
3684   // compiler to catch using Ref(const_value) as a matcher for a
3685   // non-const reference.
3686   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
3687 
3688   template <typename Super>
3689   operator Matcher<Super&>() const {
3690     // By passing object_ (type T&) to Impl(), which expects a Super&,
3691     // we make sure that Super is a super type of T.  In particular,
3692     // this catches using Ref(const_value) as a matcher for a
3693     // non-const reference, as you cannot implicitly convert a const
3694     // reference to a non-const reference.
3695     return MakeMatcher(new Impl<Super>(object_));
3696   }
3697 
3698  private:
3699   template <typename Super>
3700   class Impl : public MatcherInterface<Super&> {
3701    public:
3702     explicit Impl(Super& x) : object_(x) {}  // NOLINT
3703 
3704     // MatchAndExplain() takes a Super& (as opposed to const Super&)
3705     // in order to match the interface MatcherInterface<Super&>.
3706     bool MatchAndExplain(Super& x,
3707                          MatchResultListener* listener) const override {
3708       *listener << "which is located @" << static_cast<const void*>(&x);
3709       return &x == &object_;
3710     }
3711 
3712     void DescribeTo(::std::ostream* os) const override {
3713       *os << "references the variable ";
3714       UniversalPrinter<Super&>::Print(object_, os);
3715     }
3716 
3717     void DescribeNegationTo(::std::ostream* os) const override {
3718       *os << "does not reference the variable ";
3719       UniversalPrinter<Super&>::Print(object_, os);
3720     }
3721 
3722    private:
3723     const Super& object_;
3724   };
3725 
3726   T& object_;
3727 };
3728 
3729 // Polymorphic helper functions for narrow and wide string matchers.
3730 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
3731   return String::CaseInsensitiveCStringEquals(lhs, rhs);
3732 }
3733 
3734 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
3735                                          const wchar_t* rhs) {
3736   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
3737 }
3738 
3739 // String comparison for narrow or wide strings that can have embedded NUL
3740 // characters.
3741 template <typename StringType>
3742 bool CaseInsensitiveStringEquals(const StringType& s1,
3743                                  const StringType& s2) {
3744   // Are the heads equal?
3745   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
3746     return false;
3747   }
3748 
3749   // Skip the equal heads.
3750   const typename StringType::value_type nul = 0;
3751   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
3752 
3753   // Are we at the end of either s1 or s2?
3754   if (i1 == StringType::npos || i2 == StringType::npos) {
3755     return i1 == i2;
3756   }
3757 
3758   // Are the tails equal?
3759   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
3760 }
3761 
3762 // String matchers.
3763 
3764 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
3765 template <typename StringType>
3766 class StrEqualityMatcher {
3767  public:
3768   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
3769       : string_(std::move(str)),
3770         expect_eq_(expect_eq),
3771         case_sensitive_(case_sensitive) {}
3772 
3773 #if GTEST_INTERNAL_HAS_STRING_VIEW
3774   bool MatchAndExplain(const internal::StringView& s,
3775                        MatchResultListener* listener) const {
3776     // This should fail to compile if StringView is used with wide
3777     // strings.
3778     const StringType& str = std::string(s);
3779     return MatchAndExplain(str, listener);
3780   }
3781 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3782 
3783   // Accepts pointer types, particularly:
3784   //   const char*
3785   //   char*
3786   //   const wchar_t*
3787   //   wchar_t*
3788   template <typename CharType>
3789   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3790     if (s == nullptr) {
3791       return !expect_eq_;
3792     }
3793     return MatchAndExplain(StringType(s), listener);
3794   }
3795 
3796   // Matches anything that can convert to StringType.
3797   //
3798   // This is a template, not just a plain function with const StringType&,
3799   // because StringView has some interfering non-explicit constructors.
3800   template <typename MatcheeStringType>
3801   bool MatchAndExplain(const MatcheeStringType& s,
3802                        MatchResultListener* /* listener */) const {
3803     const StringType s2(s);
3804     const bool eq = case_sensitive_ ? s2 == string_ :
3805         CaseInsensitiveStringEquals(s2, string_);
3806     return expect_eq_ == eq;
3807   }
3808 
3809   void DescribeTo(::std::ostream* os) const {
3810     DescribeToHelper(expect_eq_, os);
3811   }
3812 
3813   void DescribeNegationTo(::std::ostream* os) const {
3814     DescribeToHelper(!expect_eq_, os);
3815   }
3816 
3817  private:
3818   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
3819     *os << (expect_eq ? "is " : "isn't ");
3820     *os << "equal to ";
3821     if (!case_sensitive_) {
3822       *os << "(ignoring case) ";
3823     }
3824     UniversalPrint(string_, os);
3825   }
3826 
3827   const StringType string_;
3828   const bool expect_eq_;
3829   const bool case_sensitive_;
3830 };
3831 
3832 // Implements the polymorphic HasSubstr(substring) matcher, which
3833 // can be used as a Matcher<T> as long as T can be converted to a
3834 // string.
3835 template <typename StringType>
3836 class HasSubstrMatcher {
3837  public:
3838   explicit HasSubstrMatcher(const StringType& substring)
3839       : substring_(substring) {}
3840 
3841 #if GTEST_INTERNAL_HAS_STRING_VIEW
3842   bool MatchAndExplain(const internal::StringView& s,
3843                        MatchResultListener* listener) const {
3844     // This should fail to compile if StringView is used with wide
3845     // strings.
3846     const StringType& str = std::string(s);
3847     return MatchAndExplain(str, listener);
3848   }
3849 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3850 
3851   // Accepts pointer types, particularly:
3852   //   const char*
3853   //   char*
3854   //   const wchar_t*
3855   //   wchar_t*
3856   template <typename CharType>
3857   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3858     return s != nullptr && MatchAndExplain(StringType(s), listener);
3859   }
3860 
3861   // Matches anything that can convert to StringType.
3862   //
3863   // This is a template, not just a plain function with const StringType&,
3864   // because StringView has some interfering non-explicit constructors.
3865   template <typename MatcheeStringType>
3866   bool MatchAndExplain(const MatcheeStringType& s,
3867                        MatchResultListener* /* listener */) const {
3868     return StringType(s).find(substring_) != StringType::npos;
3869   }
3870 
3871   // Describes what this matcher matches.
3872   void DescribeTo(::std::ostream* os) const {
3873     *os << "has substring ";
3874     UniversalPrint(substring_, os);
3875   }
3876 
3877   void DescribeNegationTo(::std::ostream* os) const {
3878     *os << "has no substring ";
3879     UniversalPrint(substring_, os);
3880   }
3881 
3882  private:
3883   const StringType substring_;
3884 };
3885 
3886 // Implements the polymorphic StartsWith(substring) matcher, which
3887 // can be used as a Matcher<T> as long as T can be converted to a
3888 // string.
3889 template <typename StringType>
3890 class StartsWithMatcher {
3891  public:
3892   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
3893   }
3894 
3895 #if GTEST_INTERNAL_HAS_STRING_VIEW
3896   bool MatchAndExplain(const internal::StringView& s,
3897                        MatchResultListener* listener) const {
3898     // This should fail to compile if StringView is used with wide
3899     // strings.
3900     const StringType& str = std::string(s);
3901     return MatchAndExplain(str, listener);
3902   }
3903 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3904 
3905   // Accepts pointer types, particularly:
3906   //   const char*
3907   //   char*
3908   //   const wchar_t*
3909   //   wchar_t*
3910   template <typename CharType>
3911   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3912     return s != nullptr && MatchAndExplain(StringType(s), listener);
3913   }
3914 
3915   // Matches anything that can convert to StringType.
3916   //
3917   // This is a template, not just a plain function with const StringType&,
3918   // because StringView has some interfering non-explicit constructors.
3919   template <typename MatcheeStringType>
3920   bool MatchAndExplain(const MatcheeStringType& s,
3921                        MatchResultListener* /* listener */) const {
3922     const StringType& s2(s);
3923     return s2.length() >= prefix_.length() &&
3924         s2.substr(0, prefix_.length()) == prefix_;
3925   }
3926 
3927   void DescribeTo(::std::ostream* os) const {
3928     *os << "starts with ";
3929     UniversalPrint(prefix_, os);
3930   }
3931 
3932   void DescribeNegationTo(::std::ostream* os) const {
3933     *os << "doesn't start with ";
3934     UniversalPrint(prefix_, os);
3935   }
3936 
3937  private:
3938   const StringType prefix_;
3939 };
3940 
3941 // Implements the polymorphic EndsWith(substring) matcher, which
3942 // can be used as a Matcher<T> as long as T can be converted to a
3943 // string.
3944 template <typename StringType>
3945 class EndsWithMatcher {
3946  public:
3947   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
3948 
3949 #if GTEST_INTERNAL_HAS_STRING_VIEW
3950   bool MatchAndExplain(const internal::StringView& s,
3951                        MatchResultListener* listener) const {
3952     // This should fail to compile if StringView is used with wide
3953     // strings.
3954     const StringType& str = std::string(s);
3955     return MatchAndExplain(str, listener);
3956   }
3957 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
3958 
3959   // Accepts pointer types, particularly:
3960   //   const char*
3961   //   char*
3962   //   const wchar_t*
3963   //   wchar_t*
3964   template <typename CharType>
3965   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
3966     return s != nullptr && MatchAndExplain(StringType(s), listener);
3967   }
3968 
3969   // Matches anything that can convert to StringType.
3970   //
3971   // This is a template, not just a plain function with const StringType&,
3972   // because StringView has some interfering non-explicit constructors.
3973   template <typename MatcheeStringType>
3974   bool MatchAndExplain(const MatcheeStringType& s,
3975                        MatchResultListener* /* listener */) const {
3976     const StringType& s2(s);
3977     return s2.length() >= suffix_.length() &&
3978         s2.substr(s2.length() - suffix_.length()) == suffix_;
3979   }
3980 
3981   void DescribeTo(::std::ostream* os) const {
3982     *os << "ends with ";
3983     UniversalPrint(suffix_, os);
3984   }
3985 
3986   void DescribeNegationTo(::std::ostream* os) const {
3987     *os << "doesn't end with ";
3988     UniversalPrint(suffix_, os);
3989   }
3990 
3991  private:
3992   const StringType suffix_;
3993 };
3994 
3995 // Implements a matcher that compares the two fields of a 2-tuple
3996 // using one of the ==, <=, <, etc, operators.  The two fields being
3997 // compared don't have to have the same type.
3998 //
3999 // The matcher defined here is polymorphic (for example, Eq() can be
4000 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
4001 // etc).  Therefore we use a template type conversion operator in the
4002 // implementation.
4003 template <typename D, typename Op>
4004 class PairMatchBase {
4005  public:
4006   template <typename T1, typename T2>
4007   operator Matcher<::std::tuple<T1, T2>>() const {
4008     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
4009   }
4010   template <typename T1, typename T2>
4011   operator Matcher<const ::std::tuple<T1, T2>&>() const {
4012     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
4013   }
4014 
4015  private:
4016   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
4017     return os << D::Desc();
4018   }
4019 
4020   template <typename Tuple>
4021   class Impl : public MatcherInterface<Tuple> {
4022    public:
4023     bool MatchAndExplain(Tuple args,
4024                          MatchResultListener* /* listener */) const override {
4025       return Op()(::std::get<0>(args), ::std::get<1>(args));
4026     }
4027     void DescribeTo(::std::ostream* os) const override {
4028       *os << "are " << GetDesc;
4029     }
4030     void DescribeNegationTo(::std::ostream* os) const override {
4031       *os << "aren't " << GetDesc;
4032     }
4033   };
4034 };
4035 
4036 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
4037  public:
4038   static const char* Desc() { return "an equal pair"; }
4039 };
4040 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
4041  public:
4042   static const char* Desc() { return "an unequal pair"; }
4043 };
4044 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
4045  public:
4046   static const char* Desc() { return "a pair where the first < the second"; }
4047 };
4048 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
4049  public:
4050   static const char* Desc() { return "a pair where the first > the second"; }
4051 };
4052 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
4053  public:
4054   static const char* Desc() { return "a pair where the first <= the second"; }
4055 };
4056 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
4057  public:
4058   static const char* Desc() { return "a pair where the first >= the second"; }
4059 };
4060 
4061 // Implements the Not(...) matcher for a particular argument type T.
4062 // We do not nest it inside the NotMatcher class template, as that
4063 // will prevent different instantiations of NotMatcher from sharing
4064 // the same NotMatcherImpl<T> class.
4065 template <typename T>
4066 class NotMatcherImpl : public MatcherInterface<const T&> {
4067  public:
4068   explicit NotMatcherImpl(const Matcher<T>& matcher)
4069       : matcher_(matcher) {}
4070 
4071   bool MatchAndExplain(const T& x,
4072                        MatchResultListener* listener) const override {
4073     return !matcher_.MatchAndExplain(x, listener);
4074   }
4075 
4076   void DescribeTo(::std::ostream* os) const override {
4077     matcher_.DescribeNegationTo(os);
4078   }
4079 
4080   void DescribeNegationTo(::std::ostream* os) const override {
4081     matcher_.DescribeTo(os);
4082   }
4083 
4084  private:
4085   const Matcher<T> matcher_;
4086 };
4087 
4088 // Implements the Not(m) matcher, which matches a value that doesn't
4089 // match matcher m.
4090 template <typename InnerMatcher>
4091 class NotMatcher {
4092  public:
4093   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
4094 
4095   // This template type conversion operator allows Not(m) to be used
4096   // to match any type m can match.
4097   template <typename T>
4098   operator Matcher<T>() const {
4099     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
4100   }
4101 
4102  private:
4103   InnerMatcher matcher_;
4104 };
4105 
4106 // Implements the AllOf(m1, m2) matcher for a particular argument type
4107 // T. We do not nest it inside the BothOfMatcher class template, as
4108 // that will prevent different instantiations of BothOfMatcher from
4109 // sharing the same BothOfMatcherImpl<T> class.
4110 template <typename T>
4111 class AllOfMatcherImpl : public MatcherInterface<const T&> {
4112  public:
4113   explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
4114       : matchers_(std::move(matchers)) {}
4115 
4116   void DescribeTo(::std::ostream* os) const override {
4117     *os << "(";
4118     for (size_t i = 0; i < matchers_.size(); ++i) {
4119       if (i != 0) *os << ") and (";
4120       matchers_[i].DescribeTo(os);
4121     }
4122     *os << ")";
4123   }
4124 
4125   void DescribeNegationTo(::std::ostream* os) const override {
4126     *os << "(";
4127     for (size_t i = 0; i < matchers_.size(); ++i) {
4128       if (i != 0) *os << ") or (";
4129       matchers_[i].DescribeNegationTo(os);
4130     }
4131     *os << ")";
4132   }
4133 
4134   bool MatchAndExplain(const T& x,
4135                        MatchResultListener* listener) const override {
4136     // If either matcher1_ or matcher2_ doesn't match x, we only need
4137     // to explain why one of them fails.
4138     std::string all_match_result;
4139 
4140     for (size_t i = 0; i < matchers_.size(); ++i) {
4141       StringMatchResultListener slistener;
4142       if (matchers_[i].MatchAndExplain(x, &slistener)) {
4143         if (all_match_result.empty()) {
4144           all_match_result = slistener.str();
4145         } else {
4146           std::string result = slistener.str();
4147           if (!result.empty()) {
4148             all_match_result += ", and ";
4149             all_match_result += result;
4150           }
4151         }
4152       } else {
4153         *listener << slistener.str();
4154         return false;
4155       }
4156     }
4157 
4158     // Otherwise we need to explain why *both* of them match.
4159     *listener << all_match_result;
4160     return true;
4161   }
4162 
4163  private:
4164   const std::vector<Matcher<T> > matchers_;
4165 };
4166 
4167 // VariadicMatcher is used for the variadic implementation of
4168 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
4169 // CombiningMatcher<T> is used to recursively combine the provided matchers
4170 // (of type Args...).
4171 template <template <typename T> class CombiningMatcher, typename... Args>
4172 class VariadicMatcher {
4173  public:
4174   VariadicMatcher(const Args&... matchers)  // NOLINT
4175       : matchers_(matchers...) {
4176     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
4177   }
4178 
4179   VariadicMatcher(const VariadicMatcher&) = default;
4180   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
4181 
4182   // This template type conversion operator allows an
4183   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
4184   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
4185   template <typename T>
4186   operator Matcher<T>() const {
4187     std::vector<Matcher<T> > values;
4188     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
4189     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
4190   }
4191 
4192  private:
4193   template <typename T, size_t I>
4194   void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
4195                              std::integral_constant<size_t, I>) const {
4196     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
4197     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
4198   }
4199 
4200   template <typename T>
4201   void CreateVariadicMatcher(
4202       std::vector<Matcher<T> >*,
4203       std::integral_constant<size_t, sizeof...(Args)>) const {}
4204 
4205   std::tuple<Args...> matchers_;
4206 };
4207 
4208 template <typename... Args>
4209 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
4210 
4211 // Implements the AnyOf(m1, m2) matcher for a particular argument type
4212 // T.  We do not nest it inside the AnyOfMatcher class template, as
4213 // that will prevent different instantiations of AnyOfMatcher from
4214 // sharing the same EitherOfMatcherImpl<T> class.
4215 template <typename T>
4216 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
4217  public:
4218   explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
4219       : matchers_(std::move(matchers)) {}
4220 
4221   void DescribeTo(::std::ostream* os) const override {
4222     *os << "(";
4223     for (size_t i = 0; i < matchers_.size(); ++i) {
4224       if (i != 0) *os << ") or (";
4225       matchers_[i].DescribeTo(os);
4226     }
4227     *os << ")";
4228   }
4229 
4230   void DescribeNegationTo(::std::ostream* os) const override {
4231     *os << "(";
4232     for (size_t i = 0; i < matchers_.size(); ++i) {
4233       if (i != 0) *os << ") and (";
4234       matchers_[i].DescribeNegationTo(os);
4235     }
4236     *os << ")";
4237   }
4238 
4239   bool MatchAndExplain(const T& x,
4240                        MatchResultListener* listener) const override {
4241     std::string no_match_result;
4242 
4243     // If either matcher1_ or matcher2_ matches x, we just need to
4244     // explain why *one* of them matches.
4245     for (size_t i = 0; i < matchers_.size(); ++i) {
4246       StringMatchResultListener slistener;
4247       if (matchers_[i].MatchAndExplain(x, &slistener)) {
4248         *listener << slistener.str();
4249         return true;
4250       } else {
4251         if (no_match_result.empty()) {
4252           no_match_result = slistener.str();
4253         } else {
4254           std::string result = slistener.str();
4255           if (!result.empty()) {
4256             no_match_result += ", and ";
4257             no_match_result += result;
4258           }
4259         }
4260       }
4261     }
4262 
4263     // Otherwise we need to explain why *both* of them fail.
4264     *listener << no_match_result;
4265     return false;
4266   }
4267 
4268  private:
4269   const std::vector<Matcher<T> > matchers_;
4270 };
4271 
4272 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
4273 template <typename... Args>
4274 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
4275 
4276 // Wrapper for implementation of Any/AllOfArray().
4277 template <template <class> class MatcherImpl, typename T>
4278 class SomeOfArrayMatcher {
4279  public:
4280   // Constructs the matcher from a sequence of element values or
4281   // element matchers.
4282   template <typename Iter>
4283   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
4284 
4285   template <typename U>
4286   operator Matcher<U>() const {  // NOLINT
4287     using RawU = typename std::decay<U>::type;
4288     std::vector<Matcher<RawU>> matchers;
4289     for (const auto& matcher : matchers_) {
4290       matchers.push_back(MatcherCast<RawU>(matcher));
4291     }
4292     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
4293   }
4294 
4295  private:
4296   const ::std::vector<T> matchers_;
4297 };
4298 
4299 template <typename T>
4300 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
4301 
4302 template <typename T>
4303 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
4304 
4305 // Used for implementing Truly(pred), which turns a predicate into a
4306 // matcher.
4307 template <typename Predicate>
4308 class TrulyMatcher {
4309  public:
4310   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
4311 
4312   // This method template allows Truly(pred) to be used as a matcher
4313   // for type T where T is the argument type of predicate 'pred'.  The
4314   // argument is passed by reference as the predicate may be
4315   // interested in the address of the argument.
4316   template <typename T>
4317   bool MatchAndExplain(T& x,  // NOLINT
4318                        MatchResultListener* listener) const {
4319     // Without the if-statement, MSVC sometimes warns about converting
4320     // a value to bool (warning 4800).
4321     //
4322     // We cannot write 'return !!predicate_(x);' as that doesn't work
4323     // when predicate_(x) returns a class convertible to bool but
4324     // having no operator!().
4325     if (predicate_(x))
4326       return true;
4327     *listener << "didn't satisfy the given predicate";
4328     return false;
4329   }
4330 
4331   void DescribeTo(::std::ostream* os) const {
4332     *os << "satisfies the given predicate";
4333   }
4334 
4335   void DescribeNegationTo(::std::ostream* os) const {
4336     *os << "doesn't satisfy the given predicate";
4337   }
4338 
4339  private:
4340   Predicate predicate_;
4341 };
4342 
4343 // Used for implementing Matches(matcher), which turns a matcher into
4344 // a predicate.
4345 template <typename M>
4346 class MatcherAsPredicate {
4347  public:
4348   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
4349 
4350   // This template operator() allows Matches(m) to be used as a
4351   // predicate on type T where m is a matcher on type T.
4352   //
4353   // The argument x is passed by reference instead of by value, as
4354   // some matcher may be interested in its address (e.g. as in
4355   // Matches(Ref(n))(x)).
4356   template <typename T>
4357   bool operator()(const T& x) const {
4358     // We let matcher_ commit to a particular type here instead of
4359     // when the MatcherAsPredicate object was constructed.  This
4360     // allows us to write Matches(m) where m is a polymorphic matcher
4361     // (e.g. Eq(5)).
4362     //
4363     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
4364     // compile when matcher_ has type Matcher<const T&>; if we write
4365     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
4366     // when matcher_ has type Matcher<T>; if we just write
4367     // matcher_.Matches(x), it won't compile when matcher_ is
4368     // polymorphic, e.g. Eq(5).
4369     //
4370     // MatcherCast<const T&>() is necessary for making the code work
4371     // in all of the above situations.
4372     return MatcherCast<const T&>(matcher_).Matches(x);
4373   }
4374 
4375  private:
4376   M matcher_;
4377 };
4378 
4379 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
4380 // argument M must be a type that can be converted to a matcher.
4381 template <typename M>
4382 class PredicateFormatterFromMatcher {
4383  public:
4384   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
4385 
4386   // This template () operator allows a PredicateFormatterFromMatcher
4387   // object to act as a predicate-formatter suitable for using with
4388   // Google Test's EXPECT_PRED_FORMAT1() macro.
4389   template <typename T>
4390   AssertionResult operator()(const char* value_text, const T& x) const {
4391     // We convert matcher_ to a Matcher<const T&> *now* instead of
4392     // when the PredicateFormatterFromMatcher object was constructed,
4393     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
4394     // know which type to instantiate it to until we actually see the
4395     // type of x here.
4396     //
4397     // We write SafeMatcherCast<const T&>(matcher_) instead of
4398     // Matcher<const T&>(matcher_), as the latter won't compile when
4399     // matcher_ has type Matcher<T> (e.g. An<int>()).
4400     // We don't write MatcherCast<const T&> either, as that allows
4401     // potentially unsafe downcasting of the matcher argument.
4402     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
4403 
4404     // The expected path here is that the matcher should match (i.e. that most
4405     // tests pass) so optimize for this case.
4406     if (matcher.Matches(x)) {
4407       return AssertionSuccess();
4408     }
4409 
4410     ::std::stringstream ss;
4411     ss << "Value of: " << value_text << "\n"
4412        << "Expected: ";
4413     matcher.DescribeTo(&ss);
4414 
4415     // Rerun the matcher to "PrintAndExplain" the failure.
4416     StringMatchResultListener listener;
4417     if (MatchPrintAndExplain(x, matcher, &listener)) {
4418       ss << "\n  The matcher failed on the initial attempt; but passed when "
4419             "rerun to generate the explanation.";
4420     }
4421     ss << "\n  Actual: " << listener.str();
4422     return AssertionFailure() << ss.str();
4423   }
4424 
4425  private:
4426   const M matcher_;
4427 };
4428 
4429 // A helper function for converting a matcher to a predicate-formatter
4430 // without the user needing to explicitly write the type.  This is
4431 // used for implementing ASSERT_THAT() and EXPECT_THAT().
4432 // Implementation detail: 'matcher' is received by-value to force decaying.
4433 template <typename M>
4434 inline PredicateFormatterFromMatcher<M>
4435 MakePredicateFormatterFromMatcher(M matcher) {
4436   return PredicateFormatterFromMatcher<M>(std::move(matcher));
4437 }
4438 
4439 // Implements the polymorphic IsNan() matcher, which matches any floating type
4440 // value that is Nan.
4441 class IsNanMatcher {
4442  public:
4443   template <typename FloatType>
4444   bool MatchAndExplain(const FloatType& f,
4445                        MatchResultListener* /* listener */) const {
4446     return (::std::isnan)(f);
4447   }
4448 
4449   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
4450   void DescribeNegationTo(::std::ostream* os) const {
4451     *os << "isn't NaN";
4452   }
4453 };
4454 
4455 // Implements the polymorphic floating point equality matcher, which matches
4456 // two float values using ULP-based approximation or, optionally, a
4457 // user-specified epsilon.  The template is meant to be instantiated with
4458 // FloatType being either float or double.
4459 template <typename FloatType>
4460 class FloatingEqMatcher {
4461  public:
4462   // Constructor for FloatingEqMatcher.
4463   // The matcher's input will be compared with expected.  The matcher treats two
4464   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
4465   // equality comparisons between NANs will always return false.  We specify a
4466   // negative max_abs_error_ term to indicate that ULP-based approximation will
4467   // be used for comparison.
4468   FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
4469     expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
4470   }
4471 
4472   // Constructor that supports a user-specified max_abs_error that will be used
4473   // for comparison instead of ULP-based approximation.  The max absolute
4474   // should be non-negative.
4475   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
4476                     FloatType max_abs_error)
4477       : expected_(expected),
4478         nan_eq_nan_(nan_eq_nan),
4479         max_abs_error_(max_abs_error) {
4480     GTEST_CHECK_(max_abs_error >= 0)
4481         << ", where max_abs_error is" << max_abs_error;
4482   }
4483 
4484   // Implements floating point equality matcher as a Matcher<T>.
4485   template <typename T>
4486   class Impl : public MatcherInterface<T> {
4487    public:
4488     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
4489         : expected_(expected),
4490           nan_eq_nan_(nan_eq_nan),
4491           max_abs_error_(max_abs_error) {}
4492 
4493     bool MatchAndExplain(T value,
4494                          MatchResultListener* listener) const override {
4495       const FloatingPoint<FloatType> actual(value), expected(expected_);
4496 
4497       // Compares NaNs first, if nan_eq_nan_ is true.
4498       if (actual.is_nan() || expected.is_nan()) {
4499         if (actual.is_nan() && expected.is_nan()) {
4500           return nan_eq_nan_;
4501         }
4502         // One is nan; the other is not nan.
4503         return false;
4504       }
4505       if (HasMaxAbsError()) {
4506         // We perform an equality check so that inf will match inf, regardless
4507         // of error bounds.  If the result of value - expected_ would result in
4508         // overflow or if either value is inf, the default result is infinity,
4509         // which should only match if max_abs_error_ is also infinity.
4510         if (value == expected_) {
4511           return true;
4512         }
4513 
4514         const FloatType diff = value - expected_;
4515         if (::std::fabs(diff) <= max_abs_error_) {
4516           return true;
4517         }
4518 
4519         if (listener->IsInterested()) {
4520           *listener << "which is " << diff << " from " << expected_;
4521         }
4522         return false;
4523       } else {
4524         return actual.AlmostEquals(expected);
4525       }
4526     }
4527 
4528     void DescribeTo(::std::ostream* os) const override {
4529       // os->precision() returns the previously set precision, which we
4530       // store to restore the ostream to its original configuration
4531       // after outputting.
4532       const ::std::streamsize old_precision = os->precision(
4533           ::std::numeric_limits<FloatType>::digits10 + 2);
4534       if (FloatingPoint<FloatType>(expected_).is_nan()) {
4535         if (nan_eq_nan_) {
4536           *os << "is NaN";
4537         } else {
4538           *os << "never matches";
4539         }
4540       } else {
4541         *os << "is approximately " << expected_;
4542         if (HasMaxAbsError()) {
4543           *os << " (absolute error <= " << max_abs_error_ << ")";
4544         }
4545       }
4546       os->precision(old_precision);
4547     }
4548 
4549     void DescribeNegationTo(::std::ostream* os) const override {
4550       // As before, get original precision.
4551       const ::std::streamsize old_precision = os->precision(
4552           ::std::numeric_limits<FloatType>::digits10 + 2);
4553       if (FloatingPoint<FloatType>(expected_).is_nan()) {
4554         if (nan_eq_nan_) {
4555           *os << "isn't NaN";
4556         } else {
4557           *os << "is anything";
4558         }
4559       } else {
4560         *os << "isn't approximately " << expected_;
4561         if (HasMaxAbsError()) {
4562           *os << " (absolute error > " << max_abs_error_ << ")";
4563         }
4564       }
4565       // Restore original precision.
4566       os->precision(old_precision);
4567     }
4568 
4569    private:
4570     bool HasMaxAbsError() const {
4571       return max_abs_error_ >= 0;
4572     }
4573 
4574     const FloatType expected_;
4575     const bool nan_eq_nan_;
4576     // max_abs_error will be used for value comparison when >= 0.
4577     const FloatType max_abs_error_;
4578   };
4579 
4580   // The following 3 type conversion operators allow FloatEq(expected) and
4581   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
4582   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
4583   operator Matcher<FloatType>() const {
4584     return MakeMatcher(
4585         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
4586   }
4587 
4588   operator Matcher<const FloatType&>() const {
4589     return MakeMatcher(
4590         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4591   }
4592 
4593   operator Matcher<FloatType&>() const {
4594     return MakeMatcher(
4595         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
4596   }
4597 
4598  private:
4599   const FloatType expected_;
4600   const bool nan_eq_nan_;
4601   // max_abs_error will be used for value comparison when >= 0.
4602   const FloatType max_abs_error_;
4603 };
4604 
4605 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
4606 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
4607 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
4608 // against y. The former implements "Eq", the latter "Near". At present, there
4609 // is no version that compares NaNs as equal.
4610 template <typename FloatType>
4611 class FloatingEq2Matcher {
4612  public:
4613   FloatingEq2Matcher() { Init(-1, false); }
4614 
4615   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
4616 
4617   explicit FloatingEq2Matcher(FloatType max_abs_error) {
4618     Init(max_abs_error, false);
4619   }
4620 
4621   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
4622     Init(max_abs_error, nan_eq_nan);
4623   }
4624 
4625   template <typename T1, typename T2>
4626   operator Matcher<::std::tuple<T1, T2>>() const {
4627     return MakeMatcher(
4628         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
4629   }
4630   template <typename T1, typename T2>
4631   operator Matcher<const ::std::tuple<T1, T2>&>() const {
4632     return MakeMatcher(
4633         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
4634   }
4635 
4636  private:
4637   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
4638     return os << "an almost-equal pair";
4639   }
4640 
4641   template <typename Tuple>
4642   class Impl : public MatcherInterface<Tuple> {
4643    public:
4644     Impl(FloatType max_abs_error, bool nan_eq_nan) :
4645         max_abs_error_(max_abs_error),
4646         nan_eq_nan_(nan_eq_nan) {}
4647 
4648     bool MatchAndExplain(Tuple args,
4649                          MatchResultListener* listener) const override {
4650       if (max_abs_error_ == -1) {
4651         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
4652         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4653             ::std::get<1>(args), listener);
4654       } else {
4655         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
4656                                         max_abs_error_);
4657         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
4658             ::std::get<1>(args), listener);
4659       }
4660     }
4661     void DescribeTo(::std::ostream* os) const override {
4662       *os << "are " << GetDesc;
4663     }
4664     void DescribeNegationTo(::std::ostream* os) const override {
4665       *os << "aren't " << GetDesc;
4666     }
4667 
4668    private:
4669     FloatType max_abs_error_;
4670     const bool nan_eq_nan_;
4671   };
4672 
4673   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
4674     max_abs_error_ = max_abs_error_val;
4675     nan_eq_nan_ = nan_eq_nan_val;
4676   }
4677   FloatType max_abs_error_;
4678   bool nan_eq_nan_;
4679 };
4680 
4681 // Implements the Pointee(m) matcher for matching a pointer whose
4682 // pointee matches matcher m.  The pointer can be either raw or smart.
4683 template <typename InnerMatcher>
4684 class PointeeMatcher {
4685  public:
4686   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4687 
4688   // This type conversion operator template allows Pointee(m) to be
4689   // used as a matcher for any pointer type whose pointee type is
4690   // compatible with the inner matcher, where type Pointer can be
4691   // either a raw pointer or a smart pointer.
4692   //
4693   // The reason we do this instead of relying on
4694   // MakePolymorphicMatcher() is that the latter is not flexible
4695   // enough for implementing the DescribeTo() method of Pointee().
4696   template <typename Pointer>
4697   operator Matcher<Pointer>() const {
4698     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
4699   }
4700 
4701  private:
4702   // The monomorphic implementation that works for a particular pointer type.
4703   template <typename Pointer>
4704   class Impl : public MatcherInterface<Pointer> {
4705    public:
4706     using Pointee =
4707         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4708             Pointer)>::element_type;
4709 
4710     explicit Impl(const InnerMatcher& matcher)
4711         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
4712 
4713     void DescribeTo(::std::ostream* os) const override {
4714       *os << "points to a value that ";
4715       matcher_.DescribeTo(os);
4716     }
4717 
4718     void DescribeNegationTo(::std::ostream* os) const override {
4719       *os << "does not point to a value that ";
4720       matcher_.DescribeTo(os);
4721     }
4722 
4723     bool MatchAndExplain(Pointer pointer,
4724                          MatchResultListener* listener) const override {
4725       if (GetRawPointer(pointer) == nullptr) return false;
4726 
4727       *listener << "which points to ";
4728       return MatchPrintAndExplain(*pointer, matcher_, listener);
4729     }
4730 
4731    private:
4732     const Matcher<const Pointee&> matcher_;
4733   };
4734 
4735   const InnerMatcher matcher_;
4736 };
4737 
4738 // Implements the Pointer(m) matcher
4739 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
4740 // m.  The pointer can be either raw or smart, and will match `m` against the
4741 // raw pointer.
4742 template <typename InnerMatcher>
4743 class PointerMatcher {
4744  public:
4745   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
4746 
4747   // This type conversion operator template allows Pointer(m) to be
4748   // used as a matcher for any pointer type whose pointer type is
4749   // compatible with the inner matcher, where type PointerType can be
4750   // either a raw pointer or a smart pointer.
4751   //
4752   // The reason we do this instead of relying on
4753   // MakePolymorphicMatcher() is that the latter is not flexible
4754   // enough for implementing the DescribeTo() method of Pointer().
4755   template <typename PointerType>
4756   operator Matcher<PointerType>() const {  // NOLINT
4757     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
4758   }
4759 
4760  private:
4761   // The monomorphic implementation that works for a particular pointer type.
4762   template <typename PointerType>
4763   class Impl : public MatcherInterface<PointerType> {
4764    public:
4765     using Pointer =
4766         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
4767             PointerType)>::element_type*;
4768 
4769     explicit Impl(const InnerMatcher& matcher)
4770         : matcher_(MatcherCast<Pointer>(matcher)) {}
4771 
4772     void DescribeTo(::std::ostream* os) const override {
4773       *os << "is a pointer that ";
4774       matcher_.DescribeTo(os);
4775     }
4776 
4777     void DescribeNegationTo(::std::ostream* os) const override {
4778       *os << "is not a pointer that ";
4779       matcher_.DescribeTo(os);
4780     }
4781 
4782     bool MatchAndExplain(PointerType pointer,
4783                          MatchResultListener* listener) const override {
4784       *listener << "which is a pointer that ";
4785       Pointer p = GetRawPointer(pointer);
4786       return MatchPrintAndExplain(p, matcher_, listener);
4787     }
4788 
4789    private:
4790     Matcher<Pointer> matcher_;
4791   };
4792 
4793   const InnerMatcher matcher_;
4794 };
4795 
4796 #if GTEST_HAS_RTTI
4797 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
4798 // reference that matches inner_matcher when dynamic_cast<T> is applied.
4799 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4800 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4801 // If To is a reference and the cast fails, this matcher returns false
4802 // immediately.
4803 template <typename To>
4804 class WhenDynamicCastToMatcherBase {
4805  public:
4806   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
4807       : matcher_(matcher) {}
4808 
4809   void DescribeTo(::std::ostream* os) const {
4810     GetCastTypeDescription(os);
4811     matcher_.DescribeTo(os);
4812   }
4813 
4814   void DescribeNegationTo(::std::ostream* os) const {
4815     GetCastTypeDescription(os);
4816     matcher_.DescribeNegationTo(os);
4817   }
4818 
4819  protected:
4820   const Matcher<To> matcher_;
4821 
4822   static std::string GetToName() {
4823     return GetTypeName<To>();
4824   }
4825 
4826  private:
4827   static void GetCastTypeDescription(::std::ostream* os) {
4828     *os << "when dynamic_cast to " << GetToName() << ", ";
4829   }
4830 };
4831 
4832 // Primary template.
4833 // To is a pointer. Cast and forward the result.
4834 template <typename To>
4835 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
4836  public:
4837   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
4838       : WhenDynamicCastToMatcherBase<To>(matcher) {}
4839 
4840   template <typename From>
4841   bool MatchAndExplain(From from, MatchResultListener* listener) const {
4842     To to = dynamic_cast<To>(from);
4843     return MatchPrintAndExplain(to, this->matcher_, listener);
4844   }
4845 };
4846 
4847 // Specialize for references.
4848 // In this case we return false if the dynamic_cast fails.
4849 template <typename To>
4850 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
4851  public:
4852   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
4853       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
4854 
4855   template <typename From>
4856   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
4857     // We don't want an std::bad_cast here, so do the cast with pointers.
4858     To* to = dynamic_cast<To*>(&from);
4859     if (to == nullptr) {
4860       *listener << "which cannot be dynamic_cast to " << this->GetToName();
4861       return false;
4862     }
4863     return MatchPrintAndExplain(*to, this->matcher_, listener);
4864   }
4865 };
4866 #endif  // GTEST_HAS_RTTI
4867 
4868 // Implements the Field() matcher for matching a field (i.e. member
4869 // variable) of an object.
4870 template <typename Class, typename FieldType>
4871 class FieldMatcher {
4872  public:
4873   FieldMatcher(FieldType Class::*field,
4874                const Matcher<const FieldType&>& matcher)
4875       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
4876 
4877   FieldMatcher(const std::string& field_name, FieldType Class::*field,
4878                const Matcher<const FieldType&>& matcher)
4879       : field_(field),
4880         matcher_(matcher),
4881         whose_field_("whose field `" + field_name + "` ") {}
4882 
4883   void DescribeTo(::std::ostream* os) const {
4884     *os << "is an object " << whose_field_;
4885     matcher_.DescribeTo(os);
4886   }
4887 
4888   void DescribeNegationTo(::std::ostream* os) const {
4889     *os << "is an object " << whose_field_;
4890     matcher_.DescribeNegationTo(os);
4891   }
4892 
4893   template <typename T>
4894   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
4895     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
4896     // a compiler bug, and can now be removed.
4897     return MatchAndExplainImpl(
4898         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4899         value, listener);
4900   }
4901 
4902  private:
4903   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4904                            const Class& obj,
4905                            MatchResultListener* listener) const {
4906     *listener << whose_field_ << "is ";
4907     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
4908   }
4909 
4910   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4911                            MatchResultListener* listener) const {
4912     if (p == nullptr) return false;
4913 
4914     *listener << "which points to an object ";
4915     // Since *p has a field, it must be a class/struct/union type and
4916     // thus cannot be a pointer.  Therefore we pass false_type() as
4917     // the first argument.
4918     return MatchAndExplainImpl(std::false_type(), *p, listener);
4919   }
4920 
4921   const FieldType Class::*field_;
4922   const Matcher<const FieldType&> matcher_;
4923 
4924   // Contains either "whose given field " if the name of the field is unknown
4925   // or "whose field `name_of_field` " if the name is known.
4926   const std::string whose_field_;
4927 };
4928 
4929 // Implements the Property() matcher for matching a property
4930 // (i.e. return value of a getter method) of an object.
4931 //
4932 // Property is a const-qualified member function of Class returning
4933 // PropertyType.
4934 template <typename Class, typename PropertyType, typename Property>
4935 class PropertyMatcher {
4936  public:
4937   typedef const PropertyType& RefToConstProperty;
4938 
4939   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
4940       : property_(property),
4941         matcher_(matcher),
4942         whose_property_("whose given property ") {}
4943 
4944   PropertyMatcher(const std::string& property_name, Property property,
4945                   const Matcher<RefToConstProperty>& matcher)
4946       : property_(property),
4947         matcher_(matcher),
4948         whose_property_("whose property `" + property_name + "` ") {}
4949 
4950   void DescribeTo(::std::ostream* os) const {
4951     *os << "is an object " << whose_property_;
4952     matcher_.DescribeTo(os);
4953   }
4954 
4955   void DescribeNegationTo(::std::ostream* os) const {
4956     *os << "is an object " << whose_property_;
4957     matcher_.DescribeNegationTo(os);
4958   }
4959 
4960   template <typename T>
4961   bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
4962     return MatchAndExplainImpl(
4963         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
4964         value, listener);
4965   }
4966 
4967  private:
4968   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
4969                            const Class& obj,
4970                            MatchResultListener* listener) const {
4971     *listener << whose_property_ << "is ";
4972     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
4973     // which takes a non-const reference as argument.
4974     RefToConstProperty result = (obj.*property_)();
4975     return MatchPrintAndExplain(result, matcher_, listener);
4976   }
4977 
4978   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
4979                            MatchResultListener* listener) const {
4980     if (p == nullptr) return false;
4981 
4982     *listener << "which points to an object ";
4983     // Since *p has a property method, it must be a class/struct/union
4984     // type and thus cannot be a pointer.  Therefore we pass
4985     // false_type() as the first argument.
4986     return MatchAndExplainImpl(std::false_type(), *p, listener);
4987   }
4988 
4989   Property property_;
4990   const Matcher<RefToConstProperty> matcher_;
4991 
4992   // Contains either "whose given property " if the name of the property is
4993   // unknown or "whose property `name_of_property` " if the name is known.
4994   const std::string whose_property_;
4995 };
4996 
4997 // Type traits specifying various features of different functors for ResultOf.
4998 // The default template specifies features for functor objects.
4999 template <typename Functor>
5000 struct CallableTraits {
5001   typedef Functor StorageType;
5002 
5003   static void CheckIsValid(Functor /* functor */) {}
5004 
5005   template <typename T>
5006   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
5007     return f(arg);
5008   }
5009 };
5010 
5011 // Specialization for function pointers.
5012 template <typename ArgType, typename ResType>
5013 struct CallableTraits<ResType(*)(ArgType)> {
5014   typedef ResType ResultType;
5015   typedef ResType(*StorageType)(ArgType);
5016 
5017   static void CheckIsValid(ResType(*f)(ArgType)) {
5018     GTEST_CHECK_(f != nullptr)
5019         << "NULL function pointer is passed into ResultOf().";
5020   }
5021   template <typename T>
5022   static ResType Invoke(ResType(*f)(ArgType), T arg) {
5023     return (*f)(arg);
5024   }
5025 };
5026 
5027 // Implements the ResultOf() matcher for matching a return value of a
5028 // unary function of an object.
5029 template <typename Callable, typename InnerMatcher>
5030 class ResultOfMatcher {
5031  public:
5032   ResultOfMatcher(Callable callable, InnerMatcher matcher)
5033       : callable_(std::move(callable)), matcher_(std::move(matcher)) {
5034     CallableTraits<Callable>::CheckIsValid(callable_);
5035   }
5036 
5037   template <typename T>
5038   operator Matcher<T>() const {
5039     return Matcher<T>(new Impl<const T&>(callable_, matcher_));
5040   }
5041 
5042  private:
5043   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
5044 
5045   template <typename T>
5046   class Impl : public MatcherInterface<T> {
5047     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
5048         std::declval<CallableStorageType>(), std::declval<T>()));
5049 
5050    public:
5051     template <typename M>
5052     Impl(const CallableStorageType& callable, const M& matcher)
5053         : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
5054 
5055     void DescribeTo(::std::ostream* os) const override {
5056       *os << "is mapped by the given callable to a value that ";
5057       matcher_.DescribeTo(os);
5058     }
5059 
5060     void DescribeNegationTo(::std::ostream* os) const override {
5061       *os << "is mapped by the given callable to a value that ";
5062       matcher_.DescribeNegationTo(os);
5063     }
5064 
5065     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
5066       *listener << "which is mapped by the given callable to ";
5067       // Cannot pass the return value directly to MatchPrintAndExplain, which
5068       // takes a non-const reference as argument.
5069       // Also, specifying template argument explicitly is needed because T could
5070       // be a non-const reference (e.g. Matcher<Uncopyable&>).
5071       ResultType result =
5072           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
5073       return MatchPrintAndExplain(result, matcher_, listener);
5074     }
5075 
5076    private:
5077     // Functors often define operator() as non-const method even though
5078     // they are actually stateless. But we need to use them even when
5079     // 'this' is a const pointer. It's the user's responsibility not to
5080     // use stateful callables with ResultOf(), which doesn't guarantee
5081     // how many times the callable will be invoked.
5082     mutable CallableStorageType callable_;
5083     const Matcher<ResultType> matcher_;
5084   };  // class Impl
5085 
5086   const CallableStorageType callable_;
5087   const InnerMatcher matcher_;
5088 };
5089 
5090 // Implements a matcher that checks the size of an STL-style container.
5091 template <typename SizeMatcher>
5092 class SizeIsMatcher {
5093  public:
5094   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
5095        : size_matcher_(size_matcher) {
5096   }
5097 
5098   template <typename Container>
5099   operator Matcher<Container>() const {
5100     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
5101   }
5102 
5103   template <typename Container>
5104   class Impl : public MatcherInterface<Container> {
5105    public:
5106     using SizeType = decltype(std::declval<Container>().size());
5107     explicit Impl(const SizeMatcher& size_matcher)
5108         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
5109 
5110     void DescribeTo(::std::ostream* os) const override {
5111       *os << "size ";
5112       size_matcher_.DescribeTo(os);
5113     }
5114     void DescribeNegationTo(::std::ostream* os) const override {
5115       *os << "size ";
5116       size_matcher_.DescribeNegationTo(os);
5117     }
5118 
5119     bool MatchAndExplain(Container container,
5120                          MatchResultListener* listener) const override {
5121       SizeType size = container.size();
5122       StringMatchResultListener size_listener;
5123       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
5124       *listener
5125           << "whose size " << size << (result ? " matches" : " doesn't match");
5126       PrintIfNotEmpty(size_listener.str(), listener->stream());
5127       return result;
5128     }
5129 
5130    private:
5131     const Matcher<SizeType> size_matcher_;
5132   };
5133 
5134  private:
5135   const SizeMatcher size_matcher_;
5136 };
5137 
5138 // Implements a matcher that checks the begin()..end() distance of an STL-style
5139 // container.
5140 template <typename DistanceMatcher>
5141 class BeginEndDistanceIsMatcher {
5142  public:
5143   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
5144       : distance_matcher_(distance_matcher) {}
5145 
5146   template <typename Container>
5147   operator Matcher<Container>() const {
5148     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
5149   }
5150 
5151   template <typename Container>
5152   class Impl : public MatcherInterface<Container> {
5153    public:
5154     typedef internal::StlContainerView<
5155         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
5156     typedef typename std::iterator_traits<
5157         typename ContainerView::type::const_iterator>::difference_type
5158         DistanceType;
5159     explicit Impl(const DistanceMatcher& distance_matcher)
5160         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
5161 
5162     void DescribeTo(::std::ostream* os) const override {
5163       *os << "distance between begin() and end() ";
5164       distance_matcher_.DescribeTo(os);
5165     }
5166     void DescribeNegationTo(::std::ostream* os) const override {
5167       *os << "distance between begin() and end() ";
5168       distance_matcher_.DescribeNegationTo(os);
5169     }
5170 
5171     bool MatchAndExplain(Container container,
5172                          MatchResultListener* listener) const override {
5173       using std::begin;
5174       using std::end;
5175       DistanceType distance = std::distance(begin(container), end(container));
5176       StringMatchResultListener distance_listener;
5177       const bool result =
5178           distance_matcher_.MatchAndExplain(distance, &distance_listener);
5179       *listener << "whose distance between begin() and end() " << distance
5180                 << (result ? " matches" : " doesn't match");
5181       PrintIfNotEmpty(distance_listener.str(), listener->stream());
5182       return result;
5183     }
5184 
5185    private:
5186     const Matcher<DistanceType> distance_matcher_;
5187   };
5188 
5189  private:
5190   const DistanceMatcher distance_matcher_;
5191 };
5192 
5193 // Implements an equality matcher for any STL-style container whose elements
5194 // support ==. This matcher is like Eq(), but its failure explanations provide
5195 // more detailed information that is useful when the container is used as a set.
5196 // The failure message reports elements that are in one of the operands but not
5197 // the other. The failure messages do not report duplicate or out-of-order
5198 // elements in the containers (which don't properly matter to sets, but can
5199 // occur if the containers are vectors or lists, for example).
5200 //
5201 // Uses the container's const_iterator, value_type, operator ==,
5202 // begin(), and end().
5203 template <typename Container>
5204 class ContainerEqMatcher {
5205  public:
5206   typedef internal::StlContainerView<Container> View;
5207   typedef typename View::type StlContainer;
5208   typedef typename View::const_reference StlContainerReference;
5209 
5210   static_assert(!std::is_const<Container>::value,
5211                 "Container type must not be const");
5212   static_assert(!std::is_reference<Container>::value,
5213                 "Container type must not be a reference");
5214 
5215   // We make a copy of expected in case the elements in it are modified
5216   // after this matcher is created.
5217   explicit ContainerEqMatcher(const Container& expected)
5218       : expected_(View::Copy(expected)) {}
5219 
5220   void DescribeTo(::std::ostream* os) const {
5221     *os << "equals ";
5222     UniversalPrint(expected_, os);
5223   }
5224   void DescribeNegationTo(::std::ostream* os) const {
5225     *os << "does not equal ";
5226     UniversalPrint(expected_, os);
5227   }
5228 
5229   template <typename LhsContainer>
5230   bool MatchAndExplain(const LhsContainer& lhs,
5231                        MatchResultListener* listener) const {
5232     typedef internal::StlContainerView<
5233         typename std::remove_const<LhsContainer>::type>
5234         LhsView;
5235     typedef typename LhsView::type LhsStlContainer;
5236     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5237     if (lhs_stl_container == expected_)
5238       return true;
5239 
5240     ::std::ostream* const os = listener->stream();
5241     if (os != nullptr) {
5242       // Something is different. Check for extra values first.
5243       bool printed_header = false;
5244       for (typename LhsStlContainer::const_iterator it =
5245                lhs_stl_container.begin();
5246            it != lhs_stl_container.end(); ++it) {
5247         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
5248             expected_.end()) {
5249           if (printed_header) {
5250             *os << ", ";
5251           } else {
5252             *os << "which has these unexpected elements: ";
5253             printed_header = true;
5254           }
5255           UniversalPrint(*it, os);
5256         }
5257       }
5258 
5259       // Now check for missing values.
5260       bool printed_header2 = false;
5261       for (typename StlContainer::const_iterator it = expected_.begin();
5262            it != expected_.end(); ++it) {
5263         if (internal::ArrayAwareFind(
5264                 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
5265             lhs_stl_container.end()) {
5266           if (printed_header2) {
5267             *os << ", ";
5268           } else {
5269             *os << (printed_header ? ",\nand" : "which")
5270                 << " doesn't have these expected elements: ";
5271             printed_header2 = true;
5272           }
5273           UniversalPrint(*it, os);
5274         }
5275       }
5276     }
5277 
5278     return false;
5279   }
5280 
5281  private:
5282   const StlContainer expected_;
5283 };
5284 
5285 // A comparator functor that uses the < operator to compare two values.
5286 struct LessComparator {
5287   template <typename T, typename U>
5288   bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
5289 };
5290 
5291 // Implements WhenSortedBy(comparator, container_matcher).
5292 template <typename Comparator, typename ContainerMatcher>
5293 class WhenSortedByMatcher {
5294  public:
5295   WhenSortedByMatcher(const Comparator& comparator,
5296                       const ContainerMatcher& matcher)
5297       : comparator_(comparator), matcher_(matcher) {}
5298 
5299   template <typename LhsContainer>
5300   operator Matcher<LhsContainer>() const {
5301     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
5302   }
5303 
5304   template <typename LhsContainer>
5305   class Impl : public MatcherInterface<LhsContainer> {
5306    public:
5307     typedef internal::StlContainerView<
5308          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5309     typedef typename LhsView::type LhsStlContainer;
5310     typedef typename LhsView::const_reference LhsStlContainerReference;
5311     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
5312     // so that we can match associative containers.
5313     typedef typename RemoveConstFromKey<
5314         typename LhsStlContainer::value_type>::type LhsValue;
5315 
5316     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
5317         : comparator_(comparator), matcher_(matcher) {}
5318 
5319     void DescribeTo(::std::ostream* os) const override {
5320       *os << "(when sorted) ";
5321       matcher_.DescribeTo(os);
5322     }
5323 
5324     void DescribeNegationTo(::std::ostream* os) const override {
5325       *os << "(when sorted) ";
5326       matcher_.DescribeNegationTo(os);
5327     }
5328 
5329     bool MatchAndExplain(LhsContainer lhs,
5330                          MatchResultListener* listener) const override {
5331       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5332       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
5333                                                lhs_stl_container.end());
5334       ::std::sort(
5335            sorted_container.begin(), sorted_container.end(), comparator_);
5336 
5337       if (!listener->IsInterested()) {
5338         // If the listener is not interested, we do not need to
5339         // construct the inner explanation.
5340         return matcher_.Matches(sorted_container);
5341       }
5342 
5343       *listener << "which is ";
5344       UniversalPrint(sorted_container, listener->stream());
5345       *listener << " when sorted";
5346 
5347       StringMatchResultListener inner_listener;
5348       const bool match = matcher_.MatchAndExplain(sorted_container,
5349                                                   &inner_listener);
5350       PrintIfNotEmpty(inner_listener.str(), listener->stream());
5351       return match;
5352     }
5353 
5354    private:
5355     const Comparator comparator_;
5356     const Matcher<const ::std::vector<LhsValue>&> matcher_;
5357 
5358     GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
5359   };
5360 
5361  private:
5362   const Comparator comparator_;
5363   const ContainerMatcher matcher_;
5364 };
5365 
5366 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
5367 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
5368 // T2&> >, where T1 and T2 are the types of elements in the LHS
5369 // container and the RHS container respectively.
5370 template <typename TupleMatcher, typename RhsContainer>
5371 class PointwiseMatcher {
5372   GTEST_COMPILE_ASSERT_(
5373       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
5374       use_UnorderedPointwise_with_hash_tables);
5375 
5376  public:
5377   typedef internal::StlContainerView<RhsContainer> RhsView;
5378   typedef typename RhsView::type RhsStlContainer;
5379   typedef typename RhsStlContainer::value_type RhsValue;
5380 
5381   static_assert(!std::is_const<RhsContainer>::value,
5382                 "RhsContainer type must not be const");
5383   static_assert(!std::is_reference<RhsContainer>::value,
5384                 "RhsContainer type must not be a reference");
5385 
5386   // Like ContainerEq, we make a copy of rhs in case the elements in
5387   // it are modified after this matcher is created.
5388   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
5389       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
5390 
5391   template <typename LhsContainer>
5392   operator Matcher<LhsContainer>() const {
5393     GTEST_COMPILE_ASSERT_(
5394         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
5395         use_UnorderedPointwise_with_hash_tables);
5396 
5397     return Matcher<LhsContainer>(
5398         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
5399   }
5400 
5401   template <typename LhsContainer>
5402   class Impl : public MatcherInterface<LhsContainer> {
5403    public:
5404     typedef internal::StlContainerView<
5405          GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
5406     typedef typename LhsView::type LhsStlContainer;
5407     typedef typename LhsView::const_reference LhsStlContainerReference;
5408     typedef typename LhsStlContainer::value_type LhsValue;
5409     // We pass the LHS value and the RHS value to the inner matcher by
5410     // reference, as they may be expensive to copy.  We must use tuple
5411     // instead of pair here, as a pair cannot hold references (C++ 98,
5412     // 20.2.2 [lib.pairs]).
5413     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
5414 
5415     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
5416         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
5417         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
5418           rhs_(rhs) {}
5419 
5420     void DescribeTo(::std::ostream* os) const override {
5421       *os << "contains " << rhs_.size()
5422           << " values, where each value and its corresponding value in ";
5423       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
5424       *os << " ";
5425       mono_tuple_matcher_.DescribeTo(os);
5426     }
5427     void DescribeNegationTo(::std::ostream* os) const override {
5428       *os << "doesn't contain exactly " << rhs_.size()
5429           << " values, or contains a value x at some index i"
5430           << " where x and the i-th value of ";
5431       UniversalPrint(rhs_, os);
5432       *os << " ";
5433       mono_tuple_matcher_.DescribeNegationTo(os);
5434     }
5435 
5436     bool MatchAndExplain(LhsContainer lhs,
5437                          MatchResultListener* listener) const override {
5438       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
5439       const size_t actual_size = lhs_stl_container.size();
5440       if (actual_size != rhs_.size()) {
5441         *listener << "which contains " << actual_size << " values";
5442         return false;
5443       }
5444 
5445       typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
5446       typename RhsStlContainer::const_iterator right = rhs_.begin();
5447       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
5448         if (listener->IsInterested()) {
5449           StringMatchResultListener inner_listener;
5450           // Create InnerMatcherArg as a temporarily object to avoid it outlives
5451           // *left and *right. Dereference or the conversion to `const T&` may
5452           // return temp objects, e.g for vector<bool>.
5453           if (!mono_tuple_matcher_.MatchAndExplain(
5454                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5455                                   ImplicitCast_<const RhsValue&>(*right)),
5456                   &inner_listener)) {
5457             *listener << "where the value pair (";
5458             UniversalPrint(*left, listener->stream());
5459             *listener << ", ";
5460             UniversalPrint(*right, listener->stream());
5461             *listener << ") at index #" << i << " don't match";
5462             PrintIfNotEmpty(inner_listener.str(), listener->stream());
5463             return false;
5464           }
5465         } else {
5466           if (!mono_tuple_matcher_.Matches(
5467                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
5468                                   ImplicitCast_<const RhsValue&>(*right))))
5469             return false;
5470         }
5471       }
5472 
5473       return true;
5474     }
5475 
5476    private:
5477     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
5478     const RhsStlContainer rhs_;
5479   };
5480 
5481  private:
5482   const TupleMatcher tuple_matcher_;
5483   const RhsStlContainer rhs_;
5484 };
5485 
5486 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
5487 template <typename Container>
5488 class QuantifierMatcherImpl : public MatcherInterface<Container> {
5489  public:
5490   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
5491   typedef StlContainerView<RawContainer> View;
5492   typedef typename View::type StlContainer;
5493   typedef typename View::const_reference StlContainerReference;
5494   typedef typename StlContainer::value_type Element;
5495 
5496   template <typename InnerMatcher>
5497   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
5498       : inner_matcher_(
5499            testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
5500 
5501   // Checks whether:
5502   // * All elements in the container match, if all_elements_should_match.
5503   // * Any element in the container matches, if !all_elements_should_match.
5504   bool MatchAndExplainImpl(bool all_elements_should_match,
5505                            Container container,
5506                            MatchResultListener* listener) const {
5507     StlContainerReference stl_container = View::ConstReference(container);
5508     size_t i = 0;
5509     for (typename StlContainer::const_iterator it = stl_container.begin();
5510          it != stl_container.end(); ++it, ++i) {
5511       StringMatchResultListener inner_listener;
5512       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
5513 
5514       if (matches != all_elements_should_match) {
5515         *listener << "whose element #" << i
5516                   << (matches ? " matches" : " doesn't match");
5517         PrintIfNotEmpty(inner_listener.str(), listener->stream());
5518         return !all_elements_should_match;
5519       }
5520     }
5521     return all_elements_should_match;
5522   }
5523 
5524  protected:
5525   const Matcher<const Element&> inner_matcher_;
5526 };
5527 
5528 // Implements Contains(element_matcher) for the given argument type Container.
5529 // Symmetric to EachMatcherImpl.
5530 template <typename Container>
5531 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
5532  public:
5533   template <typename InnerMatcher>
5534   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
5535       : QuantifierMatcherImpl<Container>(inner_matcher) {}
5536 
5537   // Describes what this matcher does.
5538   void DescribeTo(::std::ostream* os) const override {
5539     *os << "contains at least one element that ";
5540     this->inner_matcher_.DescribeTo(os);
5541   }
5542 
5543   void DescribeNegationTo(::std::ostream* os) const override {
5544     *os << "doesn't contain any element that ";
5545     this->inner_matcher_.DescribeTo(os);
5546   }
5547 
5548   bool MatchAndExplain(Container container,
5549                        MatchResultListener* listener) const override {
5550     return this->MatchAndExplainImpl(false, container, listener);
5551   }
5552 };
5553 
5554 // Implements Each(element_matcher) for the given argument type Container.
5555 // Symmetric to ContainsMatcherImpl.
5556 template <typename Container>
5557 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
5558  public:
5559   template <typename InnerMatcher>
5560   explicit EachMatcherImpl(InnerMatcher inner_matcher)
5561       : QuantifierMatcherImpl<Container>(inner_matcher) {}
5562 
5563   // Describes what this matcher does.
5564   void DescribeTo(::std::ostream* os) const override {
5565     *os << "only contains elements that ";
5566     this->inner_matcher_.DescribeTo(os);
5567   }
5568 
5569   void DescribeNegationTo(::std::ostream* os) const override {
5570     *os << "contains some element that ";
5571     this->inner_matcher_.DescribeNegationTo(os);
5572   }
5573 
5574   bool MatchAndExplain(Container container,
5575                        MatchResultListener* listener) const override {
5576     return this->MatchAndExplainImpl(true, container, listener);
5577   }
5578 };
5579 
5580 // Implements polymorphic Contains(element_matcher).
5581 template <typename M>
5582 class ContainsMatcher {
5583  public:
5584   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
5585 
5586   template <typename Container>
5587   operator Matcher<Container>() const {
5588     return Matcher<Container>(
5589         new ContainsMatcherImpl<const Container&>(inner_matcher_));
5590   }
5591 
5592  private:
5593   const M inner_matcher_;
5594 };
5595 
5596 // Implements polymorphic Each(element_matcher).
5597 template <typename M>
5598 class EachMatcher {
5599  public:
5600   explicit EachMatcher(M m) : inner_matcher_(m) {}
5601 
5602   template <typename Container>
5603   operator Matcher<Container>() const {
5604     return Matcher<Container>(
5605         new EachMatcherImpl<const Container&>(inner_matcher_));
5606   }
5607 
5608  private:
5609   const M inner_matcher_;
5610 };
5611 
5612 struct Rank1 {};
5613 struct Rank0 : Rank1 {};
5614 
5615 namespace pair_getters {
5616 using std::get;
5617 template <typename T>
5618 auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
5619   return get<0>(x);
5620 }
5621 template <typename T>
5622 auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
5623   return x.first;
5624 }
5625 
5626 template <typename T>
5627 auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
5628   return get<1>(x);
5629 }
5630 template <typename T>
5631 auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
5632   return x.second;
5633 }
5634 }  // namespace pair_getters
5635 
5636 // Implements Key(inner_matcher) for the given argument pair type.
5637 // Key(inner_matcher) matches an std::pair whose 'first' field matches
5638 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
5639 // std::map that contains at least one element whose key is >= 5.
5640 template <typename PairType>
5641 class KeyMatcherImpl : public MatcherInterface<PairType> {
5642  public:
5643   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5644   typedef typename RawPairType::first_type KeyType;
5645 
5646   template <typename InnerMatcher>
5647   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
5648       : inner_matcher_(
5649           testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
5650   }
5651 
5652   // Returns true if and only if 'key_value.first' (the key) matches the inner
5653   // matcher.
5654   bool MatchAndExplain(PairType key_value,
5655                        MatchResultListener* listener) const override {
5656     StringMatchResultListener inner_listener;
5657     const bool match = inner_matcher_.MatchAndExplain(
5658         pair_getters::First(key_value, Rank0()), &inner_listener);
5659     const std::string explanation = inner_listener.str();
5660     if (explanation != "") {
5661       *listener << "whose first field is a value " << explanation;
5662     }
5663     return match;
5664   }
5665 
5666   // Describes what this matcher does.
5667   void DescribeTo(::std::ostream* os) const override {
5668     *os << "has a key that ";
5669     inner_matcher_.DescribeTo(os);
5670   }
5671 
5672   // Describes what the negation of this matcher does.
5673   void DescribeNegationTo(::std::ostream* os) const override {
5674     *os << "doesn't have a key that ";
5675     inner_matcher_.DescribeTo(os);
5676   }
5677 
5678  private:
5679   const Matcher<const KeyType&> inner_matcher_;
5680 };
5681 
5682 // Implements polymorphic Key(matcher_for_key).
5683 template <typename M>
5684 class KeyMatcher {
5685  public:
5686   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
5687 
5688   template <typename PairType>
5689   operator Matcher<PairType>() const {
5690     return Matcher<PairType>(
5691         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
5692   }
5693 
5694  private:
5695   const M matcher_for_key_;
5696 };
5697 
5698 // Implements polymorphic Address(matcher_for_address).
5699 template <typename InnerMatcher>
5700 class AddressMatcher {
5701  public:
5702   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
5703 
5704   template <typename Type>
5705   operator Matcher<Type>() const {  // NOLINT
5706     return Matcher<Type>(new Impl<const Type&>(matcher_));
5707   }
5708 
5709  private:
5710   // The monomorphic implementation that works for a particular object type.
5711   template <typename Type>
5712   class Impl : public MatcherInterface<Type> {
5713    public:
5714     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
5715     explicit Impl(const InnerMatcher& matcher)
5716         : matcher_(MatcherCast<Address>(matcher)) {}
5717 
5718     void DescribeTo(::std::ostream* os) const override {
5719       *os << "has address that ";
5720       matcher_.DescribeTo(os);
5721     }
5722 
5723     void DescribeNegationTo(::std::ostream* os) const override {
5724       *os << "does not have address that ";
5725       matcher_.DescribeTo(os);
5726     }
5727 
5728     bool MatchAndExplain(Type object,
5729                          MatchResultListener* listener) const override {
5730       *listener << "which has address ";
5731       Address address = std::addressof(object);
5732       return MatchPrintAndExplain(address, matcher_, listener);
5733     }
5734 
5735    private:
5736     const Matcher<Address> matcher_;
5737   };
5738   const InnerMatcher matcher_;
5739 };
5740 
5741 // Implements Pair(first_matcher, second_matcher) for the given argument pair
5742 // type with its two matchers. See Pair() function below.
5743 template <typename PairType>
5744 class PairMatcherImpl : public MatcherInterface<PairType> {
5745  public:
5746   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
5747   typedef typename RawPairType::first_type FirstType;
5748   typedef typename RawPairType::second_type SecondType;
5749 
5750   template <typename FirstMatcher, typename SecondMatcher>
5751   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
5752       : first_matcher_(
5753             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
5754         second_matcher_(
5755             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
5756   }
5757 
5758   // Describes what this matcher does.
5759   void DescribeTo(::std::ostream* os) const override {
5760     *os << "has a first field that ";
5761     first_matcher_.DescribeTo(os);
5762     *os << ", and has a second field that ";
5763     second_matcher_.DescribeTo(os);
5764   }
5765 
5766   // Describes what the negation of this matcher does.
5767   void DescribeNegationTo(::std::ostream* os) const override {
5768     *os << "has a first field that ";
5769     first_matcher_.DescribeNegationTo(os);
5770     *os << ", or has a second field that ";
5771     second_matcher_.DescribeNegationTo(os);
5772   }
5773 
5774   // Returns true if and only if 'a_pair.first' matches first_matcher and
5775   // 'a_pair.second' matches second_matcher.
5776   bool MatchAndExplain(PairType a_pair,
5777                        MatchResultListener* listener) const override {
5778     if (!listener->IsInterested()) {
5779       // If the listener is not interested, we don't need to construct the
5780       // explanation.
5781       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
5782              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
5783     }
5784     StringMatchResultListener first_inner_listener;
5785     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
5786                                         &first_inner_listener)) {
5787       *listener << "whose first field does not match";
5788       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
5789       return false;
5790     }
5791     StringMatchResultListener second_inner_listener;
5792     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
5793                                          &second_inner_listener)) {
5794       *listener << "whose second field does not match";
5795       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
5796       return false;
5797     }
5798     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
5799                    listener);
5800     return true;
5801   }
5802 
5803  private:
5804   void ExplainSuccess(const std::string& first_explanation,
5805                       const std::string& second_explanation,
5806                       MatchResultListener* listener) const {
5807     *listener << "whose both fields match";
5808     if (first_explanation != "") {
5809       *listener << ", where the first field is a value " << first_explanation;
5810     }
5811     if (second_explanation != "") {
5812       *listener << ", ";
5813       if (first_explanation != "") {
5814         *listener << "and ";
5815       } else {
5816         *listener << "where ";
5817       }
5818       *listener << "the second field is a value " << second_explanation;
5819     }
5820   }
5821 
5822   const Matcher<const FirstType&> first_matcher_;
5823   const Matcher<const SecondType&> second_matcher_;
5824 };
5825 
5826 // Implements polymorphic Pair(first_matcher, second_matcher).
5827 template <typename FirstMatcher, typename SecondMatcher>
5828 class PairMatcher {
5829  public:
5830   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
5831       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
5832 
5833   template <typename PairType>
5834   operator Matcher<PairType> () const {
5835     return Matcher<PairType>(
5836         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
5837   }
5838 
5839  private:
5840   const FirstMatcher first_matcher_;
5841   const SecondMatcher second_matcher_;
5842 };
5843 
5844 template <typename T, size_t... I>
5845 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
5846     -> decltype(std::tie(get<I>(t)...)) {
5847   static_assert(std::tuple_size<T>::value == sizeof...(I),
5848                 "Number of arguments doesn't match the number of fields.");
5849   return std::tie(get<I>(t)...);
5850 }
5851 
5852 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
5853 template <typename T>
5854 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
5855   const auto& [a] = t;
5856   return std::tie(a);
5857 }
5858 template <typename T>
5859 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
5860   const auto& [a, b] = t;
5861   return std::tie(a, b);
5862 }
5863 template <typename T>
5864 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
5865   const auto& [a, b, c] = t;
5866   return std::tie(a, b, c);
5867 }
5868 template <typename T>
5869 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
5870   const auto& [a, b, c, d] = t;
5871   return std::tie(a, b, c, d);
5872 }
5873 template <typename T>
5874 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
5875   const auto& [a, b, c, d, e] = t;
5876   return std::tie(a, b, c, d, e);
5877 }
5878 template <typename T>
5879 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
5880   const auto& [a, b, c, d, e, f] = t;
5881   return std::tie(a, b, c, d, e, f);
5882 }
5883 template <typename T>
5884 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
5885   const auto& [a, b, c, d, e, f, g] = t;
5886   return std::tie(a, b, c, d, e, f, g);
5887 }
5888 template <typename T>
5889 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
5890   const auto& [a, b, c, d, e, f, g, h] = t;
5891   return std::tie(a, b, c, d, e, f, g, h);
5892 }
5893 template <typename T>
5894 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
5895   const auto& [a, b, c, d, e, f, g, h, i] = t;
5896   return std::tie(a, b, c, d, e, f, g, h, i);
5897 }
5898 template <typename T>
5899 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
5900   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
5901   return std::tie(a, b, c, d, e, f, g, h, i, j);
5902 }
5903 template <typename T>
5904 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
5905   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
5906   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
5907 }
5908 template <typename T>
5909 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
5910   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
5911   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
5912 }
5913 template <typename T>
5914 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
5915   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
5916   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
5917 }
5918 template <typename T>
5919 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
5920   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
5921   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
5922 }
5923 template <typename T>
5924 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
5925   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
5926   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
5927 }
5928 template <typename T>
5929 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
5930   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
5931   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
5932 }
5933 #endif  // defined(__cpp_structured_bindings)
5934 
5935 template <size_t I, typename T>
5936 auto UnpackStruct(const T& t)
5937     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
5938   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
5939 }
5940 
5941 // Helper function to do comma folding in C++11.
5942 // The array ensures left-to-right order of evaluation.
5943 // Usage: VariadicExpand({expr...});
5944 template <typename T, size_t N>
5945 void VariadicExpand(const T (&)[N]) {}
5946 
5947 template <typename Struct, typename StructSize>
5948 class FieldsAreMatcherImpl;
5949 
5950 template <typename Struct, size_t... I>
5951 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
5952     : public MatcherInterface<Struct> {
5953   using UnpackedType =
5954       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
5955   using MatchersType = std::tuple<
5956       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
5957 
5958  public:
5959   template <typename Inner>
5960   explicit FieldsAreMatcherImpl(const Inner& matchers)
5961       : matchers_(testing::SafeMatcherCast<
5962                   const typename std::tuple_element<I, UnpackedType>::type&>(
5963             std::get<I>(matchers))...) {}
5964 
5965   void DescribeTo(::std::ostream* os) const override {
5966     const char* separator = "";
5967     VariadicExpand(
5968         {(*os << separator << "has field #" << I << " that ",
5969           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
5970   }
5971 
5972   void DescribeNegationTo(::std::ostream* os) const override {
5973     const char* separator = "";
5974     VariadicExpand({(*os << separator << "has field #" << I << " that ",
5975                      std::get<I>(matchers_).DescribeNegationTo(os),
5976                      separator = ", or ")...});
5977   }
5978 
5979   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
5980     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
5981   }
5982 
5983  private:
5984   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
5985     if (!listener->IsInterested()) {
5986       // If the listener is not interested, we don't need to construct the
5987       // explanation.
5988       bool good = true;
5989       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
5990                                          std::get<I>(tuple))...});
5991       return good;
5992     }
5993 
5994     size_t failed_pos = ~size_t{};
5995 
5996     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
5997 
5998     VariadicExpand(
5999         {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
6000                                         std::get<I>(tuple), &inner_listener[I])
6001              ? failed_pos = I
6002              : 0 ...});
6003     if (failed_pos != ~size_t{}) {
6004       *listener << "whose field #" << failed_pos << " does not match";
6005       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
6006       return false;
6007     }
6008 
6009     *listener << "whose all elements match";
6010     const char* separator = ", where";
6011     for (size_t index = 0; index < sizeof...(I); ++index) {
6012       const std::string str = inner_listener[index].str();
6013       if (!str.empty()) {
6014         *listener << separator << " field #" << index << " is a value " << str;
6015         separator = ", and";
6016       }
6017     }
6018 
6019     return true;
6020   }
6021 
6022   MatchersType matchers_;
6023 };
6024 
6025 template <typename... Inner>
6026 class FieldsAreMatcher {
6027  public:
6028   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
6029 
6030   template <typename Struct>
6031   operator Matcher<Struct>() const {  // NOLINT
6032     return Matcher<Struct>(
6033         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
6034             matchers_));
6035   }
6036 
6037  private:
6038   std::tuple<Inner...> matchers_;
6039 };
6040 
6041 // Implements ElementsAre() and ElementsAreArray().
6042 template <typename Container>
6043 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
6044  public:
6045   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6046   typedef internal::StlContainerView<RawContainer> View;
6047   typedef typename View::type StlContainer;
6048   typedef typename View::const_reference StlContainerReference;
6049   typedef typename StlContainer::value_type Element;
6050 
6051   // Constructs the matcher from a sequence of element values or
6052   // element matchers.
6053   template <typename InputIter>
6054   ElementsAreMatcherImpl(InputIter first, InputIter last) {
6055     while (first != last) {
6056       matchers_.push_back(MatcherCast<const Element&>(*first++));
6057     }
6058   }
6059 
6060   // Describes what this matcher does.
6061   void DescribeTo(::std::ostream* os) const override {
6062     if (count() == 0) {
6063       *os << "is empty";
6064     } else if (count() == 1) {
6065       *os << "has 1 element that ";
6066       matchers_[0].DescribeTo(os);
6067     } else {
6068       *os << "has " << Elements(count()) << " where\n";
6069       for (size_t i = 0; i != count(); ++i) {
6070         *os << "element #" << i << " ";
6071         matchers_[i].DescribeTo(os);
6072         if (i + 1 < count()) {
6073           *os << ",\n";
6074         }
6075       }
6076     }
6077   }
6078 
6079   // Describes what the negation of this matcher does.
6080   void DescribeNegationTo(::std::ostream* os) const override {
6081     if (count() == 0) {
6082       *os << "isn't empty";
6083       return;
6084     }
6085 
6086     *os << "doesn't have " << Elements(count()) << ", or\n";
6087     for (size_t i = 0; i != count(); ++i) {
6088       *os << "element #" << i << " ";
6089       matchers_[i].DescribeNegationTo(os);
6090       if (i + 1 < count()) {
6091         *os << ", or\n";
6092       }
6093     }
6094   }
6095 
6096   bool MatchAndExplain(Container container,
6097                        MatchResultListener* listener) const override {
6098     // To work with stream-like "containers", we must only walk
6099     // through the elements in one pass.
6100 
6101     const bool listener_interested = listener->IsInterested();
6102 
6103     // explanations[i] is the explanation of the element at index i.
6104     ::std::vector<std::string> explanations(count());
6105     StlContainerReference stl_container = View::ConstReference(container);
6106     typename StlContainer::const_iterator it = stl_container.begin();
6107     size_t exam_pos = 0;
6108     bool mismatch_found = false;  // Have we found a mismatched element yet?
6109 
6110     // Go through the elements and matchers in pairs, until we reach
6111     // the end of either the elements or the matchers, or until we find a
6112     // mismatch.
6113     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
6114       bool match;  // Does the current element match the current matcher?
6115       if (listener_interested) {
6116         StringMatchResultListener s;
6117         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
6118         explanations[exam_pos] = s.str();
6119       } else {
6120         match = matchers_[exam_pos].Matches(*it);
6121       }
6122 
6123       if (!match) {
6124         mismatch_found = true;
6125         break;
6126       }
6127     }
6128     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
6129 
6130     // Find how many elements the actual container has.  We avoid
6131     // calling size() s.t. this code works for stream-like "containers"
6132     // that don't define size().
6133     size_t actual_count = exam_pos;
6134     for (; it != stl_container.end(); ++it) {
6135       ++actual_count;
6136     }
6137 
6138     if (actual_count != count()) {
6139       // The element count doesn't match.  If the container is empty,
6140       // there's no need to explain anything as Google Mock already
6141       // prints the empty container.  Otherwise we just need to show
6142       // how many elements there actually are.
6143       if (listener_interested && (actual_count != 0)) {
6144         *listener << "which has " << Elements(actual_count);
6145       }
6146       return false;
6147     }
6148 
6149     if (mismatch_found) {
6150       // The element count matches, but the exam_pos-th element doesn't match.
6151       if (listener_interested) {
6152         *listener << "whose element #" << exam_pos << " doesn't match";
6153         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
6154       }
6155       return false;
6156     }
6157 
6158     // Every element matches its expectation.  We need to explain why
6159     // (the obvious ones can be skipped).
6160     if (listener_interested) {
6161       bool reason_printed = false;
6162       for (size_t i = 0; i != count(); ++i) {
6163         const std::string& s = explanations[i];
6164         if (!s.empty()) {
6165           if (reason_printed) {
6166             *listener << ",\nand ";
6167           }
6168           *listener << "whose element #" << i << " matches, " << s;
6169           reason_printed = true;
6170         }
6171       }
6172     }
6173     return true;
6174   }
6175 
6176  private:
6177   static Message Elements(size_t count) {
6178     return Message() << count << (count == 1 ? " element" : " elements");
6179   }
6180 
6181   size_t count() const { return matchers_.size(); }
6182 
6183   ::std::vector<Matcher<const Element&> > matchers_;
6184 };
6185 
6186 // Connectivity matrix of (elements X matchers), in element-major order.
6187 // Initially, there are no edges.
6188 // Use NextGraph() to iterate over all possible edge configurations.
6189 // Use Randomize() to generate a random edge configuration.
6190 class GTEST_API_ MatchMatrix {
6191  public:
6192   MatchMatrix(size_t num_elements, size_t num_matchers)
6193       : num_elements_(num_elements),
6194         num_matchers_(num_matchers),
6195         matched_(num_elements_* num_matchers_, 0) {
6196   }
6197 
6198   size_t LhsSize() const { return num_elements_; }
6199   size_t RhsSize() const { return num_matchers_; }
6200   bool HasEdge(size_t ilhs, size_t irhs) const {
6201     return matched_[SpaceIndex(ilhs, irhs)] == 1;
6202   }
6203   void SetEdge(size_t ilhs, size_t irhs, bool b) {
6204     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
6205   }
6206 
6207   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
6208   // adds 1 to that number; returns false if incrementing the graph left it
6209   // empty.
6210   bool NextGraph();
6211 
6212   void Randomize();
6213 
6214   std::string DebugString() const;
6215 
6216  private:
6217   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
6218     return ilhs * num_matchers_ + irhs;
6219   }
6220 
6221   size_t num_elements_;
6222   size_t num_matchers_;
6223 
6224   // Each element is a char interpreted as bool. They are stored as a
6225   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
6226   // a (ilhs, irhs) matrix coordinate into an offset.
6227   ::std::vector<char> matched_;
6228 };
6229 
6230 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
6231 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
6232 
6233 // Returns a maximum bipartite matching for the specified graph 'g'.
6234 // The matching is represented as a vector of {element, matcher} pairs.
6235 GTEST_API_ ElementMatcherPairs
6236 FindMaxBipartiteMatching(const MatchMatrix& g);
6237 
6238 struct UnorderedMatcherRequire {
6239   enum Flags {
6240     Superset = 1 << 0,
6241     Subset = 1 << 1,
6242     ExactMatch = Superset | Subset,
6243   };
6244 };
6245 
6246 // Untyped base class for implementing UnorderedElementsAre.  By
6247 // putting logic that's not specific to the element type here, we
6248 // reduce binary bloat and increase compilation speed.
6249 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
6250  protected:
6251   explicit UnorderedElementsAreMatcherImplBase(
6252       UnorderedMatcherRequire::Flags matcher_flags)
6253       : match_flags_(matcher_flags) {}
6254 
6255   // A vector of matcher describers, one for each element matcher.
6256   // Does not own the describers (and thus can be used only when the
6257   // element matchers are alive).
6258   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
6259 
6260   // Describes this UnorderedElementsAre matcher.
6261   void DescribeToImpl(::std::ostream* os) const;
6262 
6263   // Describes the negation of this UnorderedElementsAre matcher.
6264   void DescribeNegationToImpl(::std::ostream* os) const;
6265 
6266   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
6267                          const MatchMatrix& matrix,
6268                          MatchResultListener* listener) const;
6269 
6270   bool FindPairing(const MatchMatrix& matrix,
6271                    MatchResultListener* listener) const;
6272 
6273   MatcherDescriberVec& matcher_describers() {
6274     return matcher_describers_;
6275   }
6276 
6277   static Message Elements(size_t n) {
6278     return Message() << n << " element" << (n == 1 ? "" : "s");
6279   }
6280 
6281   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
6282 
6283  private:
6284   UnorderedMatcherRequire::Flags match_flags_;
6285   MatcherDescriberVec matcher_describers_;
6286 };
6287 
6288 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
6289 // IsSupersetOf.
6290 template <typename Container>
6291 class UnorderedElementsAreMatcherImpl
6292     : public MatcherInterface<Container>,
6293       public UnorderedElementsAreMatcherImplBase {
6294  public:
6295   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6296   typedef internal::StlContainerView<RawContainer> View;
6297   typedef typename View::type StlContainer;
6298   typedef typename View::const_reference StlContainerReference;
6299   typedef typename StlContainer::const_iterator StlContainerConstIterator;
6300   typedef typename StlContainer::value_type Element;
6301 
6302   template <typename InputIter>
6303   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
6304                                   InputIter first, InputIter last)
6305       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
6306     for (; first != last; ++first) {
6307       matchers_.push_back(MatcherCast<const Element&>(*first));
6308     }
6309     for (const auto& m : matchers_) {
6310       matcher_describers().push_back(m.GetDescriber());
6311     }
6312   }
6313 
6314   // Describes what this matcher does.
6315   void DescribeTo(::std::ostream* os) const override {
6316     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
6317   }
6318 
6319   // Describes what the negation of this matcher does.
6320   void DescribeNegationTo(::std::ostream* os) const override {
6321     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
6322   }
6323 
6324   bool MatchAndExplain(Container container,
6325                        MatchResultListener* listener) const override {
6326     StlContainerReference stl_container = View::ConstReference(container);
6327     ::std::vector<std::string> element_printouts;
6328     MatchMatrix matrix =
6329         AnalyzeElements(stl_container.begin(), stl_container.end(),
6330                         &element_printouts, listener);
6331 
6332     if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
6333       return true;
6334     }
6335 
6336     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
6337       if (matrix.LhsSize() != matrix.RhsSize()) {
6338         // The element count doesn't match.  If the container is empty,
6339         // there's no need to explain anything as Google Mock already
6340         // prints the empty container. Otherwise we just need to show
6341         // how many elements there actually are.
6342         if (matrix.LhsSize() != 0 && listener->IsInterested()) {
6343           *listener << "which has " << Elements(matrix.LhsSize());
6344         }
6345         return false;
6346       }
6347     }
6348 
6349     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
6350            FindPairing(matrix, listener);
6351   }
6352 
6353  private:
6354   template <typename ElementIter>
6355   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
6356                               ::std::vector<std::string>* element_printouts,
6357                               MatchResultListener* listener) const {
6358     element_printouts->clear();
6359     ::std::vector<char> did_match;
6360     size_t num_elements = 0;
6361     DummyMatchResultListener dummy;
6362     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
6363       if (listener->IsInterested()) {
6364         element_printouts->push_back(PrintToString(*elem_first));
6365       }
6366       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6367         did_match.push_back(
6368             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
6369       }
6370     }
6371 
6372     MatchMatrix matrix(num_elements, matchers_.size());
6373     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
6374     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
6375       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
6376         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
6377       }
6378     }
6379     return matrix;
6380   }
6381 
6382   ::std::vector<Matcher<const Element&> > matchers_;
6383 };
6384 
6385 // Functor for use in TransformTuple.
6386 // Performs MatcherCast<Target> on an input argument of any type.
6387 template <typename Target>
6388 struct CastAndAppendTransform {
6389   template <typename Arg>
6390   Matcher<Target> operator()(const Arg& a) const {
6391     return MatcherCast<Target>(a);
6392   }
6393 };
6394 
6395 // Implements UnorderedElementsAre.
6396 template <typename MatcherTuple>
6397 class UnorderedElementsAreMatcher {
6398  public:
6399   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
6400       : matchers_(args) {}
6401 
6402   template <typename Container>
6403   operator Matcher<Container>() const {
6404     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6405     typedef typename internal::StlContainerView<RawContainer>::type View;
6406     typedef typename View::value_type Element;
6407     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6408     MatcherVec matchers;
6409     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6410     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6411                          ::std::back_inserter(matchers));
6412     return Matcher<Container>(
6413         new UnorderedElementsAreMatcherImpl<const Container&>(
6414             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
6415             matchers.end()));
6416   }
6417 
6418  private:
6419   const MatcherTuple matchers_;
6420 };
6421 
6422 // Implements ElementsAre.
6423 template <typename MatcherTuple>
6424 class ElementsAreMatcher {
6425  public:
6426   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
6427 
6428   template <typename Container>
6429   operator Matcher<Container>() const {
6430     GTEST_COMPILE_ASSERT_(
6431         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
6432             ::std::tuple_size<MatcherTuple>::value < 2,
6433         use_UnorderedElementsAre_with_hash_tables);
6434 
6435     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
6436     typedef typename internal::StlContainerView<RawContainer>::type View;
6437     typedef typename View::value_type Element;
6438     typedef ::std::vector<Matcher<const Element&> > MatcherVec;
6439     MatcherVec matchers;
6440     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
6441     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
6442                          ::std::back_inserter(matchers));
6443     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6444         matchers.begin(), matchers.end()));
6445   }
6446 
6447  private:
6448   const MatcherTuple matchers_;
6449 };
6450 
6451 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
6452 template <typename T>
6453 class UnorderedElementsAreArrayMatcher {
6454  public:
6455   template <typename Iter>
6456   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
6457                                    Iter first, Iter last)
6458       : match_flags_(match_flags), matchers_(first, last) {}
6459 
6460   template <typename Container>
6461   operator Matcher<Container>() const {
6462     return Matcher<Container>(
6463         new UnorderedElementsAreMatcherImpl<const Container&>(
6464             match_flags_, matchers_.begin(), matchers_.end()));
6465   }
6466 
6467  private:
6468   UnorderedMatcherRequire::Flags match_flags_;
6469   ::std::vector<T> matchers_;
6470 };
6471 
6472 // Implements ElementsAreArray().
6473 template <typename T>
6474 class ElementsAreArrayMatcher {
6475  public:
6476   template <typename Iter>
6477   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
6478 
6479   template <typename Container>
6480   operator Matcher<Container>() const {
6481     GTEST_COMPILE_ASSERT_(
6482         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
6483         use_UnorderedElementsAreArray_with_hash_tables);
6484 
6485     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
6486         matchers_.begin(), matchers_.end()));
6487   }
6488 
6489  private:
6490   const ::std::vector<T> matchers_;
6491 };
6492 
6493 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
6494 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
6495 // second) is a polymorphic matcher that matches a value x if and only if
6496 // tm matches tuple (x, second).  Useful for implementing
6497 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
6498 //
6499 // BoundSecondMatcher is copyable and assignable, as we need to put
6500 // instances of this class in a vector when implementing
6501 // UnorderedPointwise().
6502 template <typename Tuple2Matcher, typename Second>
6503 class BoundSecondMatcher {
6504  public:
6505   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
6506       : tuple2_matcher_(tm), second_value_(second) {}
6507 
6508   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
6509 
6510   template <typename T>
6511   operator Matcher<T>() const {
6512     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
6513   }
6514 
6515   // We have to define this for UnorderedPointwise() to compile in
6516   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
6517   // which requires the elements to be assignable in C++98.  The
6518   // compiler cannot generate the operator= for us, as Tuple2Matcher
6519   // and Second may not be assignable.
6520   //
6521   // However, this should never be called, so the implementation just
6522   // need to assert.
6523   void operator=(const BoundSecondMatcher& /*rhs*/) {
6524     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
6525   }
6526 
6527  private:
6528   template <typename T>
6529   class Impl : public MatcherInterface<T> {
6530    public:
6531     typedef ::std::tuple<T, Second> ArgTuple;
6532 
6533     Impl(const Tuple2Matcher& tm, const Second& second)
6534         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
6535           second_value_(second) {}
6536 
6537     void DescribeTo(::std::ostream* os) const override {
6538       *os << "and ";
6539       UniversalPrint(second_value_, os);
6540       *os << " ";
6541       mono_tuple2_matcher_.DescribeTo(os);
6542     }
6543 
6544     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
6545       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
6546                                                   listener);
6547     }
6548 
6549    private:
6550     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
6551     const Second second_value_;
6552   };
6553 
6554   const Tuple2Matcher tuple2_matcher_;
6555   const Second second_value_;
6556 };
6557 
6558 // Given a 2-tuple matcher tm and a value second,
6559 // MatcherBindSecond(tm, second) returns a matcher that matches a
6560 // value x if and only if tm matches tuple (x, second).  Useful for
6561 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
6562 template <typename Tuple2Matcher, typename Second>
6563 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
6564     const Tuple2Matcher& tm, const Second& second) {
6565   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
6566 }
6567 
6568 // Returns the description for a matcher defined using the MATCHER*()
6569 // macro where the user-supplied description string is "", if
6570 // 'negation' is false; otherwise returns the description of the
6571 // negation of the matcher.  'param_values' contains a list of strings
6572 // that are the print-out of the matcher's parameters.
6573 GTEST_API_ std::string FormatMatcherDescription(bool negation,
6574                                                 const char* matcher_name,
6575                                                 const Strings& param_values);
6576 
6577 // Implements a matcher that checks the value of a optional<> type variable.
6578 template <typename ValueMatcher>
6579 class OptionalMatcher {
6580  public:
6581   explicit OptionalMatcher(const ValueMatcher& value_matcher)
6582       : value_matcher_(value_matcher) {}
6583 
6584   template <typename Optional>
6585   operator Matcher<Optional>() const {
6586     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
6587   }
6588 
6589   template <typename Optional>
6590   class Impl : public MatcherInterface<Optional> {
6591    public:
6592     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
6593     typedef typename OptionalView::value_type ValueType;
6594     explicit Impl(const ValueMatcher& value_matcher)
6595         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
6596 
6597     void DescribeTo(::std::ostream* os) const override {
6598       *os << "value ";
6599       value_matcher_.DescribeTo(os);
6600     }
6601 
6602     void DescribeNegationTo(::std::ostream* os) const override {
6603       *os << "value ";
6604       value_matcher_.DescribeNegationTo(os);
6605     }
6606 
6607     bool MatchAndExplain(Optional optional,
6608                          MatchResultListener* listener) const override {
6609       if (!optional) {
6610         *listener << "which is not engaged";
6611         return false;
6612       }
6613       const ValueType& value = *optional;
6614       StringMatchResultListener value_listener;
6615       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
6616       *listener << "whose value " << PrintToString(value)
6617                 << (match ? " matches" : " doesn't match");
6618       PrintIfNotEmpty(value_listener.str(), listener->stream());
6619       return match;
6620     }
6621 
6622    private:
6623     const Matcher<ValueType> value_matcher_;
6624   };
6625 
6626  private:
6627   const ValueMatcher value_matcher_;
6628 };
6629 
6630 namespace variant_matcher {
6631 // Overloads to allow VariantMatcher to do proper ADL lookup.
6632 template <typename T>
6633 void holds_alternative() {}
6634 template <typename T>
6635 void get() {}
6636 
6637 // Implements a matcher that checks the value of a variant<> type variable.
6638 template <typename T>
6639 class VariantMatcher {
6640  public:
6641   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
6642       : matcher_(std::move(matcher)) {}
6643 
6644   template <typename Variant>
6645   bool MatchAndExplain(const Variant& value,
6646                        ::testing::MatchResultListener* listener) const {
6647     using std::get;
6648     if (!listener->IsInterested()) {
6649       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
6650     }
6651 
6652     if (!holds_alternative<T>(value)) {
6653       *listener << "whose value is not of type '" << GetTypeName() << "'";
6654       return false;
6655     }
6656 
6657     const T& elem = get<T>(value);
6658     StringMatchResultListener elem_listener;
6659     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
6660     *listener << "whose value " << PrintToString(elem)
6661               << (match ? " matches" : " doesn't match");
6662     PrintIfNotEmpty(elem_listener.str(), listener->stream());
6663     return match;
6664   }
6665 
6666   void DescribeTo(std::ostream* os) const {
6667     *os << "is a variant<> with value of type '" << GetTypeName()
6668         << "' and the value ";
6669     matcher_.DescribeTo(os);
6670   }
6671 
6672   void DescribeNegationTo(std::ostream* os) const {
6673     *os << "is a variant<> with value of type other than '" << GetTypeName()
6674         << "' or the value ";
6675     matcher_.DescribeNegationTo(os);
6676   }
6677 
6678  private:
6679   static std::string GetTypeName() {
6680 #if GTEST_HAS_RTTI
6681     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6682         return internal::GetTypeName<T>());
6683 #endif
6684     return "the element type";
6685   }
6686 
6687   const ::testing::Matcher<const T&> matcher_;
6688 };
6689 
6690 }  // namespace variant_matcher
6691 
6692 namespace any_cast_matcher {
6693 
6694 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
6695 template <typename T>
6696 void any_cast() {}
6697 
6698 // Implements a matcher that any_casts the value.
6699 template <typename T>
6700 class AnyCastMatcher {
6701  public:
6702   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
6703       : matcher_(matcher) {}
6704 
6705   template <typename AnyType>
6706   bool MatchAndExplain(const AnyType& value,
6707                        ::testing::MatchResultListener* listener) const {
6708     if (!listener->IsInterested()) {
6709       const T* ptr = any_cast<T>(&value);
6710       return ptr != nullptr && matcher_.Matches(*ptr);
6711     }
6712 
6713     const T* elem = any_cast<T>(&value);
6714     if (elem == nullptr) {
6715       *listener << "whose value is not of type '" << GetTypeName() << "'";
6716       return false;
6717     }
6718 
6719     StringMatchResultListener elem_listener;
6720     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
6721     *listener << "whose value " << PrintToString(*elem)
6722               << (match ? " matches" : " doesn't match");
6723     PrintIfNotEmpty(elem_listener.str(), listener->stream());
6724     return match;
6725   }
6726 
6727   void DescribeTo(std::ostream* os) const {
6728     *os << "is an 'any' type with value of type '" << GetTypeName()
6729         << "' and the value ";
6730     matcher_.DescribeTo(os);
6731   }
6732 
6733   void DescribeNegationTo(std::ostream* os) const {
6734     *os << "is an 'any' type with value of type other than '" << GetTypeName()
6735         << "' or the value ";
6736     matcher_.DescribeNegationTo(os);
6737   }
6738 
6739  private:
6740   static std::string GetTypeName() {
6741 #if GTEST_HAS_RTTI
6742     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
6743         return internal::GetTypeName<T>());
6744 #endif
6745     return "the element type";
6746   }
6747 
6748   const ::testing::Matcher<const T&> matcher_;
6749 };
6750 
6751 }  // namespace any_cast_matcher
6752 
6753 // Implements the Args() matcher.
6754 template <class ArgsTuple, size_t... k>
6755 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
6756  public:
6757   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
6758   using SelectedArgs =
6759       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
6760   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
6761 
6762   template <typename InnerMatcher>
6763   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
6764       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
6765 
6766   bool MatchAndExplain(ArgsTuple args,
6767                        MatchResultListener* listener) const override {
6768     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
6769     (void)args;
6770     const SelectedArgs& selected_args =
6771         std::forward_as_tuple(std::get<k>(args)...);
6772     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
6773 
6774     PrintIndices(listener->stream());
6775     *listener << "are " << PrintToString(selected_args);
6776 
6777     StringMatchResultListener inner_listener;
6778     const bool match =
6779         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
6780     PrintIfNotEmpty(inner_listener.str(), listener->stream());
6781     return match;
6782   }
6783 
6784   void DescribeTo(::std::ostream* os) const override {
6785     *os << "are a tuple ";
6786     PrintIndices(os);
6787     inner_matcher_.DescribeTo(os);
6788   }
6789 
6790   void DescribeNegationTo(::std::ostream* os) const override {
6791     *os << "are a tuple ";
6792     PrintIndices(os);
6793     inner_matcher_.DescribeNegationTo(os);
6794   }
6795 
6796  private:
6797   // Prints the indices of the selected fields.
6798   static void PrintIndices(::std::ostream* os) {
6799     *os << "whose fields (";
6800     const char* sep = "";
6801     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
6802     (void)sep;
6803     const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
6804     (void)dummy;
6805     *os << ") ";
6806   }
6807 
6808   MonomorphicInnerMatcher inner_matcher_;
6809 };
6810 
6811 template <class InnerMatcher, size_t... k>
6812 class ArgsMatcher {
6813  public:
6814   explicit ArgsMatcher(InnerMatcher inner_matcher)
6815       : inner_matcher_(std::move(inner_matcher)) {}
6816 
6817   template <typename ArgsTuple>
6818   operator Matcher<ArgsTuple>() const {  // NOLINT
6819     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
6820   }
6821 
6822  private:
6823   InnerMatcher inner_matcher_;
6824 };
6825 
6826 }  // namespace internal
6827 
6828 // ElementsAreArray(iterator_first, iterator_last)
6829 // ElementsAreArray(pointer, count)
6830 // ElementsAreArray(array)
6831 // ElementsAreArray(container)
6832 // ElementsAreArray({ e1, e2, ..., en })
6833 //
6834 // The ElementsAreArray() functions are like ElementsAre(...), except
6835 // that they are given a homogeneous sequence rather than taking each
6836 // element as a function argument. The sequence can be specified as an
6837 // array, a pointer and count, a vector, an initializer list, or an
6838 // STL iterator range. In each of these cases, the underlying sequence
6839 // can be either a sequence of values or a sequence of matchers.
6840 //
6841 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
6842 
6843 template <typename Iter>
6844 inline internal::ElementsAreArrayMatcher<
6845     typename ::std::iterator_traits<Iter>::value_type>
6846 ElementsAreArray(Iter first, Iter last) {
6847   typedef typename ::std::iterator_traits<Iter>::value_type T;
6848   return internal::ElementsAreArrayMatcher<T>(first, last);
6849 }
6850 
6851 template <typename T>
6852 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6853     const T* pointer, size_t count) {
6854   return ElementsAreArray(pointer, pointer + count);
6855 }
6856 
6857 template <typename T, size_t N>
6858 inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
6859     const T (&array)[N]) {
6860   return ElementsAreArray(array, N);
6861 }
6862 
6863 template <typename Container>
6864 inline internal::ElementsAreArrayMatcher<typename Container::value_type>
6865 ElementsAreArray(const Container& container) {
6866   return ElementsAreArray(container.begin(), container.end());
6867 }
6868 
6869 template <typename T>
6870 inline internal::ElementsAreArrayMatcher<T>
6871 ElementsAreArray(::std::initializer_list<T> xs) {
6872   return ElementsAreArray(xs.begin(), xs.end());
6873 }
6874 
6875 // UnorderedElementsAreArray(iterator_first, iterator_last)
6876 // UnorderedElementsAreArray(pointer, count)
6877 // UnorderedElementsAreArray(array)
6878 // UnorderedElementsAreArray(container)
6879 // UnorderedElementsAreArray({ e1, e2, ..., en })
6880 //
6881 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
6882 // collection of matchers exists.
6883 //
6884 // The matchers can be specified as an array, a pointer and count, a container,
6885 // an initializer list, or an STL iterator range. In each of these cases, the
6886 // underlying matchers can be either values or matchers.
6887 
6888 template <typename Iter>
6889 inline internal::UnorderedElementsAreArrayMatcher<
6890     typename ::std::iterator_traits<Iter>::value_type>
6891 UnorderedElementsAreArray(Iter first, Iter last) {
6892   typedef typename ::std::iterator_traits<Iter>::value_type T;
6893   return internal::UnorderedElementsAreArrayMatcher<T>(
6894       internal::UnorderedMatcherRequire::ExactMatch, first, last);
6895 }
6896 
6897 template <typename T>
6898 inline internal::UnorderedElementsAreArrayMatcher<T>
6899 UnorderedElementsAreArray(const T* pointer, size_t count) {
6900   return UnorderedElementsAreArray(pointer, pointer + count);
6901 }
6902 
6903 template <typename T, size_t N>
6904 inline internal::UnorderedElementsAreArrayMatcher<T>
6905 UnorderedElementsAreArray(const T (&array)[N]) {
6906   return UnorderedElementsAreArray(array, N);
6907 }
6908 
6909 template <typename Container>
6910 inline internal::UnorderedElementsAreArrayMatcher<
6911     typename Container::value_type>
6912 UnorderedElementsAreArray(const Container& container) {
6913   return UnorderedElementsAreArray(container.begin(), container.end());
6914 }
6915 
6916 template <typename T>
6917 inline internal::UnorderedElementsAreArrayMatcher<T>
6918 UnorderedElementsAreArray(::std::initializer_list<T> xs) {
6919   return UnorderedElementsAreArray(xs.begin(), xs.end());
6920 }
6921 
6922 // _ is a matcher that matches anything of any type.
6923 //
6924 // This definition is fine as:
6925 //
6926 //   1. The C++ standard permits using the name _ in a namespace that
6927 //      is not the global namespace or ::std.
6928 //   2. The AnythingMatcher class has no data member or constructor,
6929 //      so it's OK to create global variables of this type.
6930 //   3. c-style has approved of using _ in this case.
6931 const internal::AnythingMatcher _ = {};
6932 // Creates a matcher that matches any value of the given type T.
6933 template <typename T>
6934 inline Matcher<T> A() {
6935   return _;
6936 }
6937 
6938 // Creates a matcher that matches any value of the given type T.
6939 template <typename T>
6940 inline Matcher<T> An() {
6941   return _;
6942 }
6943 
6944 template <typename T, typename M>
6945 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
6946     const M& value, std::false_type /* convertible_to_matcher */,
6947     std::false_type /* convertible_to_T */) {
6948   return Eq(value);
6949 }
6950 
6951 // Creates a polymorphic matcher that matches any NULL pointer.
6952 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
6953   return MakePolymorphicMatcher(internal::IsNullMatcher());
6954 }
6955 
6956 // Creates a polymorphic matcher that matches any non-NULL pointer.
6957 // This is convenient as Not(NULL) doesn't compile (the compiler
6958 // thinks that that expression is comparing a pointer with an integer).
6959 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
6960   return MakePolymorphicMatcher(internal::NotNullMatcher());
6961 }
6962 
6963 // Creates a polymorphic matcher that matches any argument that
6964 // references variable x.
6965 template <typename T>
6966 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
6967   return internal::RefMatcher<T&>(x);
6968 }
6969 
6970 // Creates a polymorphic matcher that matches any NaN floating point.
6971 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
6972   return MakePolymorphicMatcher(internal::IsNanMatcher());
6973 }
6974 
6975 // Creates a matcher that matches any double argument approximately
6976 // equal to rhs, where two NANs are considered unequal.
6977 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
6978   return internal::FloatingEqMatcher<double>(rhs, false);
6979 }
6980 
6981 // Creates a matcher that matches any double argument approximately
6982 // equal to rhs, including NaN values when rhs is NaN.
6983 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
6984   return internal::FloatingEqMatcher<double>(rhs, true);
6985 }
6986 
6987 // Creates a matcher that matches any double argument approximately equal to
6988 // rhs, up to the specified max absolute error bound, where two NANs are
6989 // considered unequal.  The max absolute error bound must be non-negative.
6990 inline internal::FloatingEqMatcher<double> DoubleNear(
6991     double rhs, double max_abs_error) {
6992   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
6993 }
6994 
6995 // Creates a matcher that matches any double argument approximately equal to
6996 // rhs, up to the specified max absolute error bound, including NaN values when
6997 // rhs is NaN.  The max absolute error bound must be non-negative.
6998 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
6999     double rhs, double max_abs_error) {
7000   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
7001 }
7002 
7003 // Creates a matcher that matches any float argument approximately
7004 // equal to rhs, where two NANs are considered unequal.
7005 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
7006   return internal::FloatingEqMatcher<float>(rhs, false);
7007 }
7008 
7009 // Creates a matcher that matches any float argument approximately
7010 // equal to rhs, including NaN values when rhs is NaN.
7011 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
7012   return internal::FloatingEqMatcher<float>(rhs, true);
7013 }
7014 
7015 // Creates a matcher that matches any float argument approximately equal to
7016 // rhs, up to the specified max absolute error bound, where two NANs are
7017 // considered unequal.  The max absolute error bound must be non-negative.
7018 inline internal::FloatingEqMatcher<float> FloatNear(
7019     float rhs, float max_abs_error) {
7020   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
7021 }
7022 
7023 // Creates a matcher that matches any float argument approximately equal to
7024 // rhs, up to the specified max absolute error bound, including NaN values when
7025 // rhs is NaN.  The max absolute error bound must be non-negative.
7026 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
7027     float rhs, float max_abs_error) {
7028   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
7029 }
7030 
7031 // Creates a matcher that matches a pointer (raw or smart) that points
7032 // to a value that matches inner_matcher.
7033 template <typename InnerMatcher>
7034 inline internal::PointeeMatcher<InnerMatcher> Pointee(
7035     const InnerMatcher& inner_matcher) {
7036   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
7037 }
7038 
7039 #if GTEST_HAS_RTTI
7040 // Creates a matcher that matches a pointer or reference that matches
7041 // inner_matcher when dynamic_cast<To> is applied.
7042 // The result of dynamic_cast<To> is forwarded to the inner matcher.
7043 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
7044 // If To is a reference and the cast fails, this matcher returns false
7045 // immediately.
7046 template <typename To>
7047 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
7048 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
7049   return MakePolymorphicMatcher(
7050       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
7051 }
7052 #endif  // GTEST_HAS_RTTI
7053 
7054 // Creates a matcher that matches an object whose given field matches
7055 // 'matcher'.  For example,
7056 //   Field(&Foo::number, Ge(5))
7057 // matches a Foo object x if and only if x.number >= 5.
7058 template <typename Class, typename FieldType, typename FieldMatcher>
7059 inline PolymorphicMatcher<
7060   internal::FieldMatcher<Class, FieldType> > Field(
7061     FieldType Class::*field, const FieldMatcher& matcher) {
7062   return MakePolymorphicMatcher(
7063       internal::FieldMatcher<Class, FieldType>(
7064           field, MatcherCast<const FieldType&>(matcher)));
7065   // The call to MatcherCast() is required for supporting inner
7066   // matchers of compatible types.  For example, it allows
7067   //   Field(&Foo::bar, m)
7068   // to compile where bar is an int32 and m is a matcher for int64.
7069 }
7070 
7071 // Same as Field() but also takes the name of the field to provide better error
7072 // messages.
7073 template <typename Class, typename FieldType, typename FieldMatcher>
7074 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
7075     const std::string& field_name, FieldType Class::*field,
7076     const FieldMatcher& matcher) {
7077   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
7078       field_name, field, MatcherCast<const FieldType&>(matcher)));
7079 }
7080 
7081 // Creates a matcher that matches an object whose given property
7082 // matches 'matcher'.  For example,
7083 //   Property(&Foo::str, StartsWith("hi"))
7084 // matches a Foo object x if and only if x.str() starts with "hi".
7085 template <typename Class, typename PropertyType, typename PropertyMatcher>
7086 inline PolymorphicMatcher<internal::PropertyMatcher<
7087     Class, PropertyType, PropertyType (Class::*)() const> >
7088 Property(PropertyType (Class::*property)() const,
7089          const PropertyMatcher& matcher) {
7090   return MakePolymorphicMatcher(
7091       internal::PropertyMatcher<Class, PropertyType,
7092                                 PropertyType (Class::*)() const>(
7093           property, MatcherCast<const PropertyType&>(matcher)));
7094   // The call to MatcherCast() is required for supporting inner
7095   // matchers of compatible types.  For example, it allows
7096   //   Property(&Foo::bar, m)
7097   // to compile where bar() returns an int32 and m is a matcher for int64.
7098 }
7099 
7100 // Same as Property() above, but also takes the name of the property to provide
7101 // better error messages.
7102 template <typename Class, typename PropertyType, typename PropertyMatcher>
7103 inline PolymorphicMatcher<internal::PropertyMatcher<
7104     Class, PropertyType, PropertyType (Class::*)() const> >
7105 Property(const std::string& property_name,
7106          PropertyType (Class::*property)() const,
7107          const PropertyMatcher& matcher) {
7108   return MakePolymorphicMatcher(
7109       internal::PropertyMatcher<Class, PropertyType,
7110                                 PropertyType (Class::*)() const>(
7111           property_name, property, MatcherCast<const PropertyType&>(matcher)));
7112 }
7113 
7114 // The same as above but for reference-qualified member functions.
7115 template <typename Class, typename PropertyType, typename PropertyMatcher>
7116 inline PolymorphicMatcher<internal::PropertyMatcher<
7117     Class, PropertyType, PropertyType (Class::*)() const &> >
7118 Property(PropertyType (Class::*property)() const &,
7119          const PropertyMatcher& matcher) {
7120   return MakePolymorphicMatcher(
7121       internal::PropertyMatcher<Class, PropertyType,
7122                                 PropertyType (Class::*)() const&>(
7123           property, MatcherCast<const PropertyType&>(matcher)));
7124 }
7125 
7126 // Three-argument form for reference-qualified member functions.
7127 template <typename Class, typename PropertyType, typename PropertyMatcher>
7128 inline PolymorphicMatcher<internal::PropertyMatcher<
7129     Class, PropertyType, PropertyType (Class::*)() const &> >
7130 Property(const std::string& property_name,
7131          PropertyType (Class::*property)() const &,
7132          const PropertyMatcher& matcher) {
7133   return MakePolymorphicMatcher(
7134       internal::PropertyMatcher<Class, PropertyType,
7135                                 PropertyType (Class::*)() const&>(
7136           property_name, property, MatcherCast<const PropertyType&>(matcher)));
7137 }
7138 
7139 // Creates a matcher that matches an object if and only if the result of
7140 // applying a callable to x matches 'matcher'. For example,
7141 //   ResultOf(f, StartsWith("hi"))
7142 // matches a Foo object x if and only if f(x) starts with "hi".
7143 // `callable` parameter can be a function, function pointer, or a functor. It is
7144 // required to keep no state affecting the results of the calls on it and make
7145 // no assumptions about how many calls will be made. Any state it keeps must be
7146 // protected from the concurrent access.
7147 template <typename Callable, typename InnerMatcher>
7148 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
7149     Callable callable, InnerMatcher matcher) {
7150   return internal::ResultOfMatcher<Callable, InnerMatcher>(
7151       std::move(callable), std::move(matcher));
7152 }
7153 
7154 // String matchers.
7155 
7156 // Matches a string equal to str.
7157 template <typename T = std::string>
7158 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
7159     const internal::StringLike<T>& str) {
7160   return MakePolymorphicMatcher(
7161       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
7162 }
7163 
7164 // Matches a string not equal to str.
7165 template <typename T = std::string>
7166 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
7167     const internal::StringLike<T>& str) {
7168   return MakePolymorphicMatcher(
7169       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
7170 }
7171 
7172 // Matches a string equal to str, ignoring case.
7173 template <typename T = std::string>
7174 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
7175     const internal::StringLike<T>& str) {
7176   return MakePolymorphicMatcher(
7177       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
7178 }
7179 
7180 // Matches a string not equal to str, ignoring case.
7181 template <typename T = std::string>
7182 PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
7183     const internal::StringLike<T>& str) {
7184   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
7185       std::string(str), false, false));
7186 }
7187 
7188 // Creates a matcher that matches any string, std::string, or C string
7189 // that contains the given substring.
7190 template <typename T = std::string>
7191 PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
7192     const internal::StringLike<T>& substring) {
7193   return MakePolymorphicMatcher(
7194       internal::HasSubstrMatcher<std::string>(std::string(substring)));
7195 }
7196 
7197 // Matches a string that starts with 'prefix' (case-sensitive).
7198 template <typename T = std::string>
7199 PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
7200     const internal::StringLike<T>& prefix) {
7201   return MakePolymorphicMatcher(
7202       internal::StartsWithMatcher<std::string>(std::string(prefix)));
7203 }
7204 
7205 // Matches a string that ends with 'suffix' (case-sensitive).
7206 template <typename T = std::string>
7207 PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
7208     const internal::StringLike<T>& suffix) {
7209   return MakePolymorphicMatcher(
7210       internal::EndsWithMatcher<std::string>(std::string(suffix)));
7211 }
7212 
7213 #if GTEST_HAS_STD_WSTRING
7214 // Wide string matchers.
7215 
7216 // Matches a string equal to str.
7217 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
7218     const std::wstring& str) {
7219   return MakePolymorphicMatcher(
7220       internal::StrEqualityMatcher<std::wstring>(str, true, true));
7221 }
7222 
7223 // Matches a string not equal to str.
7224 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
7225     const std::wstring& str) {
7226   return MakePolymorphicMatcher(
7227       internal::StrEqualityMatcher<std::wstring>(str, false, true));
7228 }
7229 
7230 // Matches a string equal to str, ignoring case.
7231 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7232 StrCaseEq(const std::wstring& str) {
7233   return MakePolymorphicMatcher(
7234       internal::StrEqualityMatcher<std::wstring>(str, true, false));
7235 }
7236 
7237 // Matches a string not equal to str, ignoring case.
7238 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
7239 StrCaseNe(const std::wstring& str) {
7240   return MakePolymorphicMatcher(
7241       internal::StrEqualityMatcher<std::wstring>(str, false, false));
7242 }
7243 
7244 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
7245 // that contains the given substring.
7246 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
7247     const std::wstring& substring) {
7248   return MakePolymorphicMatcher(
7249       internal::HasSubstrMatcher<std::wstring>(substring));
7250 }
7251 
7252 // Matches a string that starts with 'prefix' (case-sensitive).
7253 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
7254 StartsWith(const std::wstring& prefix) {
7255   return MakePolymorphicMatcher(
7256       internal::StartsWithMatcher<std::wstring>(prefix));
7257 }
7258 
7259 // Matches a string that ends with 'suffix' (case-sensitive).
7260 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
7261     const std::wstring& suffix) {
7262   return MakePolymorphicMatcher(
7263       internal::EndsWithMatcher<std::wstring>(suffix));
7264 }
7265 
7266 #endif  // GTEST_HAS_STD_WSTRING
7267 
7268 // Creates a polymorphic matcher that matches a 2-tuple where the
7269 // first field == the second field.
7270 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
7271 
7272 // Creates a polymorphic matcher that matches a 2-tuple where the
7273 // first field >= the second field.
7274 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
7275 
7276 // Creates a polymorphic matcher that matches a 2-tuple where the
7277 // first field > the second field.
7278 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
7279 
7280 // Creates a polymorphic matcher that matches a 2-tuple where the
7281 // first field <= the second field.
7282 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
7283 
7284 // Creates a polymorphic matcher that matches a 2-tuple where the
7285 // first field < the second field.
7286 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
7287 
7288 // Creates a polymorphic matcher that matches a 2-tuple where the
7289 // first field != the second field.
7290 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
7291 
7292 // Creates a polymorphic matcher that matches a 2-tuple where
7293 // FloatEq(first field) matches the second field.
7294 inline internal::FloatingEq2Matcher<float> FloatEq() {
7295   return internal::FloatingEq2Matcher<float>();
7296 }
7297 
7298 // Creates a polymorphic matcher that matches a 2-tuple where
7299 // DoubleEq(first field) matches the second field.
7300 inline internal::FloatingEq2Matcher<double> DoubleEq() {
7301   return internal::FloatingEq2Matcher<double>();
7302 }
7303 
7304 // Creates a polymorphic matcher that matches a 2-tuple where
7305 // FloatEq(first field) matches the second field with NaN equality.
7306 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
7307   return internal::FloatingEq2Matcher<float>(true);
7308 }
7309 
7310 // Creates a polymorphic matcher that matches a 2-tuple where
7311 // DoubleEq(first field) matches the second field with NaN equality.
7312 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
7313   return internal::FloatingEq2Matcher<double>(true);
7314 }
7315 
7316 // Creates a polymorphic matcher that matches a 2-tuple where
7317 // FloatNear(first field, max_abs_error) matches the second field.
7318 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
7319   return internal::FloatingEq2Matcher<float>(max_abs_error);
7320 }
7321 
7322 // Creates a polymorphic matcher that matches a 2-tuple where
7323 // DoubleNear(first field, max_abs_error) matches the second field.
7324 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
7325   return internal::FloatingEq2Matcher<double>(max_abs_error);
7326 }
7327 
7328 // Creates a polymorphic matcher that matches a 2-tuple where
7329 // FloatNear(first field, max_abs_error) matches the second field with NaN
7330 // equality.
7331 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
7332     float max_abs_error) {
7333   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
7334 }
7335 
7336 // Creates a polymorphic matcher that matches a 2-tuple where
7337 // DoubleNear(first field, max_abs_error) matches the second field with NaN
7338 // equality.
7339 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
7340     double max_abs_error) {
7341   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
7342 }
7343 
7344 // Creates a matcher that matches any value of type T that m doesn't
7345 // match.
7346 template <typename InnerMatcher>
7347 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
7348   return internal::NotMatcher<InnerMatcher>(m);
7349 }
7350 
7351 // Returns a matcher that matches anything that satisfies the given
7352 // predicate.  The predicate can be any unary function or functor
7353 // whose return type can be implicitly converted to bool.
7354 template <typename Predicate>
7355 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
7356 Truly(Predicate pred) {
7357   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
7358 }
7359 
7360 // Returns a matcher that matches the container size. The container must
7361 // support both size() and size_type which all STL-like containers provide.
7362 // Note that the parameter 'size' can be a value of type size_type as well as
7363 // matcher. For instance:
7364 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
7365 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
7366 template <typename SizeMatcher>
7367 inline internal::SizeIsMatcher<SizeMatcher>
7368 SizeIs(const SizeMatcher& size_matcher) {
7369   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
7370 }
7371 
7372 // Returns a matcher that matches the distance between the container's begin()
7373 // iterator and its end() iterator, i.e. the size of the container. This matcher
7374 // can be used instead of SizeIs with containers such as std::forward_list which
7375 // do not implement size(). The container must provide const_iterator (with
7376 // valid iterator_traits), begin() and end().
7377 template <typename DistanceMatcher>
7378 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
7379 BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
7380   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
7381 }
7382 
7383 // Returns a matcher that matches an equal container.
7384 // This matcher behaves like Eq(), but in the event of mismatch lists the
7385 // values that are included in one container but not the other. (Duplicate
7386 // values and order differences are not explained.)
7387 template <typename Container>
7388 inline PolymorphicMatcher<internal::ContainerEqMatcher<
7389     typename std::remove_const<Container>::type>>
7390 ContainerEq(const Container& rhs) {
7391   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
7392 }
7393 
7394 // Returns a matcher that matches a container that, when sorted using
7395 // the given comparator, matches container_matcher.
7396 template <typename Comparator, typename ContainerMatcher>
7397 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
7398 WhenSortedBy(const Comparator& comparator,
7399              const ContainerMatcher& container_matcher) {
7400   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
7401       comparator, container_matcher);
7402 }
7403 
7404 // Returns a matcher that matches a container that, when sorted using
7405 // the < operator, matches container_matcher.
7406 template <typename ContainerMatcher>
7407 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
7408 WhenSorted(const ContainerMatcher& container_matcher) {
7409   return
7410       internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
7411           internal::LessComparator(), container_matcher);
7412 }
7413 
7414 // Matches an STL-style container or a native array that contains the
7415 // same number of elements as in rhs, where its i-th element and rhs's
7416 // i-th element (as a pair) satisfy the given pair matcher, for all i.
7417 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
7418 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
7419 // LHS container and the RHS container respectively.
7420 template <typename TupleMatcher, typename Container>
7421 inline internal::PointwiseMatcher<TupleMatcher,
7422                                   typename std::remove_const<Container>::type>
7423 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
7424   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
7425                                                              rhs);
7426 }
7427 
7428 
7429 // Supports the Pointwise(m, {a, b, c}) syntax.
7430 template <typename TupleMatcher, typename T>
7431 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
7432     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
7433   return Pointwise(tuple_matcher, std::vector<T>(rhs));
7434 }
7435 
7436 
7437 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
7438 // container or a native array that contains the same number of
7439 // elements as in rhs, where in some permutation of the container, its
7440 // i-th element and rhs's i-th element (as a pair) satisfy the given
7441 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
7442 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
7443 // the types of elements in the LHS container and the RHS container
7444 // respectively.
7445 //
7446 // This is like Pointwise(pair_matcher, rhs), except that the element
7447 // order doesn't matter.
7448 template <typename Tuple2Matcher, typename RhsContainer>
7449 inline internal::UnorderedElementsAreArrayMatcher<
7450     typename internal::BoundSecondMatcher<
7451         Tuple2Matcher,
7452         typename internal::StlContainerView<
7453             typename std::remove_const<RhsContainer>::type>::type::value_type>>
7454 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7455                    const RhsContainer& rhs_container) {
7456   // RhsView allows the same code to handle RhsContainer being a
7457   // STL-style container and it being a native C-style array.
7458   typedef typename internal::StlContainerView<RhsContainer> RhsView;
7459   typedef typename RhsView::type RhsStlContainer;
7460   typedef typename RhsStlContainer::value_type Second;
7461   const RhsStlContainer& rhs_stl_container =
7462       RhsView::ConstReference(rhs_container);
7463 
7464   // Create a matcher for each element in rhs_container.
7465   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
7466   for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
7467        it != rhs_stl_container.end(); ++it) {
7468     matchers.push_back(
7469         internal::MatcherBindSecond(tuple2_matcher, *it));
7470   }
7471 
7472   // Delegate the work to UnorderedElementsAreArray().
7473   return UnorderedElementsAreArray(matchers);
7474 }
7475 
7476 
7477 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
7478 template <typename Tuple2Matcher, typename T>
7479 inline internal::UnorderedElementsAreArrayMatcher<
7480     typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
7481 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
7482                    std::initializer_list<T> rhs) {
7483   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
7484 }
7485 
7486 
7487 // Matches an STL-style container or a native array that contains at
7488 // least one element matching the given value or matcher.
7489 //
7490 // Examples:
7491 //   ::std::set<int> page_ids;
7492 //   page_ids.insert(3);
7493 //   page_ids.insert(1);
7494 //   EXPECT_THAT(page_ids, Contains(1));
7495 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
7496 //   EXPECT_THAT(page_ids, Not(Contains(4)));
7497 //
7498 //   ::std::map<int, size_t> page_lengths;
7499 //   page_lengths[1] = 100;
7500 //   EXPECT_THAT(page_lengths,
7501 //               Contains(::std::pair<const int, size_t>(1, 100)));
7502 //
7503 //   const char* user_ids[] = { "joe", "mike", "tom" };
7504 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
7505 template <typename M>
7506 inline internal::ContainsMatcher<M> Contains(M matcher) {
7507   return internal::ContainsMatcher<M>(matcher);
7508 }
7509 
7510 // IsSupersetOf(iterator_first, iterator_last)
7511 // IsSupersetOf(pointer, count)
7512 // IsSupersetOf(array)
7513 // IsSupersetOf(container)
7514 // IsSupersetOf({e1, e2, ..., en})
7515 //
7516 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
7517 // of matchers exists. In other words, a container matches
7518 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
7519 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
7520 // ..., and yn matches en. Obviously, the size of the container must be >= n
7521 // in order to have a match. Examples:
7522 //
7523 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
7524 //   1 matches Ne(0).
7525 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
7526 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
7527 //   for elements in different slots of the container.
7528 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
7529 //   Eq(1) and (the second) 1 matches Lt(2).
7530 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
7531 //   Gt(1) and 3 matches (the second) Gt(1).
7532 //
7533 // The matchers can be specified as an array, a pointer and count, a container,
7534 // an initializer list, or an STL iterator range. In each of these cases, the
7535 // underlying matchers can be either values or matchers.
7536 
7537 template <typename Iter>
7538 inline internal::UnorderedElementsAreArrayMatcher<
7539     typename ::std::iterator_traits<Iter>::value_type>
7540 IsSupersetOf(Iter first, Iter last) {
7541   typedef typename ::std::iterator_traits<Iter>::value_type T;
7542   return internal::UnorderedElementsAreArrayMatcher<T>(
7543       internal::UnorderedMatcherRequire::Superset, first, last);
7544 }
7545 
7546 template <typename T>
7547 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7548     const T* pointer, size_t count) {
7549   return IsSupersetOf(pointer, pointer + count);
7550 }
7551 
7552 template <typename T, size_t N>
7553 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7554     const T (&array)[N]) {
7555   return IsSupersetOf(array, N);
7556 }
7557 
7558 template <typename Container>
7559 inline internal::UnorderedElementsAreArrayMatcher<
7560     typename Container::value_type>
7561 IsSupersetOf(const Container& container) {
7562   return IsSupersetOf(container.begin(), container.end());
7563 }
7564 
7565 template <typename T>
7566 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
7567     ::std::initializer_list<T> xs) {
7568   return IsSupersetOf(xs.begin(), xs.end());
7569 }
7570 
7571 // IsSubsetOf(iterator_first, iterator_last)
7572 // IsSubsetOf(pointer, count)
7573 // IsSubsetOf(array)
7574 // IsSubsetOf(container)
7575 // IsSubsetOf({e1, e2, ..., en})
7576 //
7577 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
7578 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
7579 // only if there is a subset of matchers {m1, ..., mk} which would match the
7580 // container using UnorderedElementsAre.  Obviously, the size of the container
7581 // must be <= n in order to have a match. Examples:
7582 //
7583 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
7584 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
7585 //   matches Lt(0).
7586 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
7587 //   match Gt(0). The reason is that different matchers must be used for
7588 //   elements in different slots of the container.
7589 //
7590 // The matchers can be specified as an array, a pointer and count, a container,
7591 // an initializer list, or an STL iterator range. In each of these cases, the
7592 // underlying matchers can be either values or matchers.
7593 
7594 template <typename Iter>
7595 inline internal::UnorderedElementsAreArrayMatcher<
7596     typename ::std::iterator_traits<Iter>::value_type>
7597 IsSubsetOf(Iter first, Iter last) {
7598   typedef typename ::std::iterator_traits<Iter>::value_type T;
7599   return internal::UnorderedElementsAreArrayMatcher<T>(
7600       internal::UnorderedMatcherRequire::Subset, first, last);
7601 }
7602 
7603 template <typename T>
7604 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7605     const T* pointer, size_t count) {
7606   return IsSubsetOf(pointer, pointer + count);
7607 }
7608 
7609 template <typename T, size_t N>
7610 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7611     const T (&array)[N]) {
7612   return IsSubsetOf(array, N);
7613 }
7614 
7615 template <typename Container>
7616 inline internal::UnorderedElementsAreArrayMatcher<
7617     typename Container::value_type>
7618 IsSubsetOf(const Container& container) {
7619   return IsSubsetOf(container.begin(), container.end());
7620 }
7621 
7622 template <typename T>
7623 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
7624     ::std::initializer_list<T> xs) {
7625   return IsSubsetOf(xs.begin(), xs.end());
7626 }
7627 
7628 // Matches an STL-style container or a native array that contains only
7629 // elements matching the given value or matcher.
7630 //
7631 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
7632 // the messages are different.
7633 //
7634 // Examples:
7635 //   ::std::set<int> page_ids;
7636 //   // Each(m) matches an empty container, regardless of what m is.
7637 //   EXPECT_THAT(page_ids, Each(Eq(1)));
7638 //   EXPECT_THAT(page_ids, Each(Eq(77)));
7639 //
7640 //   page_ids.insert(3);
7641 //   EXPECT_THAT(page_ids, Each(Gt(0)));
7642 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
7643 //   page_ids.insert(1);
7644 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
7645 //
7646 //   ::std::map<int, size_t> page_lengths;
7647 //   page_lengths[1] = 100;
7648 //   page_lengths[2] = 200;
7649 //   page_lengths[3] = 300;
7650 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
7651 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
7652 //
7653 //   const char* user_ids[] = { "joe", "mike", "tom" };
7654 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
7655 template <typename M>
7656 inline internal::EachMatcher<M> Each(M matcher) {
7657   return internal::EachMatcher<M>(matcher);
7658 }
7659 
7660 // Key(inner_matcher) matches an std::pair whose 'first' field matches
7661 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
7662 // std::map that contains at least one element whose key is >= 5.
7663 template <typename M>
7664 inline internal::KeyMatcher<M> Key(M inner_matcher) {
7665   return internal::KeyMatcher<M>(inner_matcher);
7666 }
7667 
7668 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
7669 // matches first_matcher and whose 'second' field matches second_matcher.  For
7670 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
7671 // to match a std::map<int, string> that contains exactly one element whose key
7672 // is >= 5 and whose value equals "foo".
7673 template <typename FirstMatcher, typename SecondMatcher>
7674 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
7675 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
7676   return internal::PairMatcher<FirstMatcher, SecondMatcher>(
7677       first_matcher, second_matcher);
7678 }
7679 
7680 namespace no_adl {
7681 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
7682 // These include those that support `get<I>(obj)`, and when structured bindings
7683 // are enabled any class that supports them.
7684 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
7685 template <typename... M>
7686 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
7687     M&&... matchers) {
7688   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
7689       std::forward<M>(matchers)...);
7690 }
7691 
7692 // Creates a matcher that matches a pointer (raw or smart) that matches
7693 // inner_matcher.
7694 template <typename InnerMatcher>
7695 inline internal::PointerMatcher<InnerMatcher> Pointer(
7696     const InnerMatcher& inner_matcher) {
7697   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
7698 }
7699 
7700 // Creates a matcher that matches an object that has an address that matches
7701 // inner_matcher.
7702 template <typename InnerMatcher>
7703 inline internal::AddressMatcher<InnerMatcher> Address(
7704     const InnerMatcher& inner_matcher) {
7705   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
7706 }
7707 }  // namespace no_adl
7708 
7709 // Returns a predicate that is satisfied by anything that matches the
7710 // given matcher.
7711 template <typename M>
7712 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
7713   return internal::MatcherAsPredicate<M>(matcher);
7714 }
7715 
7716 // Returns true if and only if the value matches the matcher.
7717 template <typename T, typename M>
7718 inline bool Value(const T& value, M matcher) {
7719   return testing::Matches(matcher)(value);
7720 }
7721 
7722 // Matches the value against the given matcher and explains the match
7723 // result to listener.
7724 template <typename T, typename M>
7725 inline bool ExplainMatchResult(
7726     M matcher, const T& value, MatchResultListener* listener) {
7727   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
7728 }
7729 
7730 // Returns a string representation of the given matcher.  Useful for description
7731 // strings of matchers defined using MATCHER_P* macros that accept matchers as
7732 // their arguments.  For example:
7733 //
7734 // MATCHER_P(XAndYThat, matcher,
7735 //           "X that " + DescribeMatcher<int>(matcher, negation) +
7736 //               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
7737 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
7738 //          ExplainMatchResult(matcher, arg.y(), result_listener);
7739 // }
7740 template <typename T, typename M>
7741 std::string DescribeMatcher(const M& matcher, bool negation = false) {
7742   ::std::stringstream ss;
7743   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
7744   if (negation) {
7745     monomorphic_matcher.DescribeNegationTo(&ss);
7746   } else {
7747     monomorphic_matcher.DescribeTo(&ss);
7748   }
7749   return ss.str();
7750 }
7751 
7752 template <typename... Args>
7753 internal::ElementsAreMatcher<
7754     std::tuple<typename std::decay<const Args&>::type...>>
7755 ElementsAre(const Args&... matchers) {
7756   return internal::ElementsAreMatcher<
7757       std::tuple<typename std::decay<const Args&>::type...>>(
7758       std::make_tuple(matchers...));
7759 }
7760 
7761 template <typename... Args>
7762 internal::UnorderedElementsAreMatcher<
7763     std::tuple<typename std::decay<const Args&>::type...>>
7764 UnorderedElementsAre(const Args&... matchers) {
7765   return internal::UnorderedElementsAreMatcher<
7766       std::tuple<typename std::decay<const Args&>::type...>>(
7767       std::make_tuple(matchers...));
7768 }
7769 
7770 // Define variadic matcher versions.
7771 template <typename... Args>
7772 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
7773     const Args&... matchers) {
7774   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
7775       matchers...);
7776 }
7777 
7778 template <typename... Args>
7779 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
7780     const Args&... matchers) {
7781   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
7782       matchers...);
7783 }
7784 
7785 // AnyOfArray(array)
7786 // AnyOfArray(pointer, count)
7787 // AnyOfArray(container)
7788 // AnyOfArray({ e1, e2, ..., en })
7789 // AnyOfArray(iterator_first, iterator_last)
7790 //
7791 // AnyOfArray() verifies whether a given value matches any member of a
7792 // collection of matchers.
7793 //
7794 // AllOfArray(array)
7795 // AllOfArray(pointer, count)
7796 // AllOfArray(container)
7797 // AllOfArray({ e1, e2, ..., en })
7798 // AllOfArray(iterator_first, iterator_last)
7799 //
7800 // AllOfArray() verifies whether a given value matches all members of a
7801 // collection of matchers.
7802 //
7803 // The matchers can be specified as an array, a pointer and count, a container,
7804 // an initializer list, or an STL iterator range. In each of these cases, the
7805 // underlying matchers can be either values or matchers.
7806 
7807 template <typename Iter>
7808 inline internal::AnyOfArrayMatcher<
7809     typename ::std::iterator_traits<Iter>::value_type>
7810 AnyOfArray(Iter first, Iter last) {
7811   return internal::AnyOfArrayMatcher<
7812       typename ::std::iterator_traits<Iter>::value_type>(first, last);
7813 }
7814 
7815 template <typename Iter>
7816 inline internal::AllOfArrayMatcher<
7817     typename ::std::iterator_traits<Iter>::value_type>
7818 AllOfArray(Iter first, Iter last) {
7819   return internal::AllOfArrayMatcher<
7820       typename ::std::iterator_traits<Iter>::value_type>(first, last);
7821 }
7822 
7823 template <typename T>
7824 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
7825   return AnyOfArray(ptr, ptr + count);
7826 }
7827 
7828 template <typename T>
7829 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
7830   return AllOfArray(ptr, ptr + count);
7831 }
7832 
7833 template <typename T, size_t N>
7834 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
7835   return AnyOfArray(array, N);
7836 }
7837 
7838 template <typename T, size_t N>
7839 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
7840   return AllOfArray(array, N);
7841 }
7842 
7843 template <typename Container>
7844 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
7845     const Container& container) {
7846   return AnyOfArray(container.begin(), container.end());
7847 }
7848 
7849 template <typename Container>
7850 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
7851     const Container& container) {
7852   return AllOfArray(container.begin(), container.end());
7853 }
7854 
7855 template <typename T>
7856 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
7857     ::std::initializer_list<T> xs) {
7858   return AnyOfArray(xs.begin(), xs.end());
7859 }
7860 
7861 template <typename T>
7862 inline internal::AllOfArrayMatcher<T> AllOfArray(
7863     ::std::initializer_list<T> xs) {
7864   return AllOfArray(xs.begin(), xs.end());
7865 }
7866 
7867 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
7868 // fields of it matches a_matcher.  C++ doesn't support default
7869 // arguments for function templates, so we have to overload it.
7870 template <size_t... k, typename InnerMatcher>
7871 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
7872     InnerMatcher&& matcher) {
7873   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
7874       std::forward<InnerMatcher>(matcher));
7875 }
7876 
7877 // AllArgs(m) is a synonym of m.  This is useful in
7878 //
7879 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
7880 //
7881 // which is easier to read than
7882 //
7883 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
7884 template <typename InnerMatcher>
7885 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
7886 
7887 // Returns a matcher that matches the value of an optional<> type variable.
7888 // The matcher implementation only uses '!arg' and requires that the optional<>
7889 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
7890 // and is printable using 'PrintToString'. It is compatible with
7891 // std::optional/std::experimental::optional.
7892 // Note that to compare an optional type variable against nullopt you should
7893 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
7894 // optional value contains an optional itself.
7895 template <typename ValueMatcher>
7896 inline internal::OptionalMatcher<ValueMatcher> Optional(
7897     const ValueMatcher& value_matcher) {
7898   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
7899 }
7900 
7901 // Returns a matcher that matches the value of a absl::any type variable.
7902 template <typename T>
7903 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
7904     const Matcher<const T&>& matcher) {
7905   return MakePolymorphicMatcher(
7906       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
7907 }
7908 
7909 // Returns a matcher that matches the value of a variant<> type variable.
7910 // The matcher implementation uses ADL to find the holds_alternative and get
7911 // functions.
7912 // It is compatible with std::variant.
7913 template <typename T>
7914 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
7915     const Matcher<const T&>& matcher) {
7916   return MakePolymorphicMatcher(
7917       internal::variant_matcher::VariantMatcher<T>(matcher));
7918 }
7919 
7920 #if GTEST_HAS_EXCEPTIONS
7921 
7922 // Anything inside the `internal` namespace is internal to the implementation
7923 // and must not be used in user code!
7924 namespace internal {
7925 
7926 class WithWhatMatcherImpl {
7927  public:
7928   WithWhatMatcherImpl(Matcher<std::string> matcher)
7929       : matcher_(std::move(matcher)) {}
7930 
7931   void DescribeTo(std::ostream* os) const {
7932     *os << "contains .what() that ";
7933     matcher_.DescribeTo(os);
7934   }
7935 
7936   void DescribeNegationTo(std::ostream* os) const {
7937     *os << "contains .what() that does not ";
7938     matcher_.DescribeTo(os);
7939   }
7940 
7941   template <typename Err>
7942   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
7943     *listener << "which contains .what() that ";
7944     return matcher_.MatchAndExplain(err.what(), listener);
7945   }
7946 
7947  private:
7948   const Matcher<std::string> matcher_;
7949 };
7950 
7951 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
7952     Matcher<std::string> m) {
7953   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
7954 }
7955 
7956 template <typename Err>
7957 class ExceptionMatcherImpl {
7958   class NeverThrown {
7959    public:
7960     const char* what() const noexcept {
7961       return "this exception should never be thrown";
7962     }
7963   };
7964 
7965   // If the matchee raises an exception of a wrong type, we'd like to
7966   // catch it and print its message and type. To do that, we add an additional
7967   // catch clause:
7968   //
7969   //     try { ... }
7970   //     catch (const Err&) { /* an expected exception */ }
7971   //     catch (const std::exception&) { /* exception of a wrong type */ }
7972   //
7973   // However, if the `Err` itself is `std::exception`, we'd end up with two
7974   // identical `catch` clauses:
7975   //
7976   //     try { ... }
7977   //     catch (const std::exception&) { /* an expected exception */ }
7978   //     catch (const std::exception&) { /* exception of a wrong type */ }
7979   //
7980   // This can cause a warning or an error in some compilers. To resolve
7981   // the issue, we use a fake error type whenever `Err` is `std::exception`:
7982   //
7983   //     try { ... }
7984   //     catch (const std::exception&) { /* an expected exception */ }
7985   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
7986   using DefaultExceptionType = typename std::conditional<
7987       std::is_same<typename std::remove_cv<
7988                        typename std::remove_reference<Err>::type>::type,
7989                    std::exception>::value,
7990       const NeverThrown&, const std::exception&>::type;
7991 
7992  public:
7993   ExceptionMatcherImpl(Matcher<const Err&> matcher)
7994       : matcher_(std::move(matcher)) {}
7995 
7996   void DescribeTo(std::ostream* os) const {
7997     *os << "throws an exception which is a " << GetTypeName<Err>();
7998     *os << " which ";
7999     matcher_.DescribeTo(os);
8000   }
8001 
8002   void DescribeNegationTo(std::ostream* os) const {
8003     *os << "throws an exception which is not a " << GetTypeName<Err>();
8004     *os << " which ";
8005     matcher_.DescribeNegationTo(os);
8006   }
8007 
8008   template <typename T>
8009   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
8010     try {
8011       (void)(std::forward<T>(x)());
8012     } catch (const Err& err) {
8013       *listener << "throws an exception which is a " << GetTypeName<Err>();
8014       *listener << " ";
8015       return matcher_.MatchAndExplain(err, listener);
8016     } catch (DefaultExceptionType err) {
8017 #if GTEST_HAS_RTTI
8018       *listener << "throws an exception of type " << GetTypeName(typeid(err));
8019       *listener << " ";
8020 #else
8021       *listener << "throws an std::exception-derived type ";
8022 #endif
8023       *listener << "with description \"" << err.what() << "\"";
8024       return false;
8025     } catch (...) {
8026       *listener << "throws an exception of an unknown type";
8027       return false;
8028     }
8029 
8030     *listener << "does not throw any exception";
8031     return false;
8032   }
8033 
8034  private:
8035   const Matcher<const Err&> matcher_;
8036 };
8037 
8038 }  // namespace internal
8039 
8040 // Throws()
8041 // Throws(exceptionMatcher)
8042 // ThrowsMessage(messageMatcher)
8043 //
8044 // This matcher accepts a callable and verifies that when invoked, it throws
8045 // an exception with the given type and properties.
8046 //
8047 // Examples:
8048 //
8049 //   EXPECT_THAT(
8050 //       []() { throw std::runtime_error("message"); },
8051 //       Throws<std::runtime_error>());
8052 //
8053 //   EXPECT_THAT(
8054 //       []() { throw std::runtime_error("message"); },
8055 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
8056 //
8057 //   EXPECT_THAT(
8058 //       []() { throw std::runtime_error("message"); },
8059 //       Throws<std::runtime_error>(
8060 //           Property(&std::runtime_error::what, HasSubstr("message"))));
8061 
8062 template <typename Err>
8063 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
8064   return MakePolymorphicMatcher(
8065       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
8066 }
8067 
8068 template <typename Err, typename ExceptionMatcher>
8069 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
8070     const ExceptionMatcher& exception_matcher) {
8071   // Using matcher cast allows users to pass a matcher of a more broad type.
8072   // For example user may want to pass Matcher<std::exception>
8073   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
8074   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
8075       SafeMatcherCast<const Err&>(exception_matcher)));
8076 }
8077 
8078 template <typename Err, typename MessageMatcher>
8079 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
8080     MessageMatcher&& message_matcher) {
8081   static_assert(std::is_base_of<std::exception, Err>::value,
8082                 "expected an std::exception-derived type");
8083   return Throws<Err>(internal::WithWhat(
8084       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
8085 }
8086 
8087 #endif  // GTEST_HAS_EXCEPTIONS
8088 
8089 // These macros allow using matchers to check values in Google Test
8090 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
8091 // succeed if and only if the value matches the matcher.  If the assertion
8092 // fails, the value and the description of the matcher will be printed.
8093 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
8094     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8095 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
8096     ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
8097 
8098 // MATCHER* macroses itself are listed below.
8099 #define MATCHER(name, description)                                             \
8100   class name##Matcher                                                          \
8101       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
8102    public:                                                                     \
8103     template <typename arg_type>                                               \
8104     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
8105      public:                                                                   \
8106       gmock_Impl() {}                                                          \
8107       bool MatchAndExplain(                                                    \
8108           const arg_type& arg,                                                 \
8109           ::testing::MatchResultListener* result_listener) const override;     \
8110       void DescribeTo(::std::ostream* gmock_os) const override {               \
8111         *gmock_os << FormatDescription(false);                                 \
8112       }                                                                        \
8113       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
8114         *gmock_os << FormatDescription(true);                                  \
8115       }                                                                        \
8116                                                                                \
8117      private:                                                                  \
8118       ::std::string FormatDescription(bool negation) const {                   \
8119         ::std::string gmock_description = (description);                       \
8120         if (!gmock_description.empty()) {                                      \
8121           return gmock_description;                                            \
8122         }                                                                      \
8123         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
8124                                                              {});              \
8125       }                                                                        \
8126     };                                                                         \
8127   };                                                                           \
8128   GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
8129   template <typename arg_type>                                                 \
8130   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
8131       const arg_type& arg,                                                     \
8132       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
8133       const
8134 
8135 #define MATCHER_P(name, p0, description) \
8136   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
8137 #define MATCHER_P2(name, p0, p1, description) \
8138   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
8139 #define MATCHER_P3(name, p0, p1, p2, description) \
8140   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
8141 #define MATCHER_P4(name, p0, p1, p2, p3, description) \
8142   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
8143 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
8144   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
8145                          (p0, p1, p2, p3, p4))
8146 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
8147   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
8148                          (p0, p1, p2, p3, p4, p5))
8149 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
8150   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
8151                          (p0, p1, p2, p3, p4, p5, p6))
8152 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
8153   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
8154                          (p0, p1, p2, p3, p4, p5, p6, p7))
8155 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
8156   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
8157                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
8158 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
8159   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
8160                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
8161 
8162 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \
8163   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8164   class full_name : public ::testing::internal::MatcherBaseImpl<               \
8165                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
8166    public:                                                                     \
8167     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
8168     template <typename arg_type>                                               \
8169     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
8170      public:                                                                   \
8171       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
8172           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
8173       bool MatchAndExplain(                                                    \
8174           const arg_type& arg,                                                 \
8175           ::testing::MatchResultListener* result_listener) const override;     \
8176       void DescribeTo(::std::ostream* gmock_os) const override {               \
8177         *gmock_os << FormatDescription(false);                                 \
8178       }                                                                        \
8179       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
8180         *gmock_os << FormatDescription(true);                                  \
8181       }                                                                        \
8182       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
8183                                                                                \
8184      private:                                                                  \
8185       ::std::string FormatDescription(bool negation) const {                   \
8186         ::std::string gmock_description = (description);                       \
8187         if (!gmock_description.empty()) {                                      \
8188           return gmock_description;                                            \
8189         }                                                                      \
8190         return ::testing::internal::FormatMatcherDescription(                  \
8191             negation, #name,                                                   \
8192             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
8193                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
8194                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
8195       }                                                                        \
8196     };                                                                         \
8197   };                                                                           \
8198   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8199   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
8200       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
8201     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
8202         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
8203   }                                                                            \
8204   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
8205   template <typename arg_type>                                                 \
8206   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
8207       arg_type>::MatchAndExplain(const arg_type& arg,                          \
8208                                  ::testing::MatchResultListener*               \
8209                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
8210       const
8211 
8212 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
8213   GMOCK_PP_TAIL(                                     \
8214       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
8215 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
8216   , typename arg##_type
8217 
8218 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
8219   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
8220 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
8221   , arg##_type
8222 
8223 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
8224   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
8225       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
8226 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
8227   , arg##_type gmock_p##i
8228 
8229 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
8230   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
8231 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
8232   , arg(::std::forward<arg##_type>(gmock_p##i))
8233 
8234 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
8235   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
8236 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
8237   const arg##_type arg;
8238 
8239 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
8240   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
8241 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
8242 
8243 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
8244   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
8245 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
8246   , gmock_p##i
8247 
8248 // To prevent ADL on certain functions we put them on a separate namespace.
8249 using namespace no_adl;  // NOLINT
8250 
8251 }  // namespace testing
8252 
8253 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
8254 
8255 // Include any custom callback matchers added by the local installation.
8256 // We must include this header at the end to make sure it can use the
8257 // declarations from this file.
8258 // Copyright 2015, Google Inc.
8259 // All rights reserved.
8260 //
8261 // Redistribution and use in source and binary forms, with or without
8262 // modification, are permitted provided that the following conditions are
8263 // met:
8264 //
8265 //     * Redistributions of source code must retain the above copyright
8266 // notice, this list of conditions and the following disclaimer.
8267 //     * Redistributions in binary form must reproduce the above
8268 // copyright notice, this list of conditions and the following disclaimer
8269 // in the documentation and/or other materials provided with the
8270 // distribution.
8271 //     * Neither the name of Google Inc. nor the names of its
8272 // contributors may be used to endorse or promote products derived from
8273 // this software without specific prior written permission.
8274 //
8275 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
8276 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
8277 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
8278 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
8279 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
8280 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
8281 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
8282 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
8283 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
8284 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
8285 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
8286 //
8287 // Injection point for custom user configurations. See README for details
8288 //
8289 // GOOGLETEST_CM0002 DO NOT DELETE
8290 
8291 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8292 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8293 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
8294 
8295 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
8296 
8297 #if GTEST_HAS_EXCEPTIONS
8298 # include <stdexcept>  // NOLINT
8299 #endif
8300 
8301 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
8302 /* class A needs to have dll-interface to be used by clients of class B */)
8303 
8304 namespace testing {
8305 
8306 // An abstract handle of an expectation.
8307 class Expectation;
8308 
8309 // A set of expectation handles.
8310 class ExpectationSet;
8311 
8312 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
8313 // and MUST NOT BE USED IN USER CODE!!!
8314 namespace internal {
8315 
8316 // Implements a mock function.
8317 template <typename F> class FunctionMocker;
8318 
8319 // Base class for expectations.
8320 class ExpectationBase;
8321 
8322 // Implements an expectation.
8323 template <typename F> class TypedExpectation;
8324 
8325 // Helper class for testing the Expectation class template.
8326 class ExpectationTester;
8327 
8328 // Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
8329 template <typename MockClass>
8330 class NiceMockImpl;
8331 template <typename MockClass>
8332 class StrictMockImpl;
8333 template <typename MockClass>
8334 class NaggyMockImpl;
8335 
8336 // Protects the mock object registry (in class Mock), all function
8337 // mockers, and all expectations.
8338 //
8339 // The reason we don't use more fine-grained protection is: when a
8340 // mock function Foo() is called, it needs to consult its expectations
8341 // to see which one should be picked.  If another thread is allowed to
8342 // call a mock function (either Foo() or a different one) at the same
8343 // time, it could affect the "retired" attributes of Foo()'s
8344 // expectations when InSequence() is used, and thus affect which
8345 // expectation gets picked.  Therefore, we sequence all mock function
8346 // calls to ensure the integrity of the mock objects' states.
8347 GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
8348 
8349 // Untyped base class for ActionResultHolder<R>.
8350 class UntypedActionResultHolderBase;
8351 
8352 // Abstract base class of FunctionMocker.  This is the
8353 // type-agnostic part of the function mocker interface.  Its pure
8354 // virtual methods are implemented by FunctionMocker.
8355 class GTEST_API_ UntypedFunctionMockerBase {
8356  public:
8357   UntypedFunctionMockerBase();
8358   virtual ~UntypedFunctionMockerBase();
8359 
8360   // Verifies that all expectations on this mock function have been
8361   // satisfied.  Reports one or more Google Test non-fatal failures
8362   // and returns false if not.
8363   bool VerifyAndClearExpectationsLocked()
8364       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8365 
8366   // Clears the ON_CALL()s set on this mock function.
8367   virtual void ClearDefaultActionsLocked()
8368       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
8369 
8370   // In all of the following Untyped* functions, it's the caller's
8371   // responsibility to guarantee the correctness of the arguments'
8372   // types.
8373 
8374   // Performs the default action with the given arguments and returns
8375   // the action's result.  The call description string will be used in
8376   // the error message to describe the call in the case the default
8377   // action fails.
8378   // L = *
8379   virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
8380       void* untyped_args, const std::string& call_description) const = 0;
8381 
8382   // Performs the given action with the given arguments and returns
8383   // the action's result.
8384   // L = *
8385   virtual UntypedActionResultHolderBase* UntypedPerformAction(
8386       const void* untyped_action, void* untyped_args) const = 0;
8387 
8388   // Writes a message that the call is uninteresting (i.e. neither
8389   // explicitly expected nor explicitly unexpected) to the given
8390   // ostream.
8391   virtual void UntypedDescribeUninterestingCall(
8392       const void* untyped_args,
8393       ::std::ostream* os) const
8394           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8395 
8396   // Returns the expectation that matches the given function arguments
8397   // (or NULL is there's no match); when a match is found,
8398   // untyped_action is set to point to the action that should be
8399   // performed (or NULL if the action is "do default"), and
8400   // is_excessive is modified to indicate whether the call exceeds the
8401   // expected number.
8402   virtual const ExpectationBase* UntypedFindMatchingExpectation(
8403       const void* untyped_args,
8404       const void** untyped_action, bool* is_excessive,
8405       ::std::ostream* what, ::std::ostream* why)
8406           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
8407 
8408   // Prints the given function arguments to the ostream.
8409   virtual void UntypedPrintArgs(const void* untyped_args,
8410                                 ::std::ostream* os) const = 0;
8411 
8412   // Sets the mock object this mock method belongs to, and registers
8413   // this information in the global mock registry.  Will be called
8414   // whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
8415   // method.
8416   void RegisterOwner(const void* mock_obj)
8417       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8418 
8419   // Sets the mock object this mock method belongs to, and sets the
8420   // name of the mock function.  Will be called upon each invocation
8421   // of this mock function.
8422   void SetOwnerAndName(const void* mock_obj, const char* name)
8423       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8424 
8425   // Returns the mock object this mock method belongs to.  Must be
8426   // called after RegisterOwner() or SetOwnerAndName() has been
8427   // called.
8428   const void* MockObject() const
8429       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8430 
8431   // Returns the name of this mock method.  Must be called after
8432   // SetOwnerAndName() has been called.
8433   const char* Name() const
8434       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8435 
8436   // Returns the result of invoking this mock function with the given
8437   // arguments.  This function can be safely called from multiple
8438   // threads concurrently.  The caller is responsible for deleting the
8439   // result.
8440   UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
8441       GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
8442 
8443  protected:
8444   typedef std::vector<const void*> UntypedOnCallSpecs;
8445 
8446   using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
8447 
8448   // Returns an Expectation object that references and co-owns exp,
8449   // which must be an expectation on this mock function.
8450   Expectation GetHandleOf(ExpectationBase* exp);
8451 
8452   // Address of the mock object this mock method belongs to.  Only
8453   // valid after this mock method has been called or
8454   // ON_CALL/EXPECT_CALL has been invoked on it.
8455   const void* mock_obj_;  // Protected by g_gmock_mutex.
8456 
8457   // Name of the function being mocked.  Only valid after this mock
8458   // method has been called.
8459   const char* name_;  // Protected by g_gmock_mutex.
8460 
8461   // All default action specs for this function mocker.
8462   UntypedOnCallSpecs untyped_on_call_specs_;
8463 
8464   // All expectations for this function mocker.
8465   //
8466   // It's undefined behavior to interleave expectations (EXPECT_CALLs
8467   // or ON_CALLs) and mock function calls.  Also, the order of
8468   // expectations is important.  Therefore it's a logic race condition
8469   // to read/write untyped_expectations_ concurrently.  In order for
8470   // tools like tsan to catch concurrent read/write accesses to
8471   // untyped_expectations, we deliberately leave accesses to it
8472   // unprotected.
8473   UntypedExpectations untyped_expectations_;
8474 };  // class UntypedFunctionMockerBase
8475 
8476 // Untyped base class for OnCallSpec<F>.
8477 class UntypedOnCallSpecBase {
8478  public:
8479   // The arguments are the location of the ON_CALL() statement.
8480   UntypedOnCallSpecBase(const char* a_file, int a_line)
8481       : file_(a_file), line_(a_line), last_clause_(kNone) {}
8482 
8483   // Where in the source file was the default action spec defined?
8484   const char* file() const { return file_; }
8485   int line() const { return line_; }
8486 
8487  protected:
8488   // Gives each clause in the ON_CALL() statement a name.
8489   enum Clause {
8490     // Do not change the order of the enum members!  The run-time
8491     // syntax checking relies on it.
8492     kNone,
8493     kWith,
8494     kWillByDefault
8495   };
8496 
8497   // Asserts that the ON_CALL() statement has a certain property.
8498   void AssertSpecProperty(bool property,
8499                           const std::string& failure_message) const {
8500     Assert(property, file_, line_, failure_message);
8501   }
8502 
8503   // Expects that the ON_CALL() statement has a certain property.
8504   void ExpectSpecProperty(bool property,
8505                           const std::string& failure_message) const {
8506     Expect(property, file_, line_, failure_message);
8507   }
8508 
8509   const char* file_;
8510   int line_;
8511 
8512   // The last clause in the ON_CALL() statement as seen so far.
8513   // Initially kNone and changes as the statement is parsed.
8514   Clause last_clause_;
8515 };  // class UntypedOnCallSpecBase
8516 
8517 // This template class implements an ON_CALL spec.
8518 template <typename F>
8519 class OnCallSpec : public UntypedOnCallSpecBase {
8520  public:
8521   typedef typename Function<F>::ArgumentTuple ArgumentTuple;
8522   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
8523 
8524   // Constructs an OnCallSpec object from the information inside
8525   // the parenthesis of an ON_CALL() statement.
8526   OnCallSpec(const char* a_file, int a_line,
8527              const ArgumentMatcherTuple& matchers)
8528       : UntypedOnCallSpecBase(a_file, a_line),
8529         matchers_(matchers),
8530         // By default, extra_matcher_ should match anything.  However,
8531         // we cannot initialize it with _ as that causes ambiguity between
8532         // Matcher's copy and move constructor for some argument types.
8533         extra_matcher_(A<const ArgumentTuple&>()) {}
8534 
8535   // Implements the .With() clause.
8536   OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
8537     // Makes sure this is called at most once.
8538     ExpectSpecProperty(last_clause_ < kWith,
8539                        ".With() cannot appear "
8540                        "more than once in an ON_CALL().");
8541     last_clause_ = kWith;
8542 
8543     extra_matcher_ = m;
8544     return *this;
8545   }
8546 
8547   // Implements the .WillByDefault() clause.
8548   OnCallSpec& WillByDefault(const Action<F>& action) {
8549     ExpectSpecProperty(last_clause_ < kWillByDefault,
8550                        ".WillByDefault() must appear "
8551                        "exactly once in an ON_CALL().");
8552     last_clause_ = kWillByDefault;
8553 
8554     ExpectSpecProperty(!action.IsDoDefault(),
8555                        "DoDefault() cannot be used in ON_CALL().");
8556     action_ = action;
8557     return *this;
8558   }
8559 
8560   // Returns true if and only if the given arguments match the matchers.
8561   bool Matches(const ArgumentTuple& args) const {
8562     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
8563   }
8564 
8565   // Returns the action specified by the user.
8566   const Action<F>& GetAction() const {
8567     AssertSpecProperty(last_clause_ == kWillByDefault,
8568                        ".WillByDefault() must appear exactly "
8569                        "once in an ON_CALL().");
8570     return action_;
8571   }
8572 
8573  private:
8574   // The information in statement
8575   //
8576   //   ON_CALL(mock_object, Method(matchers))
8577   //       .With(multi-argument-matcher)
8578   //       .WillByDefault(action);
8579   //
8580   // is recorded in the data members like this:
8581   //
8582   //   source file that contains the statement => file_
8583   //   line number of the statement            => line_
8584   //   matchers                                => matchers_
8585   //   multi-argument-matcher                  => extra_matcher_
8586   //   action                                  => action_
8587   ArgumentMatcherTuple matchers_;
8588   Matcher<const ArgumentTuple&> extra_matcher_;
8589   Action<F> action_;
8590 };  // class OnCallSpec
8591 
8592 // Possible reactions on uninteresting calls.
8593 enum CallReaction {
8594   kAllow,
8595   kWarn,
8596   kFail,
8597 };
8598 
8599 }  // namespace internal
8600 
8601 // Utilities for manipulating mock objects.
8602 class GTEST_API_ Mock {
8603  public:
8604   // The following public methods can be called concurrently.
8605 
8606   // Tells Google Mock to ignore mock_obj when checking for leaked
8607   // mock objects.
8608   static void AllowLeak(const void* mock_obj)
8609       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8610 
8611   // Verifies and clears all expectations on the given mock object.
8612   // If the expectations aren't satisfied, generates one or more
8613   // Google Test non-fatal failures and returns false.
8614   static bool VerifyAndClearExpectations(void* mock_obj)
8615       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8616 
8617   // Verifies all expectations on the given mock object and clears its
8618   // default actions and expectations.  Returns true if and only if the
8619   // verification was successful.
8620   static bool VerifyAndClear(void* mock_obj)
8621       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8622 
8623   // Returns whether the mock was created as a naggy mock (default)
8624   static bool IsNaggy(void* mock_obj)
8625       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8626   // Returns whether the mock was created as a nice mock
8627   static bool IsNice(void* mock_obj)
8628       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8629   // Returns whether the mock was created as a strict mock
8630   static bool IsStrict(void* mock_obj)
8631       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8632 
8633  private:
8634   friend class internal::UntypedFunctionMockerBase;
8635 
8636   // Needed for a function mocker to register itself (so that we know
8637   // how to clear a mock object).
8638   template <typename F>
8639   friend class internal::FunctionMocker;
8640 
8641   template <typename MockClass>
8642   friend class internal::NiceMockImpl;
8643   template <typename MockClass>
8644   friend class internal::NaggyMockImpl;
8645   template <typename MockClass>
8646   friend class internal::StrictMockImpl;
8647 
8648   // Tells Google Mock to allow uninteresting calls on the given mock
8649   // object.
8650   static void AllowUninterestingCalls(uintptr_t mock_obj)
8651       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8652 
8653   // Tells Google Mock to warn the user about uninteresting calls on
8654   // the given mock object.
8655   static void WarnUninterestingCalls(uintptr_t mock_obj)
8656       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8657 
8658   // Tells Google Mock to fail uninteresting calls on the given mock
8659   // object.
8660   static void FailUninterestingCalls(uintptr_t mock_obj)
8661       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8662 
8663   // Tells Google Mock the given mock object is being destroyed and
8664   // its entry in the call-reaction table should be removed.
8665   static void UnregisterCallReaction(uintptr_t mock_obj)
8666       GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8667 
8668   // Returns the reaction Google Mock will have on uninteresting calls
8669   // made on the given mock object.
8670   static internal::CallReaction GetReactionOnUninterestingCalls(
8671       const void* mock_obj)
8672           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8673 
8674   // Verifies that all expectations on the given mock object have been
8675   // satisfied.  Reports one or more Google Test non-fatal failures
8676   // and returns false if not.
8677   static bool VerifyAndClearExpectationsLocked(void* mock_obj)
8678       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8679 
8680   // Clears all ON_CALL()s set on the given mock object.
8681   static void ClearDefaultActionsLocked(void* mock_obj)
8682       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8683 
8684   // Registers a mock object and a mock method it owns.
8685   static void Register(
8686       const void* mock_obj,
8687       internal::UntypedFunctionMockerBase* mocker)
8688           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8689 
8690   // Tells Google Mock where in the source code mock_obj is used in an
8691   // ON_CALL or EXPECT_CALL.  In case mock_obj is leaked, this
8692   // information helps the user identify which object it is.
8693   static void RegisterUseByOnCallOrExpectCall(
8694       const void* mock_obj, const char* file, int line)
8695           GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
8696 
8697   // Unregisters a mock method; removes the owning mock object from
8698   // the registry when the last mock method associated with it has
8699   // been unregistered.  This is called only in the destructor of
8700   // FunctionMocker.
8701   static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
8702       GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
8703 };  // class Mock
8704 
8705 // An abstract handle of an expectation.  Useful in the .After()
8706 // clause of EXPECT_CALL() for setting the (partial) order of
8707 // expectations.  The syntax:
8708 //
8709 //   Expectation e1 = EXPECT_CALL(...)...;
8710 //   EXPECT_CALL(...).After(e1)...;
8711 //
8712 // sets two expectations where the latter can only be matched after
8713 // the former has been satisfied.
8714 //
8715 // Notes:
8716 //   - This class is copyable and has value semantics.
8717 //   - Constness is shallow: a const Expectation object itself cannot
8718 //     be modified, but the mutable methods of the ExpectationBase
8719 //     object it references can be called via expectation_base().
8720 
8721 class GTEST_API_ Expectation {
8722  public:
8723   // Constructs a null object that doesn't reference any expectation.
8724   Expectation();
8725   Expectation(Expectation&&) = default;
8726   Expectation(const Expectation&) = default;
8727   Expectation& operator=(Expectation&&) = default;
8728   Expectation& operator=(const Expectation&) = default;
8729   ~Expectation();
8730 
8731   // This single-argument ctor must not be explicit, in order to support the
8732   //   Expectation e = EXPECT_CALL(...);
8733   // syntax.
8734   //
8735   // A TypedExpectation object stores its pre-requisites as
8736   // Expectation objects, and needs to call the non-const Retire()
8737   // method on the ExpectationBase objects they reference.  Therefore
8738   // Expectation must receive a *non-const* reference to the
8739   // ExpectationBase object.
8740   Expectation(internal::ExpectationBase& exp);  // NOLINT
8741 
8742   // The compiler-generated copy ctor and operator= work exactly as
8743   // intended, so we don't need to define our own.
8744 
8745   // Returns true if and only if rhs references the same expectation as this
8746   // object does.
8747   bool operator==(const Expectation& rhs) const {
8748     return expectation_base_ == rhs.expectation_base_;
8749   }
8750 
8751   bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
8752 
8753  private:
8754   friend class ExpectationSet;
8755   friend class Sequence;
8756   friend class ::testing::internal::ExpectationBase;
8757   friend class ::testing::internal::UntypedFunctionMockerBase;
8758 
8759   template <typename F>
8760   friend class ::testing::internal::FunctionMocker;
8761 
8762   template <typename F>
8763   friend class ::testing::internal::TypedExpectation;
8764 
8765   // This comparator is needed for putting Expectation objects into a set.
8766   class Less {
8767    public:
8768     bool operator()(const Expectation& lhs, const Expectation& rhs) const {
8769       return lhs.expectation_base_.get() < rhs.expectation_base_.get();
8770     }
8771   };
8772 
8773   typedef ::std::set<Expectation, Less> Set;
8774 
8775   Expectation(
8776       const std::shared_ptr<internal::ExpectationBase>& expectation_base);
8777 
8778   // Returns the expectation this object references.
8779   const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
8780     return expectation_base_;
8781   }
8782 
8783   // A shared_ptr that co-owns the expectation this handle references.
8784   std::shared_ptr<internal::ExpectationBase> expectation_base_;
8785 };
8786 
8787 // A set of expectation handles.  Useful in the .After() clause of
8788 // EXPECT_CALL() for setting the (partial) order of expectations.  The
8789 // syntax:
8790 //
8791 //   ExpectationSet es;
8792 //   es += EXPECT_CALL(...)...;
8793 //   es += EXPECT_CALL(...)...;
8794 //   EXPECT_CALL(...).After(es)...;
8795 //
8796 // sets three expectations where the last one can only be matched
8797 // after the first two have both been satisfied.
8798 //
8799 // This class is copyable and has value semantics.
8800 class ExpectationSet {
8801  public:
8802   // A bidirectional iterator that can read a const element in the set.
8803   typedef Expectation::Set::const_iterator const_iterator;
8804 
8805   // An object stored in the set.  This is an alias of Expectation.
8806   typedef Expectation::Set::value_type value_type;
8807 
8808   // Constructs an empty set.
8809   ExpectationSet() {}
8810 
8811   // This single-argument ctor must not be explicit, in order to support the
8812   //   ExpectationSet es = EXPECT_CALL(...);
8813   // syntax.
8814   ExpectationSet(internal::ExpectationBase& exp) {  // NOLINT
8815     *this += Expectation(exp);
8816   }
8817 
8818   // This single-argument ctor implements implicit conversion from
8819   // Expectation and thus must not be explicit.  This allows either an
8820   // Expectation or an ExpectationSet to be used in .After().
8821   ExpectationSet(const Expectation& e) {  // NOLINT
8822     *this += e;
8823   }
8824 
8825   // The compiler-generator ctor and operator= works exactly as
8826   // intended, so we don't need to define our own.
8827 
8828   // Returns true if and only if rhs contains the same set of Expectation
8829   // objects as this does.
8830   bool operator==(const ExpectationSet& rhs) const {
8831     return expectations_ == rhs.expectations_;
8832   }
8833 
8834   bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
8835 
8836   // Implements the syntax
8837   //   expectation_set += EXPECT_CALL(...);
8838   ExpectationSet& operator+=(const Expectation& e) {
8839     expectations_.insert(e);
8840     return *this;
8841   }
8842 
8843   int size() const { return static_cast<int>(expectations_.size()); }
8844 
8845   const_iterator begin() const { return expectations_.begin(); }
8846   const_iterator end() const { return expectations_.end(); }
8847 
8848  private:
8849   Expectation::Set expectations_;
8850 };
8851 
8852 
8853 // Sequence objects are used by a user to specify the relative order
8854 // in which the expectations should match.  They are copyable (we rely
8855 // on the compiler-defined copy constructor and assignment operator).
8856 class GTEST_API_ Sequence {
8857  public:
8858   // Constructs an empty sequence.
8859   Sequence() : last_expectation_(new Expectation) {}
8860 
8861   // Adds an expectation to this sequence.  The caller must ensure
8862   // that no other thread is accessing this Sequence object.
8863   void AddExpectation(const Expectation& expectation) const;
8864 
8865  private:
8866   // The last expectation in this sequence.
8867   std::shared_ptr<Expectation> last_expectation_;
8868 };  // class Sequence
8869 
8870 // An object of this type causes all EXPECT_CALL() statements
8871 // encountered in its scope to be put in an anonymous sequence.  The
8872 // work is done in the constructor and destructor.  You should only
8873 // create an InSequence object on the stack.
8874 //
8875 // The sole purpose for this class is to support easy definition of
8876 // sequential expectations, e.g.
8877 //
8878 //   {
8879 //     InSequence dummy;  // The name of the object doesn't matter.
8880 //
8881 //     // The following expectations must match in the order they appear.
8882 //     EXPECT_CALL(a, Bar())...;
8883 //     EXPECT_CALL(a, Baz())...;
8884 //     ...
8885 //     EXPECT_CALL(b, Xyz())...;
8886 //   }
8887 //
8888 // You can create InSequence objects in multiple threads, as long as
8889 // they are used to affect different mock objects.  The idea is that
8890 // each thread can create and set up its own mocks as if it's the only
8891 // thread.  However, for clarity of your tests we recommend you to set
8892 // up mocks in the main thread unless you have a good reason not to do
8893 // so.
8894 class GTEST_API_ InSequence {
8895  public:
8896   InSequence();
8897   ~InSequence();
8898  private:
8899   bool sequence_created_;
8900 
8901   GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence);  // NOLINT
8902 } GTEST_ATTRIBUTE_UNUSED_;
8903 
8904 namespace internal {
8905 
8906 // Points to the implicit sequence introduced by a living InSequence
8907 // object (if any) in the current thread or NULL.
8908 GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
8909 
8910 // Base class for implementing expectations.
8911 //
8912 // There are two reasons for having a type-agnostic base class for
8913 // Expectation:
8914 //
8915 //   1. We need to store collections of expectations of different
8916 //   types (e.g. all pre-requisites of a particular expectation, all
8917 //   expectations in a sequence).  Therefore these expectation objects
8918 //   must share a common base class.
8919 //
8920 //   2. We can avoid binary code bloat by moving methods not depending
8921 //   on the template argument of Expectation to the base class.
8922 //
8923 // This class is internal and mustn't be used by user code directly.
8924 class GTEST_API_ ExpectationBase {
8925  public:
8926   // source_text is the EXPECT_CALL(...) source that created this Expectation.
8927   ExpectationBase(const char* file, int line, const std::string& source_text);
8928 
8929   virtual ~ExpectationBase();
8930 
8931   // Where in the source file was the expectation spec defined?
8932   const char* file() const { return file_; }
8933   int line() const { return line_; }
8934   const char* source_text() const { return source_text_.c_str(); }
8935   // Returns the cardinality specified in the expectation spec.
8936   const Cardinality& cardinality() const { return cardinality_; }
8937 
8938   // Describes the source file location of this expectation.
8939   void DescribeLocationTo(::std::ostream* os) const {
8940     *os << FormatFileLocation(file(), line()) << " ";
8941   }
8942 
8943   // Describes how many times a function call matching this
8944   // expectation has occurred.
8945   void DescribeCallCountTo(::std::ostream* os) const
8946       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
8947 
8948   // If this mock method has an extra matcher (i.e. .With(matcher)),
8949   // describes it to the ostream.
8950   virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
8951 
8952  protected:
8953   friend class ::testing::Expectation;
8954   friend class UntypedFunctionMockerBase;
8955 
8956   enum Clause {
8957     // Don't change the order of the enum members!
8958     kNone,
8959     kWith,
8960     kTimes,
8961     kInSequence,
8962     kAfter,
8963     kWillOnce,
8964     kWillRepeatedly,
8965     kRetiresOnSaturation
8966   };
8967 
8968   typedef std::vector<const void*> UntypedActions;
8969 
8970   // Returns an Expectation object that references and co-owns this
8971   // expectation.
8972   virtual Expectation GetHandle() = 0;
8973 
8974   // Asserts that the EXPECT_CALL() statement has the given property.
8975   void AssertSpecProperty(bool property,
8976                           const std::string& failure_message) const {
8977     Assert(property, file_, line_, failure_message);
8978   }
8979 
8980   // Expects that the EXPECT_CALL() statement has the given property.
8981   void ExpectSpecProperty(bool property,
8982                           const std::string& failure_message) const {
8983     Expect(property, file_, line_, failure_message);
8984   }
8985 
8986   // Explicitly specifies the cardinality of this expectation.  Used
8987   // by the subclasses to implement the .Times() clause.
8988   void SpecifyCardinality(const Cardinality& cardinality);
8989 
8990   // Returns true if and only if the user specified the cardinality
8991   // explicitly using a .Times().
8992   bool cardinality_specified() const { return cardinality_specified_; }
8993 
8994   // Sets the cardinality of this expectation spec.
8995   void set_cardinality(const Cardinality& a_cardinality) {
8996     cardinality_ = a_cardinality;
8997   }
8998 
8999   // The following group of methods should only be called after the
9000   // EXPECT_CALL() statement, and only when g_gmock_mutex is held by
9001   // the current thread.
9002 
9003   // Retires all pre-requisites of this expectation.
9004   void RetireAllPreRequisites()
9005       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9006 
9007   // Returns true if and only if this expectation is retired.
9008   bool is_retired() const
9009       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9010     g_gmock_mutex.AssertHeld();
9011     return retired_;
9012   }
9013 
9014   // Retires this expectation.
9015   void Retire()
9016       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9017     g_gmock_mutex.AssertHeld();
9018     retired_ = true;
9019   }
9020 
9021   // Returns true if and only if this expectation is satisfied.
9022   bool IsSatisfied() const
9023       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9024     g_gmock_mutex.AssertHeld();
9025     return cardinality().IsSatisfiedByCallCount(call_count_);
9026   }
9027 
9028   // Returns true if and only if this expectation is saturated.
9029   bool IsSaturated() const
9030       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9031     g_gmock_mutex.AssertHeld();
9032     return cardinality().IsSaturatedByCallCount(call_count_);
9033   }
9034 
9035   // Returns true if and only if this expectation is over-saturated.
9036   bool IsOverSaturated() const
9037       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9038     g_gmock_mutex.AssertHeld();
9039     return cardinality().IsOverSaturatedByCallCount(call_count_);
9040   }
9041 
9042   // Returns true if and only if all pre-requisites of this expectation are
9043   // satisfied.
9044   bool AllPrerequisitesAreSatisfied() const
9045       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9046 
9047   // Adds unsatisfied pre-requisites of this expectation to 'result'.
9048   void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
9049       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
9050 
9051   // Returns the number this expectation has been invoked.
9052   int call_count() const
9053       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9054     g_gmock_mutex.AssertHeld();
9055     return call_count_;
9056   }
9057 
9058   // Increments the number this expectation has been invoked.
9059   void IncrementCallCount()
9060       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9061     g_gmock_mutex.AssertHeld();
9062     call_count_++;
9063   }
9064 
9065   // Checks the action count (i.e. the number of WillOnce() and
9066   // WillRepeatedly() clauses) against the cardinality if this hasn't
9067   // been done before.  Prints a warning if there are too many or too
9068   // few actions.
9069   void CheckActionCountIfNotDone() const
9070       GTEST_LOCK_EXCLUDED_(mutex_);
9071 
9072   friend class ::testing::Sequence;
9073   friend class ::testing::internal::ExpectationTester;
9074 
9075   template <typename Function>
9076   friend class TypedExpectation;
9077 
9078   // Implements the .Times() clause.
9079   void UntypedTimes(const Cardinality& a_cardinality);
9080 
9081   // This group of fields are part of the spec and won't change after
9082   // an EXPECT_CALL() statement finishes.
9083   const char* file_;          // The file that contains the expectation.
9084   int line_;                  // The line number of the expectation.
9085   const std::string source_text_;  // The EXPECT_CALL(...) source text.
9086   // True if and only if the cardinality is specified explicitly.
9087   bool cardinality_specified_;
9088   Cardinality cardinality_;            // The cardinality of the expectation.
9089   // The immediate pre-requisites (i.e. expectations that must be
9090   // satisfied before this expectation can be matched) of this
9091   // expectation.  We use std::shared_ptr in the set because we want an
9092   // Expectation object to be co-owned by its FunctionMocker and its
9093   // successors.  This allows multiple mock objects to be deleted at
9094   // different times.
9095   ExpectationSet immediate_prerequisites_;
9096 
9097   // This group of fields are the current state of the expectation,
9098   // and can change as the mock function is called.
9099   int call_count_;  // How many times this expectation has been invoked.
9100   bool retired_;    // True if and only if this expectation has retired.
9101   UntypedActions untyped_actions_;
9102   bool extra_matcher_specified_;
9103   bool repeated_action_specified_;  // True if a WillRepeatedly() was specified.
9104   bool retires_on_saturation_;
9105   Clause last_clause_;
9106   mutable bool action_count_checked_;  // Under mutex_.
9107   mutable Mutex mutex_;  // Protects action_count_checked_.
9108 };  // class ExpectationBase
9109 
9110 // Impements an expectation for the given function type.
9111 template <typename F>
9112 class TypedExpectation : public ExpectationBase {
9113  public:
9114   typedef typename Function<F>::ArgumentTuple ArgumentTuple;
9115   typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
9116   typedef typename Function<F>::Result Result;
9117 
9118   TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
9119                    const std::string& a_source_text,
9120                    const ArgumentMatcherTuple& m)
9121       : ExpectationBase(a_file, a_line, a_source_text),
9122         owner_(owner),
9123         matchers_(m),
9124         // By default, extra_matcher_ should match anything.  However,
9125         // we cannot initialize it with _ as that causes ambiguity between
9126         // Matcher's copy and move constructor for some argument types.
9127         extra_matcher_(A<const ArgumentTuple&>()),
9128         repeated_action_(DoDefault()) {}
9129 
9130   ~TypedExpectation() override {
9131     // Check the validity of the action count if it hasn't been done
9132     // yet (for example, if the expectation was never used).
9133     CheckActionCountIfNotDone();
9134     for (UntypedActions::const_iterator it = untyped_actions_.begin();
9135          it != untyped_actions_.end(); ++it) {
9136       delete static_cast<const Action<F>*>(*it);
9137     }
9138   }
9139 
9140   // Implements the .With() clause.
9141   TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
9142     if (last_clause_ == kWith) {
9143       ExpectSpecProperty(false,
9144                          ".With() cannot appear "
9145                          "more than once in an EXPECT_CALL().");
9146     } else {
9147       ExpectSpecProperty(last_clause_ < kWith,
9148                          ".With() must be the first "
9149                          "clause in an EXPECT_CALL().");
9150     }
9151     last_clause_ = kWith;
9152 
9153     extra_matcher_ = m;
9154     extra_matcher_specified_ = true;
9155     return *this;
9156   }
9157 
9158   // Implements the .Times() clause.
9159   TypedExpectation& Times(const Cardinality& a_cardinality) {
9160     ExpectationBase::UntypedTimes(a_cardinality);
9161     return *this;
9162   }
9163 
9164   // Implements the .Times() clause.
9165   TypedExpectation& Times(int n) {
9166     return Times(Exactly(n));
9167   }
9168 
9169   // Implements the .InSequence() clause.
9170   TypedExpectation& InSequence(const Sequence& s) {
9171     ExpectSpecProperty(last_clause_ <= kInSequence,
9172                        ".InSequence() cannot appear after .After(),"
9173                        " .WillOnce(), .WillRepeatedly(), or "
9174                        ".RetiresOnSaturation().");
9175     last_clause_ = kInSequence;
9176 
9177     s.AddExpectation(GetHandle());
9178     return *this;
9179   }
9180   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
9181     return InSequence(s1).InSequence(s2);
9182   }
9183   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9184                                const Sequence& s3) {
9185     return InSequence(s1, s2).InSequence(s3);
9186   }
9187   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9188                                const Sequence& s3, const Sequence& s4) {
9189     return InSequence(s1, s2, s3).InSequence(s4);
9190   }
9191   TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
9192                                const Sequence& s3, const Sequence& s4,
9193                                const Sequence& s5) {
9194     return InSequence(s1, s2, s3, s4).InSequence(s5);
9195   }
9196 
9197   // Implements that .After() clause.
9198   TypedExpectation& After(const ExpectationSet& s) {
9199     ExpectSpecProperty(last_clause_ <= kAfter,
9200                        ".After() cannot appear after .WillOnce(),"
9201                        " .WillRepeatedly(), or "
9202                        ".RetiresOnSaturation().");
9203     last_clause_ = kAfter;
9204 
9205     for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
9206       immediate_prerequisites_ += *it;
9207     }
9208     return *this;
9209   }
9210   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
9211     return After(s1).After(s2);
9212   }
9213   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9214                           const ExpectationSet& s3) {
9215     return After(s1, s2).After(s3);
9216   }
9217   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9218                           const ExpectationSet& s3, const ExpectationSet& s4) {
9219     return After(s1, s2, s3).After(s4);
9220   }
9221   TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
9222                           const ExpectationSet& s3, const ExpectationSet& s4,
9223                           const ExpectationSet& s5) {
9224     return After(s1, s2, s3, s4).After(s5);
9225   }
9226 
9227   // Implements the .WillOnce() clause.
9228   TypedExpectation& WillOnce(const Action<F>& action) {
9229     ExpectSpecProperty(last_clause_ <= kWillOnce,
9230                        ".WillOnce() cannot appear after "
9231                        ".WillRepeatedly() or .RetiresOnSaturation().");
9232     last_clause_ = kWillOnce;
9233 
9234     untyped_actions_.push_back(new Action<F>(action));
9235     if (!cardinality_specified()) {
9236       set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
9237     }
9238     return *this;
9239   }
9240 
9241   // Implements the .WillRepeatedly() clause.
9242   TypedExpectation& WillRepeatedly(const Action<F>& action) {
9243     if (last_clause_ == kWillRepeatedly) {
9244       ExpectSpecProperty(false,
9245                          ".WillRepeatedly() cannot appear "
9246                          "more than once in an EXPECT_CALL().");
9247     } else {
9248       ExpectSpecProperty(last_clause_ < kWillRepeatedly,
9249                          ".WillRepeatedly() cannot appear "
9250                          "after .RetiresOnSaturation().");
9251     }
9252     last_clause_ = kWillRepeatedly;
9253     repeated_action_specified_ = true;
9254 
9255     repeated_action_ = action;
9256     if (!cardinality_specified()) {
9257       set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
9258     }
9259 
9260     // Now that no more action clauses can be specified, we check
9261     // whether their count makes sense.
9262     CheckActionCountIfNotDone();
9263     return *this;
9264   }
9265 
9266   // Implements the .RetiresOnSaturation() clause.
9267   TypedExpectation& RetiresOnSaturation() {
9268     ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
9269                        ".RetiresOnSaturation() cannot appear "
9270                        "more than once.");
9271     last_clause_ = kRetiresOnSaturation;
9272     retires_on_saturation_ = true;
9273 
9274     // Now that no more action clauses can be specified, we check
9275     // whether their count makes sense.
9276     CheckActionCountIfNotDone();
9277     return *this;
9278   }
9279 
9280   // Returns the matchers for the arguments as specified inside the
9281   // EXPECT_CALL() macro.
9282   const ArgumentMatcherTuple& matchers() const {
9283     return matchers_;
9284   }
9285 
9286   // Returns the matcher specified by the .With() clause.
9287   const Matcher<const ArgumentTuple&>& extra_matcher() const {
9288     return extra_matcher_;
9289   }
9290 
9291   // Returns the action specified by the .WillRepeatedly() clause.
9292   const Action<F>& repeated_action() const { return repeated_action_; }
9293 
9294   // If this mock method has an extra matcher (i.e. .With(matcher)),
9295   // describes it to the ostream.
9296   void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
9297     if (extra_matcher_specified_) {
9298       *os << "    Expected args: ";
9299       extra_matcher_.DescribeTo(os);
9300       *os << "\n";
9301     }
9302   }
9303 
9304  private:
9305   template <typename Function>
9306   friend class FunctionMocker;
9307 
9308   // Returns an Expectation object that references and co-owns this
9309   // expectation.
9310   Expectation GetHandle() override { return owner_->GetHandleOf(this); }
9311 
9312   // The following methods will be called only after the EXPECT_CALL()
9313   // statement finishes and when the current thread holds
9314   // g_gmock_mutex.
9315 
9316   // Returns true if and only if this expectation matches the given arguments.
9317   bool Matches(const ArgumentTuple& args) const
9318       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9319     g_gmock_mutex.AssertHeld();
9320     return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
9321   }
9322 
9323   // Returns true if and only if this expectation should handle the given
9324   // arguments.
9325   bool ShouldHandleArguments(const ArgumentTuple& args) const
9326       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9327     g_gmock_mutex.AssertHeld();
9328 
9329     // In case the action count wasn't checked when the expectation
9330     // was defined (e.g. if this expectation has no WillRepeatedly()
9331     // or RetiresOnSaturation() clause), we check it when the
9332     // expectation is used for the first time.
9333     CheckActionCountIfNotDone();
9334     return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
9335   }
9336 
9337   // Describes the result of matching the arguments against this
9338   // expectation to the given ostream.
9339   void ExplainMatchResultTo(
9340       const ArgumentTuple& args,
9341       ::std::ostream* os) const
9342           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9343     g_gmock_mutex.AssertHeld();
9344 
9345     if (is_retired()) {
9346       *os << "         Expected: the expectation is active\n"
9347           << "           Actual: it is retired\n";
9348     } else if (!Matches(args)) {
9349       if (!TupleMatches(matchers_, args)) {
9350         ExplainMatchFailureTupleTo(matchers_, args, os);
9351       }
9352       StringMatchResultListener listener;
9353       if (!extra_matcher_.MatchAndExplain(args, &listener)) {
9354         *os << "    Expected args: ";
9355         extra_matcher_.DescribeTo(os);
9356         *os << "\n           Actual: don't match";
9357 
9358         internal::PrintIfNotEmpty(listener.str(), os);
9359         *os << "\n";
9360       }
9361     } else if (!AllPrerequisitesAreSatisfied()) {
9362       *os << "         Expected: all pre-requisites are satisfied\n"
9363           << "           Actual: the following immediate pre-requisites "
9364           << "are not satisfied:\n";
9365       ExpectationSet unsatisfied_prereqs;
9366       FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
9367       int i = 0;
9368       for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
9369            it != unsatisfied_prereqs.end(); ++it) {
9370         it->expectation_base()->DescribeLocationTo(os);
9371         *os << "pre-requisite #" << i++ << "\n";
9372       }
9373       *os << "                   (end of pre-requisites)\n";
9374     } else {
9375       // This line is here just for completeness' sake.  It will never
9376       // be executed as currently the ExplainMatchResultTo() function
9377       // is called only when the mock function call does NOT match the
9378       // expectation.
9379       *os << "The call matches the expectation.\n";
9380     }
9381   }
9382 
9383   // Returns the action that should be taken for the current invocation.
9384   const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
9385                                     const ArgumentTuple& args) const
9386       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9387     g_gmock_mutex.AssertHeld();
9388     const int count = call_count();
9389     Assert(count >= 1, __FILE__, __LINE__,
9390            "call_count() is <= 0 when GetCurrentAction() is "
9391            "called - this should never happen.");
9392 
9393     const int action_count = static_cast<int>(untyped_actions_.size());
9394     if (action_count > 0 && !repeated_action_specified_ &&
9395         count > action_count) {
9396       // If there is at least one WillOnce() and no WillRepeatedly(),
9397       // we warn the user when the WillOnce() clauses ran out.
9398       ::std::stringstream ss;
9399       DescribeLocationTo(&ss);
9400       ss << "Actions ran out in " << source_text() << "...\n"
9401          << "Called " << count << " times, but only "
9402          << action_count << " WillOnce()"
9403          << (action_count == 1 ? " is" : "s are") << " specified - ";
9404       mocker->DescribeDefaultActionTo(args, &ss);
9405       Log(kWarning, ss.str(), 1);
9406     }
9407 
9408     return count <= action_count
9409                ? *static_cast<const Action<F>*>(
9410                      untyped_actions_[static_cast<size_t>(count - 1)])
9411                : repeated_action();
9412   }
9413 
9414   // Given the arguments of a mock function call, if the call will
9415   // over-saturate this expectation, returns the default action;
9416   // otherwise, returns the next action in this expectation.  Also
9417   // describes *what* happened to 'what', and explains *why* Google
9418   // Mock does it to 'why'.  This method is not const as it calls
9419   // IncrementCallCount().  A return value of NULL means the default
9420   // action.
9421   const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
9422                                          const ArgumentTuple& args,
9423                                          ::std::ostream* what,
9424                                          ::std::ostream* why)
9425       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9426     g_gmock_mutex.AssertHeld();
9427     if (IsSaturated()) {
9428       // We have an excessive call.
9429       IncrementCallCount();
9430       *what << "Mock function called more times than expected - ";
9431       mocker->DescribeDefaultActionTo(args, what);
9432       DescribeCallCountTo(why);
9433 
9434       return nullptr;
9435     }
9436 
9437     IncrementCallCount();
9438     RetireAllPreRequisites();
9439 
9440     if (retires_on_saturation_ && IsSaturated()) {
9441       Retire();
9442     }
9443 
9444     // Must be done after IncrementCount()!
9445     *what << "Mock function call matches " << source_text() <<"...\n";
9446     return &(GetCurrentAction(mocker, args));
9447   }
9448 
9449   // All the fields below won't change once the EXPECT_CALL()
9450   // statement finishes.
9451   FunctionMocker<F>* const owner_;
9452   ArgumentMatcherTuple matchers_;
9453   Matcher<const ArgumentTuple&> extra_matcher_;
9454   Action<F> repeated_action_;
9455 
9456   GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
9457 };  // class TypedExpectation
9458 
9459 // A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
9460 // specifying the default behavior of, or expectation on, a mock
9461 // function.
9462 
9463 // Note: class MockSpec really belongs to the ::testing namespace.
9464 // However if we define it in ::testing, MSVC will complain when
9465 // classes in ::testing::internal declare it as a friend class
9466 // template.  To workaround this compiler bug, we define MockSpec in
9467 // ::testing::internal and import it into ::testing.
9468 
9469 // Logs a message including file and line number information.
9470 GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
9471                                 const char* file, int line,
9472                                 const std::string& message);
9473 
9474 template <typename F>
9475 class MockSpec {
9476  public:
9477   typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
9478   typedef typename internal::Function<F>::ArgumentMatcherTuple
9479       ArgumentMatcherTuple;
9480 
9481   // Constructs a MockSpec object, given the function mocker object
9482   // that the spec is associated with.
9483   MockSpec(internal::FunctionMocker<F>* function_mocker,
9484            const ArgumentMatcherTuple& matchers)
9485       : function_mocker_(function_mocker), matchers_(matchers) {}
9486 
9487   // Adds a new default action spec to the function mocker and returns
9488   // the newly created spec.
9489   internal::OnCallSpec<F>& InternalDefaultActionSetAt(
9490       const char* file, int line, const char* obj, const char* call) {
9491     LogWithLocation(internal::kInfo, file, line,
9492                     std::string("ON_CALL(") + obj + ", " + call + ") invoked");
9493     return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
9494   }
9495 
9496   // Adds a new expectation spec to the function mocker and returns
9497   // the newly created spec.
9498   internal::TypedExpectation<F>& InternalExpectedAt(
9499       const char* file, int line, const char* obj, const char* call) {
9500     const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
9501                                   call + ")");
9502     LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
9503     return function_mocker_->AddNewExpectation(
9504         file, line, source_text, matchers_);
9505   }
9506 
9507   // This operator overload is used to swallow the superfluous parameter list
9508   // introduced by the ON/EXPECT_CALL macros. See the macro comments for more
9509   // explanation.
9510   MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
9511     return *this;
9512   }
9513 
9514  private:
9515   template <typename Function>
9516   friend class internal::FunctionMocker;
9517 
9518   // The function mocker that owns this spec.
9519   internal::FunctionMocker<F>* const function_mocker_;
9520   // The argument matchers specified in the spec.
9521   ArgumentMatcherTuple matchers_;
9522 };  // class MockSpec
9523 
9524 // Wrapper type for generically holding an ordinary value or lvalue reference.
9525 // If T is not a reference type, it must be copyable or movable.
9526 // ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
9527 // T is a move-only value type (which means that it will always be copyable
9528 // if the current platform does not support move semantics).
9529 //
9530 // The primary template defines handling for values, but function header
9531 // comments describe the contract for the whole template (including
9532 // specializations).
9533 template <typename T>
9534 class ReferenceOrValueWrapper {
9535  public:
9536   // Constructs a wrapper from the given value/reference.
9537   explicit ReferenceOrValueWrapper(T value)
9538       : value_(std::move(value)) {
9539   }
9540 
9541   // Unwraps and returns the underlying value/reference, exactly as
9542   // originally passed. The behavior of calling this more than once on
9543   // the same object is unspecified.
9544   T Unwrap() { return std::move(value_); }
9545 
9546   // Provides nondestructive access to the underlying value/reference.
9547   // Always returns a const reference (more precisely,
9548   // const std::add_lvalue_reference<T>::type). The behavior of calling this
9549   // after calling Unwrap on the same object is unspecified.
9550   const T& Peek() const {
9551     return value_;
9552   }
9553 
9554  private:
9555   T value_;
9556 };
9557 
9558 // Specialization for lvalue reference types. See primary template
9559 // for documentation.
9560 template <typename T>
9561 class ReferenceOrValueWrapper<T&> {
9562  public:
9563   // Workaround for debatable pass-by-reference lint warning (c-library-team
9564   // policy precludes NOLINT in this context)
9565   typedef T& reference;
9566   explicit ReferenceOrValueWrapper(reference ref)
9567       : value_ptr_(&ref) {}
9568   T& Unwrap() { return *value_ptr_; }
9569   const T& Peek() const { return *value_ptr_; }
9570 
9571  private:
9572   T* value_ptr_;
9573 };
9574 
9575 // C++ treats the void type specially.  For example, you cannot define
9576 // a void-typed variable or pass a void value to a function.
9577 // ActionResultHolder<T> holds a value of type T, where T must be a
9578 // copyable type or void (T doesn't need to be default-constructable).
9579 // It hides the syntactic difference between void and other types, and
9580 // is used to unify the code for invoking both void-returning and
9581 // non-void-returning mock functions.
9582 
9583 // Untyped base class for ActionResultHolder<T>.
9584 class UntypedActionResultHolderBase {
9585  public:
9586   virtual ~UntypedActionResultHolderBase() {}
9587 
9588   // Prints the held value as an action's result to os.
9589   virtual void PrintAsActionResult(::std::ostream* os) const = 0;
9590 };
9591 
9592 // This generic definition is used when T is not void.
9593 template <typename T>
9594 class ActionResultHolder : public UntypedActionResultHolderBase {
9595  public:
9596   // Returns the held value. Must not be called more than once.
9597   T Unwrap() {
9598     return result_.Unwrap();
9599   }
9600 
9601   // Prints the held value as an action's result to os.
9602   void PrintAsActionResult(::std::ostream* os) const override {
9603     *os << "\n          Returns: ";
9604     // T may be a reference type, so we don't use UniversalPrint().
9605     UniversalPrinter<T>::Print(result_.Peek(), os);
9606   }
9607 
9608   // Performs the given mock function's default action and returns the
9609   // result in a new-ed ActionResultHolder.
9610   template <typename F>
9611   static ActionResultHolder* PerformDefaultAction(
9612       const FunctionMocker<F>* func_mocker,
9613       typename Function<F>::ArgumentTuple&& args,
9614       const std::string& call_description) {
9615     return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
9616         std::move(args), call_description)));
9617   }
9618 
9619   // Performs the given action and returns the result in a new-ed
9620   // ActionResultHolder.
9621   template <typename F>
9622   static ActionResultHolder* PerformAction(
9623       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9624     return new ActionResultHolder(
9625         Wrapper(action.Perform(std::move(args))));
9626   }
9627 
9628  private:
9629   typedef ReferenceOrValueWrapper<T> Wrapper;
9630 
9631   explicit ActionResultHolder(Wrapper result)
9632       : result_(std::move(result)) {
9633   }
9634 
9635   Wrapper result_;
9636 
9637   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9638 };
9639 
9640 // Specialization for T = void.
9641 template <>
9642 class ActionResultHolder<void> : public UntypedActionResultHolderBase {
9643  public:
9644   void Unwrap() { }
9645 
9646   void PrintAsActionResult(::std::ostream* /* os */) const override {}
9647 
9648   // Performs the given mock function's default action and returns ownership
9649   // of an empty ActionResultHolder*.
9650   template <typename F>
9651   static ActionResultHolder* PerformDefaultAction(
9652       const FunctionMocker<F>* func_mocker,
9653       typename Function<F>::ArgumentTuple&& args,
9654       const std::string& call_description) {
9655     func_mocker->PerformDefaultAction(std::move(args), call_description);
9656     return new ActionResultHolder;
9657   }
9658 
9659   // Performs the given action and returns ownership of an empty
9660   // ActionResultHolder*.
9661   template <typename F>
9662   static ActionResultHolder* PerformAction(
9663       const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
9664     action.Perform(std::move(args));
9665     return new ActionResultHolder;
9666   }
9667 
9668  private:
9669   ActionResultHolder() {}
9670   GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
9671 };
9672 
9673 template <typename F>
9674 class FunctionMocker;
9675 
9676 template <typename R, typename... Args>
9677 class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
9678   using F = R(Args...);
9679 
9680  public:
9681   using Result = R;
9682   using ArgumentTuple = std::tuple<Args...>;
9683   using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
9684 
9685   FunctionMocker() {}
9686 
9687   // There is no generally useful and implementable semantics of
9688   // copying a mock object, so copying a mock is usually a user error.
9689   // Thus we disallow copying function mockers.  If the user really
9690   // wants to copy a mock object, they should implement their own copy
9691   // operation, for example:
9692   //
9693   //   class MockFoo : public Foo {
9694   //    public:
9695   //     // Defines a copy constructor explicitly.
9696   //     MockFoo(const MockFoo& src) {}
9697   //     ...
9698   //   };
9699   FunctionMocker(const FunctionMocker&) = delete;
9700   FunctionMocker& operator=(const FunctionMocker&) = delete;
9701 
9702   // The destructor verifies that all expectations on this mock
9703   // function have been satisfied.  If not, it will report Google Test
9704   // non-fatal failures for the violations.
9705   ~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9706     MutexLock l(&g_gmock_mutex);
9707     VerifyAndClearExpectationsLocked();
9708     Mock::UnregisterLocked(this);
9709     ClearDefaultActionsLocked();
9710   }
9711 
9712   // Returns the ON_CALL spec that matches this mock function with the
9713   // given arguments; returns NULL if no matching ON_CALL is found.
9714   // L = *
9715   const OnCallSpec<F>* FindOnCallSpec(
9716       const ArgumentTuple& args) const {
9717     for (UntypedOnCallSpecs::const_reverse_iterator it
9718              = untyped_on_call_specs_.rbegin();
9719          it != untyped_on_call_specs_.rend(); ++it) {
9720       const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
9721       if (spec->Matches(args))
9722         return spec;
9723     }
9724 
9725     return nullptr;
9726   }
9727 
9728   // Performs the default action of this mock function on the given
9729   // arguments and returns the result. Asserts (or throws if
9730   // exceptions are enabled) with a helpful call descrption if there
9731   // is no valid return value. This method doesn't depend on the
9732   // mutable state of this object, and thus can be called concurrently
9733   // without locking.
9734   // L = *
9735   Result PerformDefaultAction(ArgumentTuple&& args,
9736                               const std::string& call_description) const {
9737     const OnCallSpec<F>* const spec =
9738         this->FindOnCallSpec(args);
9739     if (spec != nullptr) {
9740       return spec->GetAction().Perform(std::move(args));
9741     }
9742     const std::string message =
9743         call_description +
9744         "\n    The mock function has no default action "
9745         "set, and its return type has no default value set.";
9746 #if GTEST_HAS_EXCEPTIONS
9747     if (!DefaultValue<Result>::Exists()) {
9748       throw std::runtime_error(message);
9749     }
9750 #else
9751     Assert(DefaultValue<Result>::Exists(), "", -1, message);
9752 #endif
9753     return DefaultValue<Result>::Get();
9754   }
9755 
9756   // Performs the default action with the given arguments and returns
9757   // the action's result.  The call description string will be used in
9758   // the error message to describe the call in the case the default
9759   // action fails.  The caller is responsible for deleting the result.
9760   // L = *
9761   UntypedActionResultHolderBase* UntypedPerformDefaultAction(
9762       void* untyped_args,  // must point to an ArgumentTuple
9763       const std::string& call_description) const override {
9764     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9765     return ResultHolder::PerformDefaultAction(this, std::move(*args),
9766                                               call_description);
9767   }
9768 
9769   // Performs the given action with the given arguments and returns
9770   // the action's result.  The caller is responsible for deleting the
9771   // result.
9772   // L = *
9773   UntypedActionResultHolderBase* UntypedPerformAction(
9774       const void* untyped_action, void* untyped_args) const override {
9775     // Make a copy of the action before performing it, in case the
9776     // action deletes the mock object (and thus deletes itself).
9777     const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
9778     ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
9779     return ResultHolder::PerformAction(action, std::move(*args));
9780   }
9781 
9782   // Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
9783   // clears the ON_CALL()s set on this mock function.
9784   void ClearDefaultActionsLocked() override
9785       GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9786     g_gmock_mutex.AssertHeld();
9787 
9788     // Deleting our default actions may trigger other mock objects to be
9789     // deleted, for example if an action contains a reference counted smart
9790     // pointer to that mock object, and that is the last reference. So if we
9791     // delete our actions within the context of the global mutex we may deadlock
9792     // when this method is called again. Instead, make a copy of the set of
9793     // actions to delete, clear our set within the mutex, and then delete the
9794     // actions outside of the mutex.
9795     UntypedOnCallSpecs specs_to_delete;
9796     untyped_on_call_specs_.swap(specs_to_delete);
9797 
9798     g_gmock_mutex.Unlock();
9799     for (UntypedOnCallSpecs::const_iterator it =
9800              specs_to_delete.begin();
9801          it != specs_to_delete.end(); ++it) {
9802       delete static_cast<const OnCallSpec<F>*>(*it);
9803     }
9804 
9805     // Lock the mutex again, since the caller expects it to be locked when we
9806     // return.
9807     g_gmock_mutex.Lock();
9808   }
9809 
9810   // Returns the result of invoking this mock function with the given
9811   // arguments.  This function can be safely called from multiple
9812   // threads concurrently.
9813   Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9814     ArgumentTuple tuple(std::forward<Args>(args)...);
9815     std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
9816         this->UntypedInvokeWith(static_cast<void*>(&tuple))));
9817     return holder->Unwrap();
9818   }
9819 
9820   MockSpec<F> With(Matcher<Args>... m) {
9821     return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
9822   }
9823 
9824  protected:
9825   template <typename Function>
9826   friend class MockSpec;
9827 
9828   typedef ActionResultHolder<Result> ResultHolder;
9829 
9830   // Adds and returns a default action spec for this mock function.
9831   OnCallSpec<F>& AddNewOnCallSpec(
9832       const char* file, int line,
9833       const ArgumentMatcherTuple& m)
9834           GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9835     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9836     OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
9837     untyped_on_call_specs_.push_back(on_call_spec);
9838     return *on_call_spec;
9839   }
9840 
9841   // Adds and returns an expectation spec for this mock function.
9842   TypedExpectation<F>& AddNewExpectation(const char* file, int line,
9843                                          const std::string& source_text,
9844                                          const ArgumentMatcherTuple& m)
9845       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9846     Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
9847     TypedExpectation<F>* const expectation =
9848         new TypedExpectation<F>(this, file, line, source_text, m);
9849     const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
9850     // See the definition of untyped_expectations_ for why access to
9851     // it is unprotected here.
9852     untyped_expectations_.push_back(untyped_expectation);
9853 
9854     // Adds this expectation into the implicit sequence if there is one.
9855     Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
9856     if (implicit_sequence != nullptr) {
9857       implicit_sequence->AddExpectation(Expectation(untyped_expectation));
9858     }
9859 
9860     return *expectation;
9861   }
9862 
9863  private:
9864   template <typename Func> friend class TypedExpectation;
9865 
9866   // Some utilities needed for implementing UntypedInvokeWith().
9867 
9868   // Describes what default action will be performed for the given
9869   // arguments.
9870   // L = *
9871   void DescribeDefaultActionTo(const ArgumentTuple& args,
9872                                ::std::ostream* os) const {
9873     const OnCallSpec<F>* const spec = FindOnCallSpec(args);
9874 
9875     if (spec == nullptr) {
9876       *os << (std::is_void<Result>::value ? "returning directly.\n"
9877                                           : "returning default value.\n");
9878     } else {
9879       *os << "taking default action specified at:\n"
9880           << FormatFileLocation(spec->file(), spec->line()) << "\n";
9881     }
9882   }
9883 
9884   // Writes a message that the call is uninteresting (i.e. neither
9885   // explicitly expected nor explicitly unexpected) to the given
9886   // ostream.
9887   void UntypedDescribeUninterestingCall(const void* untyped_args,
9888                                         ::std::ostream* os) const override
9889       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9890     const ArgumentTuple& args =
9891         *static_cast<const ArgumentTuple*>(untyped_args);
9892     *os << "Uninteresting mock function call - ";
9893     DescribeDefaultActionTo(args, os);
9894     *os << "    Function call: " << Name();
9895     UniversalPrint(args, os);
9896   }
9897 
9898   // Returns the expectation that matches the given function arguments
9899   // (or NULL is there's no match); when a match is found,
9900   // untyped_action is set to point to the action that should be
9901   // performed (or NULL if the action is "do default"), and
9902   // is_excessive is modified to indicate whether the call exceeds the
9903   // expected number.
9904   //
9905   // Critical section: We must find the matching expectation and the
9906   // corresponding action that needs to be taken in an ATOMIC
9907   // transaction.  Otherwise another thread may call this mock
9908   // method in the middle and mess up the state.
9909   //
9910   // However, performing the action has to be left out of the critical
9911   // section.  The reason is that we have no control on what the
9912   // action does (it can invoke an arbitrary user function or even a
9913   // mock function) and excessive locking could cause a dead lock.
9914   const ExpectationBase* UntypedFindMatchingExpectation(
9915       const void* untyped_args, const void** untyped_action, bool* is_excessive,
9916       ::std::ostream* what, ::std::ostream* why) override
9917       GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
9918     const ArgumentTuple& args =
9919         *static_cast<const ArgumentTuple*>(untyped_args);
9920     MutexLock l(&g_gmock_mutex);
9921     TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
9922     if (exp == nullptr) {  // A match wasn't found.
9923       this->FormatUnexpectedCallMessageLocked(args, what, why);
9924       return nullptr;
9925     }
9926 
9927     // This line must be done before calling GetActionForArguments(),
9928     // which will increment the call count for *exp and thus affect
9929     // its saturation status.
9930     *is_excessive = exp->IsSaturated();
9931     const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
9932     if (action != nullptr && action->IsDoDefault())
9933       action = nullptr;  // Normalize "do default" to NULL.
9934     *untyped_action = action;
9935     return exp;
9936   }
9937 
9938   // Prints the given function arguments to the ostream.
9939   void UntypedPrintArgs(const void* untyped_args,
9940                         ::std::ostream* os) const override {
9941     const ArgumentTuple& args =
9942         *static_cast<const ArgumentTuple*>(untyped_args);
9943     UniversalPrint(args, os);
9944   }
9945 
9946   // Returns the expectation that matches the arguments, or NULL if no
9947   // expectation matches them.
9948   TypedExpectation<F>* FindMatchingExpectationLocked(
9949       const ArgumentTuple& args) const
9950           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9951     g_gmock_mutex.AssertHeld();
9952     // See the definition of untyped_expectations_ for why access to
9953     // it is unprotected here.
9954     for (typename UntypedExpectations::const_reverse_iterator it =
9955              untyped_expectations_.rbegin();
9956          it != untyped_expectations_.rend(); ++it) {
9957       TypedExpectation<F>* const exp =
9958           static_cast<TypedExpectation<F>*>(it->get());
9959       if (exp->ShouldHandleArguments(args)) {
9960         return exp;
9961       }
9962     }
9963     return nullptr;
9964   }
9965 
9966   // Returns a message that the arguments don't match any expectation.
9967   void FormatUnexpectedCallMessageLocked(
9968       const ArgumentTuple& args,
9969       ::std::ostream* os,
9970       ::std::ostream* why) const
9971           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9972     g_gmock_mutex.AssertHeld();
9973     *os << "\nUnexpected mock function call - ";
9974     DescribeDefaultActionTo(args, os);
9975     PrintTriedExpectationsLocked(args, why);
9976   }
9977 
9978   // Prints a list of expectations that have been tried against the
9979   // current mock function call.
9980   void PrintTriedExpectationsLocked(
9981       const ArgumentTuple& args,
9982       ::std::ostream* why) const
9983           GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
9984     g_gmock_mutex.AssertHeld();
9985     const size_t count = untyped_expectations_.size();
9986     *why << "Google Mock tried the following " << count << " "
9987          << (count == 1 ? "expectation, but it didn't match" :
9988              "expectations, but none matched")
9989          << ":\n";
9990     for (size_t i = 0; i < count; i++) {
9991       TypedExpectation<F>* const expectation =
9992           static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
9993       *why << "\n";
9994       expectation->DescribeLocationTo(why);
9995       if (count > 1) {
9996         *why << "tried expectation #" << i << ": ";
9997       }
9998       *why << expectation->source_text() << "...\n";
9999       expectation->ExplainMatchResultTo(args, why);
10000       expectation->DescribeCallCountTo(why);
10001     }
10002   }
10003 };  // class FunctionMocker
10004 
10005 // Reports an uninteresting call (whose description is in msg) in the
10006 // manner specified by 'reaction'.
10007 void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
10008 
10009 }  // namespace internal
10010 
10011 namespace internal {
10012 
10013 template <typename F>
10014 class MockFunction;
10015 
10016 template <typename R, typename... Args>
10017 class MockFunction<R(Args...)> {
10018  public:
10019   MockFunction(const MockFunction&) = delete;
10020   MockFunction& operator=(const MockFunction&) = delete;
10021 
10022   std::function<R(Args...)> AsStdFunction() {
10023     return [this](Args... args) -> R {
10024       return this->Call(std::forward<Args>(args)...);
10025     };
10026   }
10027 
10028   // Implementation detail: the expansion of the MOCK_METHOD macro.
10029   R Call(Args... args) {
10030     mock_.SetOwnerAndName(this, "Call");
10031     return mock_.Invoke(std::forward<Args>(args)...);
10032   }
10033 
10034   MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
10035     mock_.RegisterOwner(this);
10036     return mock_.With(std::move(m)...);
10037   }
10038 
10039   MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
10040     return this->gmock_Call(::testing::A<Args>()...);
10041   }
10042 
10043  protected:
10044   MockFunction() = default;
10045   ~MockFunction() = default;
10046 
10047  private:
10048   FunctionMocker<R(Args...)> mock_;
10049 };
10050 
10051 /*
10052 The SignatureOf<F> struct is a meta-function returning function signature
10053 corresponding to the provided F argument.
10054 
10055 It makes use of MockFunction easier by allowing it to accept more F arguments
10056 than just function signatures.
10057 
10058 Specializations provided here cover only a signature type itself and
10059 std::function. However, if need be it can be easily extended to cover also other
10060 types (like for example boost::function).
10061 */
10062 
10063 template <typename F>
10064 struct SignatureOf;
10065 
10066 template <typename R, typename... Args>
10067 struct SignatureOf<R(Args...)> {
10068   using type = R(Args...);
10069 };
10070 
10071 template <typename F>
10072 struct SignatureOf<std::function<F>> : SignatureOf<F> {};
10073 
10074 template <typename F>
10075 using SignatureOfT = typename SignatureOf<F>::type;
10076 
10077 }  // namespace internal
10078 
10079 // A MockFunction<F> type has one mock method whose type is
10080 // internal::SignatureOfT<F>.  It is useful when you just want your
10081 // test code to emit some messages and have Google Mock verify the
10082 // right messages are sent (and perhaps at the right times).  For
10083 // example, if you are exercising code:
10084 //
10085 //   Foo(1);
10086 //   Foo(2);
10087 //   Foo(3);
10088 //
10089 // and want to verify that Foo(1) and Foo(3) both invoke
10090 // mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
10091 //
10092 // TEST(FooTest, InvokesBarCorrectly) {
10093 //   MyMock mock;
10094 //   MockFunction<void(string check_point_name)> check;
10095 //   {
10096 //     InSequence s;
10097 //
10098 //     EXPECT_CALL(mock, Bar("a"));
10099 //     EXPECT_CALL(check, Call("1"));
10100 //     EXPECT_CALL(check, Call("2"));
10101 //     EXPECT_CALL(mock, Bar("a"));
10102 //   }
10103 //   Foo(1);
10104 //   check.Call("1");
10105 //   Foo(2);
10106 //   check.Call("2");
10107 //   Foo(3);
10108 // }
10109 //
10110 // The expectation spec says that the first Bar("a") must happen
10111 // before check point "1", the second Bar("a") must happen after check
10112 // point "2", and nothing should happen between the two check
10113 // points. The explicit check points make it easy to tell which
10114 // Bar("a") is called by which call to Foo().
10115 //
10116 // MockFunction<F> can also be used to exercise code that accepts
10117 // std::function<internal::SignatureOfT<F>> callbacks. To do so, use
10118 // AsStdFunction() method to create std::function proxy forwarding to
10119 // original object's Call. Example:
10120 //
10121 // TEST(FooTest, RunsCallbackWithBarArgument) {
10122 //   MockFunction<int(string)> callback;
10123 //   EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
10124 //   Foo(callback.AsStdFunction());
10125 // }
10126 //
10127 // The internal::SignatureOfT<F> indirection allows to use other types
10128 // than just function signature type. This is typically useful when
10129 // providing a mock for a predefined std::function type. Example:
10130 //
10131 // using FilterPredicate = std::function<bool(string)>;
10132 // void MyFilterAlgorithm(FilterPredicate predicate);
10133 //
10134 // TEST(FooTest, FilterPredicateAlwaysAccepts) {
10135 //   MockFunction<FilterPredicate> predicateMock;
10136 //   EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
10137 //   MyFilterAlgorithm(predicateMock.AsStdFunction());
10138 // }
10139 template <typename F>
10140 class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
10141   using Base = internal::MockFunction<internal::SignatureOfT<F>>;
10142 
10143  public:
10144   using Base::Base;
10145 };
10146 
10147 // The style guide prohibits "using" statements in a namespace scope
10148 // inside a header file.  However, the MockSpec class template is
10149 // meant to be defined in the ::testing namespace.  The following line
10150 // is just a trick for working around a bug in MSVC 8.0, which cannot
10151 // handle it if we define MockSpec in ::testing.
10152 using internal::MockSpec;
10153 
10154 // Const(x) is a convenient function for obtaining a const reference
10155 // to x.  This is useful for setting expectations on an overloaded
10156 // const mock method, e.g.
10157 //
10158 //   class MockFoo : public FooInterface {
10159 //    public:
10160 //     MOCK_METHOD0(Bar, int());
10161 //     MOCK_CONST_METHOD0(Bar, int&());
10162 //   };
10163 //
10164 //   MockFoo foo;
10165 //   // Expects a call to non-const MockFoo::Bar().
10166 //   EXPECT_CALL(foo, Bar());
10167 //   // Expects a call to const MockFoo::Bar().
10168 //   EXPECT_CALL(Const(foo), Bar());
10169 template <typename T>
10170 inline const T& Const(const T& x) { return x; }
10171 
10172 // Constructs an Expectation object that references and co-owns exp.
10173 inline Expectation::Expectation(internal::ExpectationBase& exp)  // NOLINT
10174     : expectation_base_(exp.GetHandle().expectation_base()) {}
10175 
10176 }  // namespace testing
10177 
10178 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
10179 
10180 // Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
10181 // required to avoid compile errors when the name of the method used in call is
10182 // a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
10183 // tests in internal/gmock-spec-builders_test.cc for more details.
10184 //
10185 // This macro supports statements both with and without parameter matchers. If
10186 // the parameter list is omitted, gMock will accept any parameters, which allows
10187 // tests to be written that don't need to encode the number of method
10188 // parameter. This technique may only be used for non-overloaded methods.
10189 //
10190 //   // These are the same:
10191 //   ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
10192 //   ON_CALL(mock, NoArgsMethod).WillByDefault(...);
10193 //
10194 //   // As are these:
10195 //   ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
10196 //   ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
10197 //
10198 //   // Can also specify args if you want, of course:
10199 //   ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
10200 //
10201 //   // Overloads work as long as you specify parameters:
10202 //   ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
10203 //   ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
10204 //
10205 //   // Oops! Which overload did you want?
10206 //   ON_CALL(mock, OverloadedMethod).WillByDefault(...);
10207 //     => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
10208 //
10209 // How this works: The mock class uses two overloads of the gmock_Method
10210 // expectation setter method plus an operator() overload on the MockSpec object.
10211 // In the matcher list form, the macro expands to:
10212 //
10213 //   // This statement:
10214 //   ON_CALL(mock, TwoArgsMethod(_, 45))...
10215 //
10216 //   // ...expands to:
10217 //   mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
10218 //   |-------------v---------------||------------v-------------|
10219 //       invokes first overload        swallowed by operator()
10220 //
10221 //   // ...which is essentially:
10222 //   mock.gmock_TwoArgsMethod(_, 45)...
10223 //
10224 // Whereas the form without a matcher list:
10225 //
10226 //   // This statement:
10227 //   ON_CALL(mock, TwoArgsMethod)...
10228 //
10229 //   // ...expands to:
10230 //   mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
10231 //   |-----------------------v--------------------------|
10232 //                 invokes second overload
10233 //
10234 //   // ...which is essentially:
10235 //   mock.gmock_TwoArgsMethod(_, _)...
10236 //
10237 // The WithoutMatchers() argument is used to disambiguate overloads and to
10238 // block the caller from accidentally invoking the second overload directly. The
10239 // second argument is an internal type derived from the method signature. The
10240 // failure to disambiguate two overloads of this method in the ON_CALL statement
10241 // is how we block callers from setting expectations on overloaded methods.
10242 #define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call)                    \
10243   ((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
10244                              nullptr)                                   \
10245       .Setter(__FILE__, __LINE__, #mock_expr, #call)
10246 
10247 #define ON_CALL(obj, call) \
10248   GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
10249 
10250 #define EXPECT_CALL(obj, call) \
10251   GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
10252 
10253 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
10254 
10255 namespace testing {
10256 namespace internal {
10257 template <typename T>
10258 using identity_t = T;
10259 
10260 template <typename Pattern>
10261 struct ThisRefAdjuster {
10262   template <typename T>
10263   using AdjustT = typename std::conditional<
10264       std::is_const<typename std::remove_reference<Pattern>::type>::value,
10265       typename std::conditional<std::is_lvalue_reference<Pattern>::value,
10266                                 const T&, const T&&>::type,
10267       typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
10268                                 T&&>::type>::type;
10269 
10270   template <typename MockType>
10271   static AdjustT<MockType> Adjust(const MockType& mock) {
10272     return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
10273   }
10274 };
10275 
10276 }  // namespace internal
10277 
10278 // The style guide prohibits "using" statements in a namespace scope
10279 // inside a header file.  However, the FunctionMocker class template
10280 // is meant to be defined in the ::testing namespace.  The following
10281 // line is just a trick for working around a bug in MSVC 8.0, which
10282 // cannot handle it if we define FunctionMocker in ::testing.
10283 using internal::FunctionMocker;
10284 }  // namespace testing
10285 
10286 #define MOCK_METHOD(...) \
10287   GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
10288 
10289 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
10290   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10291 
10292 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
10293   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10294 
10295 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
10296   GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
10297 
10298 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec)     \
10299   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args);                                   \
10300   GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec);                                   \
10301   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                      \
10302       GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args));           \
10303   GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec)                                     \
10304   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                            \
10305       GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec),     \
10306       GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec),    \
10307       GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec),                                \
10308       GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
10309       (GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
10310 
10311 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
10312   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10313 
10314 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
10315   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10316 
10317 #define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
10318   GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
10319 
10320 #define GMOCK_INTERNAL_WRONG_ARITY(...)                                      \
10321   static_assert(                                                             \
10322       false,                                                                 \
10323       "MOCK_METHOD must be called with 3 or 4 arguments. _Ret, "             \
10324       "_MethodName, _Args and optionally _Spec. _Args and _Spec must be "    \
10325       "enclosed in parentheses. If _Ret is a type with unprotected commas, " \
10326       "it must also be enclosed in parentheses.")
10327 
10328 #define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
10329   static_assert(                                  \
10330       GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple),        \
10331       GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
10332 
10333 #define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...)                 \
10334   static_assert(                                                       \
10335       std::is_function<__VA_ARGS__>::value,                            \
10336       "Signature must be a function type, maybe return type contains " \
10337       "unprotected comma.");                                           \
10338   static_assert(                                                       \
10339       ::testing::tuple_size<typename ::testing::internal::Function<    \
10340               __VA_ARGS__>::ArgumentTuple>::value == _N,               \
10341       "This method does not take " GMOCK_PP_STRINGIZE(                 \
10342           _N) " arguments. Parenthesize all types with unprotected commas.")
10343 
10344 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
10345   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
10346 
10347 #define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness,           \
10348                                         _Override, _Final, _NoexceptSpec,      \
10349                                         _CallType, _RefSpec, _Signature)       \
10350   typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS(               \
10351       _Signature)>::Result                                                     \
10352   GMOCK_INTERNAL_EXPAND(_CallType)                                             \
10353       _MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N))   \
10354           GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec              \
10355           GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) {    \
10356     GMOCK_MOCKER_(_N, _Constness, _MethodName)                                 \
10357         .SetOwnerAndName(this, #_MethodName);                                  \
10358     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \
10359         .Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N));  \
10360   }                                                                            \
10361   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10362       GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N))       \
10363       GMOCK_PP_IF(_Constness, const, ) _RefSpec {                              \
10364     GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this);            \
10365     return GMOCK_MOCKER_(_N, _Constness, _MethodName)                          \
10366         .With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N));         \
10367   }                                                                            \
10368   ::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
10369       const ::testing::internal::WithoutMatchers&,                             \
10370       GMOCK_PP_IF(_Constness, const, )::testing::internal::Function<           \
10371           GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
10372     return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF(                   \
10373         _Constness, const, ) int _RefSpec>::Adjust(*this)                      \
10374         .gmock_##_MethodName(GMOCK_PP_REPEAT(                                  \
10375             GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N));               \
10376   }                                                                            \
10377   mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)>        \
10378       GMOCK_MOCKER_(_N, _Constness, _MethodName)
10379 
10380 #define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
10381 
10382 // Five Valid modifiers.
10383 #define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
10384   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
10385 
10386 #define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
10387   GMOCK_PP_HAS_COMMA(                       \
10388       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
10389 
10390 #define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
10391   GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
10392 
10393 #define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
10394   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
10395 
10396 #define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem)          \
10397   GMOCK_PP_IF(                                                          \
10398       GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
10399       _elem, )
10400 
10401 #define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
10402   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
10403 
10404 #define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem)                       \
10405   GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
10406               GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
10407 
10408 #define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
10409   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
10410 
10411 #define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem)            \
10412   static_assert(                                                          \
10413       (GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) +    \
10414        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
10415        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) +    \
10416        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
10417        GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) +      \
10418        GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1,                           \
10419       GMOCK_PP_STRINGIZE(                                                 \
10420           _elem) " cannot be recognized as a valid specification modifier.");
10421 
10422 // Modifiers implementation.
10423 #define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
10424   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
10425 
10426 #define GMOCK_INTERNAL_DETECT_CONST_I_const ,
10427 
10428 #define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
10429   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
10430 
10431 #define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
10432 
10433 #define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
10434   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
10435 
10436 #define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
10437 
10438 #define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
10439   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
10440 
10441 #define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
10442 
10443 #define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
10444   GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
10445 
10446 #define GMOCK_INTERNAL_DETECT_REF_I_ref ,
10447 
10448 #define GMOCK_INTERNAL_UNPACK_ref(x) x
10449 
10450 #define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem)           \
10451   GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem),                 \
10452               GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
10453   (_elem)
10454 
10455 // TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
10456 // GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
10457 // maybe they can be simplified somehow.
10458 #define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
10459   GMOCK_INTERNAL_IS_CALLTYPE_I(          \
10460       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10461 #define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
10462 
10463 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
10464   GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(          \
10465       GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
10466 #define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
10467   GMOCK_PP_IDENTITY _arg
10468 
10469 #define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
10470 
10471 // Note: The use of `identity_t` here allows _Ret to represent return types that
10472 // would normally need to be specified in a different way. For example, a method
10473 // returning a function pointer must be written as
10474 //
10475 // fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
10476 //
10477 // But we only support placing the return type at the beginning. To handle this,
10478 // we wrap all calls in identity_t, so that a declaration will be expanded to
10479 //
10480 // identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
10481 //
10482 // This allows us to work around the syntactic oddities of function/method
10483 // types.
10484 #define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)                                 \
10485   ::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
10486                                               GMOCK_PP_REMOVE_PARENS,         \
10487                                               GMOCK_PP_IDENTITY)(_Ret)>(      \
10488       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
10489 
10490 #define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem)                          \
10491   GMOCK_PP_COMMA_IF(_i)                                                \
10492   GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
10493               GMOCK_PP_IDENTITY)                                       \
10494   (_elem)
10495 
10496 #define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _)            \
10497   GMOCK_PP_COMMA_IF(_i)                                        \
10498   GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10499   gmock_a##_i
10500 
10501 #define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
10502   GMOCK_PP_COMMA_IF(_i)                               \
10503   ::std::forward<GMOCK_INTERNAL_ARG_O(                \
10504       _i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
10505 
10506 #define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _)        \
10507   GMOCK_PP_COMMA_IF(_i)                                            \
10508   GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
10509   gmock_a##_i
10510 
10511 #define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
10512   GMOCK_PP_COMMA_IF(_i)                             \
10513   gmock_a##_i
10514 
10515 #define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
10516   GMOCK_PP_COMMA_IF(_i)                                      \
10517   ::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
10518 
10519 #define GMOCK_INTERNAL_ARG_O(_i, ...) \
10520   typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
10521 
10522 #define GMOCK_INTERNAL_MATCHER_O(_i, ...)                          \
10523   const ::testing::Matcher<typename ::testing::internal::Function< \
10524       __VA_ARGS__>::template Arg<_i>::type>&
10525 
10526 #define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
10527 #define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
10528 #define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
10529 #define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
10530 #define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
10531 #define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
10532 #define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
10533 #define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
10534 #define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
10535 #define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
10536 #define MOCK_METHOD10(m, ...) \
10537   GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
10538 
10539 #define MOCK_CONST_METHOD0(m, ...) \
10540   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
10541 #define MOCK_CONST_METHOD1(m, ...) \
10542   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
10543 #define MOCK_CONST_METHOD2(m, ...) \
10544   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
10545 #define MOCK_CONST_METHOD3(m, ...) \
10546   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
10547 #define MOCK_CONST_METHOD4(m, ...) \
10548   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
10549 #define MOCK_CONST_METHOD5(m, ...) \
10550   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
10551 #define MOCK_CONST_METHOD6(m, ...) \
10552   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
10553 #define MOCK_CONST_METHOD7(m, ...) \
10554   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
10555 #define MOCK_CONST_METHOD8(m, ...) \
10556   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
10557 #define MOCK_CONST_METHOD9(m, ...) \
10558   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
10559 #define MOCK_CONST_METHOD10(m, ...) \
10560   GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
10561 
10562 #define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
10563 #define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
10564 #define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
10565 #define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
10566 #define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
10567 #define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
10568 #define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
10569 #define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
10570 #define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
10571 #define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
10572 #define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
10573 
10574 #define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
10575 #define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
10576 #define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
10577 #define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
10578 #define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
10579 #define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
10580 #define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
10581 #define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
10582 #define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
10583 #define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
10584 #define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
10585 
10586 #define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10587   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
10588 #define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10589   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
10590 #define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10591   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
10592 #define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10593   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
10594 #define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10595   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
10596 #define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10597   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
10598 #define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10599   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
10600 #define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10601   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
10602 #define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10603   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
10604 #define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10605   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
10606 #define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10607   GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
10608 
10609 #define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
10610   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
10611 #define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
10612   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
10613 #define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
10614   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
10615 #define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
10616   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
10617 #define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
10618   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
10619 #define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
10620   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
10621 #define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
10622   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
10623 #define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
10624   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
10625 #define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
10626   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
10627 #define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
10628   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
10629 #define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
10630   GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
10631 
10632 #define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10633   MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10634 #define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10635   MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10636 #define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10637   MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10638 #define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10639   MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10640 #define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10641   MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10642 #define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10643   MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10644 #define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10645   MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10646 #define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10647   MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10648 #define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10649   MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10650 #define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10651   MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10652 #define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10653   MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10654 
10655 #define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
10656   MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10657 #define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
10658   MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10659 #define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
10660   MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10661 #define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
10662   MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10663 #define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
10664   MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10665 #define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
10666   MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10667 #define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
10668   MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10669 #define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
10670   MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10671 #define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
10672   MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10673 #define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
10674   MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10675 #define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
10676   MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
10677 
10678 #define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
10679   GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(                                  \
10680       args_num, ::testing::internal::identity_t<__VA_ARGS__>);            \
10681   GMOCK_INTERNAL_MOCK_METHOD_IMPL(                                        \
10682       args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, ,          \
10683       (::testing::internal::identity_t<__VA_ARGS__>))
10684 
10685 #define GMOCK_MOCKER_(arity, constness, Method) \
10686   GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
10687 
10688 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
10689 // Copyright 2007, Google Inc.
10690 // All rights reserved.
10691 //
10692 // Redistribution and use in source and binary forms, with or without
10693 // modification, are permitted provided that the following conditions are
10694 // met:
10695 //
10696 //     * Redistributions of source code must retain the above copyright
10697 // notice, this list of conditions and the following disclaimer.
10698 //     * Redistributions in binary form must reproduce the above
10699 // copyright notice, this list of conditions and the following disclaimer
10700 // in the documentation and/or other materials provided with the
10701 // distribution.
10702 //     * Neither the name of Google Inc. nor the names of its
10703 // contributors may be used to endorse or promote products derived from
10704 // this software without specific prior written permission.
10705 //
10706 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
10707 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
10708 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
10709 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
10710 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
10711 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
10712 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
10713 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
10714 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
10715 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
10716 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
10717 
10718 
10719 // Google Mock - a framework for writing C++ mock classes.
10720 //
10721 // This file implements some commonly used variadic actions.
10722 
10723 // GOOGLETEST_CM0002 DO NOT DELETE
10724 
10725 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10726 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
10727 
10728 #include <memory>
10729 #include <utility>
10730 
10731 
10732 // Include any custom callback actions added by the local installation.
10733 // GOOGLETEST_CM0002 DO NOT DELETE
10734 
10735 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10736 #define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10737 
10738 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
10739 
10740 // Sometimes you want to give an action explicit template parameters
10741 // that cannot be inferred from its value parameters.  ACTION() and
10742 // ACTION_P*() don't support that.  ACTION_TEMPLATE() remedies that
10743 // and can be viewed as an extension to ACTION() and ACTION_P*().
10744 //
10745 // The syntax:
10746 //
10747 //   ACTION_TEMPLATE(ActionName,
10748 //                   HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
10749 //                   AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
10750 //
10751 // defines an action template that takes m explicit template
10752 // parameters and n value parameters.  name_i is the name of the i-th
10753 // template parameter, and kind_i specifies whether it's a typename,
10754 // an integral constant, or a template.  p_i is the name of the i-th
10755 // value parameter.
10756 //
10757 // Example:
10758 //
10759 //   // DuplicateArg<k, T>(output) converts the k-th argument of the mock
10760 //   // function to type T and copies it to *output.
10761 //   ACTION_TEMPLATE(DuplicateArg,
10762 //                   HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
10763 //                   AND_1_VALUE_PARAMS(output)) {
10764 //     *output = T(::std::get<k>(args));
10765 //   }
10766 //   ...
10767 //     int n;
10768 //     EXPECT_CALL(mock, Foo(_, _))
10769 //         .WillOnce(DuplicateArg<1, unsigned char>(&n));
10770 //
10771 // To create an instance of an action template, write:
10772 //
10773 //   ActionName<t1, ..., t_m>(v1, ..., v_n)
10774 //
10775 // where the ts are the template arguments and the vs are the value
10776 // arguments.  The value argument types are inferred by the compiler.
10777 // If you want to explicitly specify the value argument types, you can
10778 // provide additional template arguments:
10779 //
10780 //   ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
10781 //
10782 // where u_i is the desired type of v_i.
10783 //
10784 // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
10785 // number of value parameters, but not on the number of template
10786 // parameters.  Without the restriction, the meaning of the following
10787 // is unclear:
10788 //
10789 //   OverloadedAction<int, bool>(x);
10790 //
10791 // Are we using a single-template-parameter action where 'bool' refers
10792 // to the type of x, or are we using a two-template-parameter action
10793 // where the compiler is asked to infer the type of x?
10794 //
10795 // Implementation notes:
10796 //
10797 // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
10798 // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
10799 // implementing ACTION_TEMPLATE.  The main trick we use is to create
10800 // new macro invocations when expanding a macro.  For example, we have
10801 //
10802 //   #define ACTION_TEMPLATE(name, template_params, value_params)
10803 //       ... GMOCK_INTERNAL_DECL_##template_params ...
10804 //
10805 // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
10806 // to expand to
10807 //
10808 //       ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
10809 //
10810 // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
10811 // preprocessor will continue to expand it to
10812 //
10813 //       ... typename T ...
10814 //
10815 // This technique conforms to the C++ standard and is portable.  It
10816 // allows us to implement action templates using O(N) code, where N is
10817 // the maximum number of template/value parameters supported.  Without
10818 // using it, we'd have to devote O(N^2) amount of code to implement all
10819 // combinations of m and n.
10820 
10821 // Declares the template parameters.
10822 #define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
10823 #define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10824     name1) kind0 name0, kind1 name1
10825 #define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10826     kind2, name2) kind0 name0, kind1 name1, kind2 name2
10827 #define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10828     kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
10829     kind3 name3
10830 #define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10831     kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
10832     kind2 name2, kind3 name3, kind4 name4
10833 #define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10834     kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
10835     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
10836 #define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10837     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10838     name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
10839     kind5 name5, kind6 name6
10840 #define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10841     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10842     kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
10843     kind4 name4, kind5 name5, kind6 name6, kind7 name7
10844 #define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10845     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10846     kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
10847     kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
10848     kind8 name8
10849 #define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10850     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10851     name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
10852     kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
10853     kind6 name6, kind7 name7, kind8 name8, kind9 name9
10854 
10855 // Lists the template parameters.
10856 #define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
10857 #define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
10858     name1) name0, name1
10859 #define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10860     kind2, name2) name0, name1, name2
10861 #define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10862     kind2, name2, kind3, name3) name0, name1, name2, name3
10863 #define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10864     kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
10865     name4
10866 #define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10867     kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
10868     name2, name3, name4, name5
10869 #define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10870     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10871     name6) name0, name1, name2, name3, name4, name5, name6
10872 #define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10873     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10874     kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
10875 #define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
10876     kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
10877     kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
10878     name6, name7, name8
10879 #define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
10880     name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
10881     name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
10882     name3, name4, name5, name6, name7, name8, name9
10883 
10884 // Declares the types of value parameters.
10885 #define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
10886 #define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
10887 #define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
10888     typename p0##_type, typename p1##_type
10889 #define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
10890     typename p0##_type, typename p1##_type, typename p2##_type
10891 #define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
10892     typename p0##_type, typename p1##_type, typename p2##_type, \
10893     typename p3##_type
10894 #define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
10895     typename p0##_type, typename p1##_type, typename p2##_type, \
10896     typename p3##_type, typename p4##_type
10897 #define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
10898     typename p0##_type, typename p1##_type, typename p2##_type, \
10899     typename p3##_type, typename p4##_type, typename p5##_type
10900 #define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10901     p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
10902     typename p3##_type, typename p4##_type, typename p5##_type, \
10903     typename p6##_type
10904 #define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10905     p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
10906     typename p3##_type, typename p4##_type, typename p5##_type, \
10907     typename p6##_type, typename p7##_type
10908 #define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10909     p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
10910     typename p3##_type, typename p4##_type, typename p5##_type, \
10911     typename p6##_type, typename p7##_type, typename p8##_type
10912 #define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
10913     p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
10914     typename p2##_type, typename p3##_type, typename p4##_type, \
10915     typename p5##_type, typename p6##_type, typename p7##_type, \
10916     typename p8##_type, typename p9##_type
10917 
10918 // Initializes the value parameters.
10919 #define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
10920     ()
10921 #define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
10922     (p0##_type gmock_p0) : p0(::std::move(gmock_p0))
10923 #define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
10924     (p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
10925         p1(::std::move(gmock_p1))
10926 #define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
10927     (p0##_type gmock_p0, p1##_type gmock_p1, \
10928         p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
10929         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
10930 #define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
10931     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10932         p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
10933         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10934         p3(::std::move(gmock_p3))
10935 #define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
10936     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10937         p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
10938         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10939         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
10940 #define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
10941     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10942         p3##_type gmock_p3, p4##_type gmock_p4, \
10943         p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
10944         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10945         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10946         p5(::std::move(gmock_p5))
10947 #define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
10948     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10949         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10950         p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
10951         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10952         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10953         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
10954 #define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
10955     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10956         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10957         p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
10958         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10959         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10960         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10961         p7(::std::move(gmock_p7))
10962 #define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10963     p7, p8)\
10964     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10965         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10966         p6##_type gmock_p6, p7##_type gmock_p7, \
10967         p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
10968         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10969         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10970         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10971         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
10972 #define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
10973     p7, p8, p9)\
10974     (p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
10975         p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
10976         p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
10977         p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
10978         p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
10979         p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
10980         p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
10981         p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
10982         p9(::std::move(gmock_p9))
10983 
10984 // Defines the copy constructor
10985 #define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
10986     {}  // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
10987 #define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
10988 #define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
10989 #define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
10990 #define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
10991 #define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
10992 #define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
10993 #define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
10994 #define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
10995 #define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
10996 #define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
10997 
10998 // Declares the fields for storing the value parameters.
10999 #define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
11000 #define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
11001 #define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
11002     p1##_type p1;
11003 #define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
11004     p1##_type p1; p2##_type p2;
11005 #define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
11006     p1##_type p1; p2##_type p2; p3##_type p3;
11007 #define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11008     p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
11009 #define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11010     p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11011     p5##_type p5;
11012 #define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11013     p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11014     p5##_type p5; p6##_type p6;
11015 #define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11016     p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
11017     p5##_type p5; p6##_type p6; p7##_type p7;
11018 #define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11019     p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11020     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
11021 #define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11022     p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
11023     p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
11024     p9##_type p9;
11025 
11026 // Lists the value parameters.
11027 #define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
11028 #define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
11029 #define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
11030 #define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
11031 #define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
11032 #define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
11033     p2, p3, p4
11034 #define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
11035     p1, p2, p3, p4, p5
11036 #define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11037     p6) p0, p1, p2, p3, p4, p5, p6
11038 #define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11039     p7) p0, p1, p2, p3, p4, p5, p6, p7
11040 #define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11041     p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
11042 #define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11043     p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
11044 
11045 // Lists the value parameter types.
11046 #define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
11047 #define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
11048 #define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
11049     p1##_type
11050 #define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
11051     p1##_type, p2##_type
11052 #define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
11053     p0##_type, p1##_type, p2##_type, p3##_type
11054 #define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
11055     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
11056 #define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
11057     p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
11058 #define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11059     p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
11060     p6##_type
11061 #define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11062     p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11063     p5##_type, p6##_type, p7##_type
11064 #define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11065     p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11066     p5##_type, p6##_type, p7##_type, p8##_type
11067 #define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11068     p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
11069     p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
11070 
11071 // Declares the value parameters.
11072 #define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
11073 #define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
11074 #define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
11075     p1##_type p1
11076 #define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
11077     p1##_type p1, p2##_type p2
11078 #define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
11079     p1##_type p1, p2##_type p2, p3##_type p3
11080 #define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
11081     p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
11082 #define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
11083     p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11084     p5##_type p5
11085 #define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
11086     p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11087     p5##_type p5, p6##_type p6
11088 #define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11089     p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
11090     p5##_type p5, p6##_type p6, p7##_type p7
11091 #define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11092     p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11093     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
11094 #define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11095     p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
11096     p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
11097     p9##_type p9
11098 
11099 // The suffix of the class template implementing the action template.
11100 #define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
11101 #define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
11102 #define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
11103 #define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
11104 #define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
11105 #define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
11106 #define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
11107 #define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
11108 #define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11109     p7) P8
11110 #define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11111     p7, p8) P9
11112 #define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
11113     p7, p8, p9) P10
11114 
11115 // The name of the class template implementing the action template.
11116 #define GMOCK_ACTION_CLASS_(name, value_params)\
11117     GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
11118 
11119 #define ACTION_TEMPLATE(name, template_params, value_params)                   \
11120   template <GMOCK_INTERNAL_DECL_##template_params                              \
11121             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11122   class GMOCK_ACTION_CLASS_(name, value_params) {                              \
11123    public:                                                                     \
11124     explicit GMOCK_ACTION_CLASS_(name, value_params)(                          \
11125         GMOCK_INTERNAL_DECL_##value_params)                                    \
11126         GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),    \
11127                     = default; ,                                               \
11128                     : impl_(std::make_shared<gmock_Impl>(                      \
11129                                 GMOCK_INTERNAL_LIST_##value_params)) { })      \
11130     GMOCK_ACTION_CLASS_(name, value_params)(                                   \
11131         const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept               \
11132         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \
11133     GMOCK_ACTION_CLASS_(name, value_params)(                                   \
11134         GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept                    \
11135         GMOCK_INTERNAL_DEFN_COPY_##value_params                                \
11136     template <typename F>                                                      \
11137     operator ::testing::Action<F>() const {                                    \
11138       return GMOCK_PP_IF(                                                      \
11139           GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),              \
11140                       (::testing::internal::MakeAction<F, gmock_Impl>()),      \
11141                       (::testing::internal::MakeAction<F>(impl_)));            \
11142     }                                                                          \
11143    private:                                                                    \
11144     class gmock_Impl {                                                         \
11145      public:                                                                   \
11146       explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}                \
11147       template <typename function_type, typename return_type,                  \
11148                 typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>         \
11149       return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const;  \
11150       GMOCK_INTERNAL_DEFN_##value_params                                       \
11151     };                                                                         \
11152     GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params),        \
11153                 , std::shared_ptr<const gmock_Impl> impl_;)                    \
11154   };                                                                           \
11155   template <GMOCK_INTERNAL_DECL_##template_params                              \
11156             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11157   GMOCK_ACTION_CLASS_(name, value_params)<                                     \
11158       GMOCK_INTERNAL_LIST_##template_params                                    \
11159       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \
11160           GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_;          \
11161   template <GMOCK_INTERNAL_DECL_##template_params                              \
11162             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11163   inline GMOCK_ACTION_CLASS_(name, value_params)<                              \
11164       GMOCK_INTERNAL_LIST_##template_params                                    \
11165       GMOCK_INTERNAL_LIST_TYPE_##value_params> name(                           \
11166           GMOCK_INTERNAL_DECL_##value_params) {                                \
11167     return GMOCK_ACTION_CLASS_(name, value_params)<                            \
11168         GMOCK_INTERNAL_LIST_##template_params                                  \
11169         GMOCK_INTERNAL_LIST_TYPE_##value_params>(                              \
11170             GMOCK_INTERNAL_LIST_##value_params);                               \
11171   }                                                                            \
11172   template <GMOCK_INTERNAL_DECL_##template_params                              \
11173             GMOCK_INTERNAL_DECL_TYPE_##value_params>                           \
11174   template <typename function_type, typename return_type, typename args_type,  \
11175             GMOCK_ACTION_TEMPLATE_ARGS_NAMES_>                                 \
11176   return_type GMOCK_ACTION_CLASS_(name, value_params)<                         \
11177       GMOCK_INTERNAL_LIST_##template_params                                    \
11178       GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
11179           GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
11180 
11181 namespace testing {
11182 
11183 // The ACTION*() macros trigger warning C4100 (unreferenced formal
11184 // parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in
11185 // the macro definition, as the warnings are generated when the macro
11186 // is expanded and macro expansion cannot contain #pragma.  Therefore
11187 // we suppress them here.
11188 #ifdef _MSC_VER
11189 # pragma warning(push)
11190 # pragma warning(disable:4100)
11191 #endif
11192 
11193 namespace internal {
11194 
11195 // internal::InvokeArgument - a helper for InvokeArgument action.
11196 // The basic overloads are provided here for generic functors.
11197 // Overloads for other custom-callables are provided in the
11198 // internal/custom/gmock-generated-actions.h header.
11199 template <typename F, typename... Args>
11200 auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
11201   return f(args...);
11202 }
11203 
11204 template <std::size_t index, typename... Params>
11205 struct InvokeArgumentAction {
11206   template <typename... Args>
11207   auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
11208       std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
11209       std::declval<const Params&>()...)) {
11210     internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
11211                                               std::forward<Args>(args)...);
11212     return params.Apply([&](const Params&... unpacked_params) {
11213       auto&& callable = args_tuple.template Get<index>();
11214       return internal::InvokeArgument(
11215           std::forward<decltype(callable)>(callable), unpacked_params...);
11216     });
11217   }
11218 
11219   internal::FlatTuple<Params...> params;
11220 };
11221 
11222 }  // namespace internal
11223 
11224 // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
11225 // (0-based) argument, which must be a k-ary callable, of the mock
11226 // function, with arguments a1, a2, ..., a_k.
11227 //
11228 // Notes:
11229 //
11230 //   1. The arguments are passed by value by default.  If you need to
11231 //   pass an argument by reference, wrap it inside std::ref().  For
11232 //   example,
11233 //
11234 //     InvokeArgument<1>(5, string("Hello"), std::ref(foo))
11235 //
11236 //   passes 5 and string("Hello") by value, and passes foo by
11237 //   reference.
11238 //
11239 //   2. If the callable takes an argument by reference but std::ref() is
11240 //   not used, it will receive the reference to a copy of the value,
11241 //   instead of the original value.  For example, when the 0-th
11242 //   argument of the mock function takes a const string&, the action
11243 //
11244 //     InvokeArgument<0>(string("Hello"))
11245 //
11246 //   makes a copy of the temporary string("Hello") object and passes a
11247 //   reference of the copy, instead of the original temporary object,
11248 //   to the callable.  This makes it easy for a user to define an
11249 //   InvokeArgument action from temporary values and have it performed
11250 //   later.
11251 template <std::size_t index, typename... Params>
11252 internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
11253 InvokeArgument(Params&&... params) {
11254   return {internal::FlatTuple<typename std::decay<Params>::type...>(
11255       internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
11256 }
11257 
11258 #ifdef _MSC_VER
11259 # pragma warning(pop)
11260 #endif
11261 
11262 }  // namespace testing
11263 
11264 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
11265 // Copyright 2013, Google Inc.
11266 // All rights reserved.
11267 //
11268 // Redistribution and use in source and binary forms, with or without
11269 // modification, are permitted provided that the following conditions are
11270 // met:
11271 //
11272 //     * Redistributions of source code must retain the above copyright
11273 // notice, this list of conditions and the following disclaimer.
11274 //     * Redistributions in binary form must reproduce the above
11275 // copyright notice, this list of conditions and the following disclaimer
11276 // in the documentation and/or other materials provided with the
11277 // distribution.
11278 //     * Neither the name of Google Inc. nor the names of its
11279 // contributors may be used to endorse or promote products derived from
11280 // this software without specific prior written permission.
11281 //
11282 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11283 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11284 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11285 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11286 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11287 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11288 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11289 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11290 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11291 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11292 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11293 
11294 
11295 // Google Mock - a framework for writing C++ mock classes.
11296 //
11297 // This file implements some matchers that depend on gmock-matchers.h.
11298 //
11299 // Note that tests are implemented in gmock-matchers_test.cc rather than
11300 // gmock-more-matchers-test.cc.
11301 
11302 // GOOGLETEST_CM0002 DO NOT DELETE
11303 
11304 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11305 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11306 
11307 
11308 namespace testing {
11309 
11310 // Silence C4100 (unreferenced formal
11311 // parameter) for MSVC
11312 #ifdef _MSC_VER
11313 # pragma warning(push)
11314 # pragma warning(disable:4100)
11315 #if (_MSC_VER == 1900)
11316 // and silence C4800 (C4800: 'int *const ': forcing value
11317 // to bool 'true' or 'false') for MSVC 14
11318 # pragma warning(disable:4800)
11319   #endif
11320 #endif
11321 
11322 // Defines a matcher that matches an empty container. The container must
11323 // support both size() and empty(), which all STL-like containers provide.
11324 MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
11325   if (arg.empty()) {
11326     return true;
11327   }
11328   *result_listener << "whose size is " << arg.size();
11329   return false;
11330 }
11331 
11332 // Define a matcher that matches a value that evaluates in boolean
11333 // context to true.  Useful for types that define "explicit operator
11334 // bool" operators and so can't be compared for equality with true
11335 // and false.
11336 MATCHER(IsTrue, negation ? "is false" : "is true") {
11337   return static_cast<bool>(arg);
11338 }
11339 
11340 // Define a matcher that matches a value that evaluates in boolean
11341 // context to false.  Useful for types that define "explicit operator
11342 // bool" operators and so can't be compared for equality with true
11343 // and false.
11344 MATCHER(IsFalse, negation ? "is true" : "is false") {
11345   return !static_cast<bool>(arg);
11346 }
11347 
11348 #ifdef _MSC_VER
11349 # pragma warning(pop)
11350 #endif
11351 
11352 
11353 }  // namespace testing
11354 
11355 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
11356 // Copyright 2008, Google Inc.
11357 // All rights reserved.
11358 //
11359 // Redistribution and use in source and binary forms, with or without
11360 // modification, are permitted provided that the following conditions are
11361 // met:
11362 //
11363 //     * Redistributions of source code must retain the above copyright
11364 // notice, this list of conditions and the following disclaimer.
11365 //     * Redistributions in binary form must reproduce the above
11366 // copyright notice, this list of conditions and the following disclaimer
11367 // in the documentation and/or other materials provided with the
11368 // distribution.
11369 //     * Neither the name of Google Inc. nor the names of its
11370 // contributors may be used to endorse or promote products derived from
11371 // this software without specific prior written permission.
11372 //
11373 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
11374 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
11375 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
11376 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
11377 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
11378 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
11379 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
11380 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
11381 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
11382 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
11383 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
11384 
11385 
11386 // Implements class templates NiceMock, NaggyMock, and StrictMock.
11387 //
11388 // Given a mock class MockFoo that is created using Google Mock,
11389 // NiceMock<MockFoo> is a subclass of MockFoo that allows
11390 // uninteresting calls (i.e. calls to mock methods that have no
11391 // EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
11392 // that prints a warning when an uninteresting call occurs, and
11393 // StrictMock<MockFoo> is a subclass of MockFoo that treats all
11394 // uninteresting calls as errors.
11395 //
11396 // Currently a mock is naggy by default, so MockFoo and
11397 // NaggyMock<MockFoo> behave like the same.  However, we will soon
11398 // switch the default behavior of mocks to be nice, as that in general
11399 // leads to more maintainable tests.  When that happens, MockFoo will
11400 // stop behaving like NaggyMock<MockFoo> and start behaving like
11401 // NiceMock<MockFoo>.
11402 //
11403 // NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
11404 // their respective base class.  Therefore you can write
11405 // NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
11406 // has a constructor that accepts (int, const char*), for example.
11407 //
11408 // A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
11409 // and StrictMock<MockFoo> only works for mock methods defined using
11410 // the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
11411 // If a mock method is defined in a base class of MockFoo, the "nice"
11412 // or "strict" modifier may not affect it, depending on the compiler.
11413 // In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
11414 // supported.
11415 
11416 // GOOGLETEST_CM0002 DO NOT DELETE
11417 
11418 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11419 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11420 
11421 #include <cstdint>
11422 #include <type_traits>
11423 
11424 
11425 namespace testing {
11426 template <class MockClass>
11427 class NiceMock;
11428 template <class MockClass>
11429 class NaggyMock;
11430 template <class MockClass>
11431 class StrictMock;
11432 
11433 namespace internal {
11434 template <typename T>
11435 std::true_type StrictnessModifierProbe(const NiceMock<T>&);
11436 template <typename T>
11437 std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
11438 template <typename T>
11439 std::true_type StrictnessModifierProbe(const StrictMock<T>&);
11440 std::false_type StrictnessModifierProbe(...);
11441 
11442 template <typename T>
11443 constexpr bool HasStrictnessModifier() {
11444   return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
11445 }
11446 
11447 // Base classes that register and deregister with testing::Mock to alter the
11448 // default behavior around uninteresting calls. Inheriting from one of these
11449 // classes first and then MockClass ensures the MockClass constructor is run
11450 // after registration, and that the MockClass destructor runs before
11451 // deregistration. This guarantees that MockClass's constructor and destructor
11452 // run with the same level of strictness as its instance methods.
11453 
11454 #if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
11455     (defined(_MSC_VER) || defined(__clang__))
11456 // We need to mark these classes with this declspec to ensure that
11457 // the empty base class optimization is performed.
11458 #define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
11459 #else
11460 #define GTEST_INTERNAL_EMPTY_BASE_CLASS
11461 #endif
11462 
11463 template <typename Base>
11464 class NiceMockImpl {
11465  public:
11466   NiceMockImpl() {
11467     ::testing::Mock::AllowUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11468   }
11469 
11470   ~NiceMockImpl() {
11471     ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11472   }
11473 };
11474 
11475 template <typename Base>
11476 class NaggyMockImpl {
11477  public:
11478   NaggyMockImpl() {
11479     ::testing::Mock::WarnUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11480   }
11481 
11482   ~NaggyMockImpl() {
11483     ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11484   }
11485 };
11486 
11487 template <typename Base>
11488 class StrictMockImpl {
11489  public:
11490   StrictMockImpl() {
11491     ::testing::Mock::FailUninterestingCalls(reinterpret_cast<uintptr_t>(this));
11492   }
11493 
11494   ~StrictMockImpl() {
11495     ::testing::Mock::UnregisterCallReaction(reinterpret_cast<uintptr_t>(this));
11496   }
11497 };
11498 
11499 }  // namespace internal
11500 
11501 template <class MockClass>
11502 class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
11503     : private internal::NiceMockImpl<MockClass>,
11504       public MockClass {
11505  public:
11506   static_assert(!internal::HasStrictnessModifier<MockClass>(),
11507                 "Can't apply NiceMock to a class hierarchy that already has a "
11508                 "strictness modifier. See "
11509                 "https://google.github.io/googletest/"
11510                 "gmock_cook_book.html#NiceStrictNaggy");
11511   NiceMock() : MockClass() {
11512     static_assert(sizeof(*this) == sizeof(MockClass),
11513                   "The impl subclass shouldn't introduce any padding");
11514   }
11515 
11516   // Ideally, we would inherit base class's constructors through a using
11517   // declaration, which would preserve their visibility. However, many existing
11518   // tests rely on the fact that current implementation reexports protected
11519   // constructors as public. These tests would need to be cleaned up first.
11520 
11521   // Single argument constructor is special-cased so that it can be
11522   // made explicit.
11523   template <typename A>
11524   explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11525     static_assert(sizeof(*this) == sizeof(MockClass),
11526                   "The impl subclass shouldn't introduce any padding");
11527   }
11528 
11529   template <typename TArg1, typename TArg2, typename... An>
11530   NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11531       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11532                   std::forward<An>(args)...) {
11533     static_assert(sizeof(*this) == sizeof(MockClass),
11534                   "The impl subclass shouldn't introduce any padding");
11535   }
11536 
11537  private:
11538   GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
11539 };
11540 
11541 template <class MockClass>
11542 class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
11543     : private internal::NaggyMockImpl<MockClass>,
11544       public MockClass {
11545   static_assert(!internal::HasStrictnessModifier<MockClass>(),
11546                 "Can't apply NaggyMock to a class hierarchy that already has a "
11547                 "strictness modifier. See "
11548                 "https://google.github.io/googletest/"
11549                 "gmock_cook_book.html#NiceStrictNaggy");
11550 
11551  public:
11552   NaggyMock() : MockClass() {
11553     static_assert(sizeof(*this) == sizeof(MockClass),
11554                   "The impl subclass shouldn't introduce any padding");
11555   }
11556 
11557   // Ideally, we would inherit base class's constructors through a using
11558   // declaration, which would preserve their visibility. However, many existing
11559   // tests rely on the fact that current implementation reexports protected
11560   // constructors as public. These tests would need to be cleaned up first.
11561 
11562   // Single argument constructor is special-cased so that it can be
11563   // made explicit.
11564   template <typename A>
11565   explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11566     static_assert(sizeof(*this) == sizeof(MockClass),
11567                   "The impl subclass shouldn't introduce any padding");
11568   }
11569 
11570   template <typename TArg1, typename TArg2, typename... An>
11571   NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11572       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11573                   std::forward<An>(args)...) {
11574     static_assert(sizeof(*this) == sizeof(MockClass),
11575                   "The impl subclass shouldn't introduce any padding");
11576   }
11577 
11578  private:
11579   GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
11580 };
11581 
11582 template <class MockClass>
11583 class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
11584     : private internal::StrictMockImpl<MockClass>,
11585       public MockClass {
11586  public:
11587   static_assert(
11588       !internal::HasStrictnessModifier<MockClass>(),
11589       "Can't apply StrictMock to a class hierarchy that already has a "
11590       "strictness modifier. See "
11591       "https://google.github.io/googletest/"
11592       "gmock_cook_book.html#NiceStrictNaggy");
11593   StrictMock() : MockClass() {
11594     static_assert(sizeof(*this) == sizeof(MockClass),
11595                   "The impl subclass shouldn't introduce any padding");
11596   }
11597 
11598   // Ideally, we would inherit base class's constructors through a using
11599   // declaration, which would preserve their visibility. However, many existing
11600   // tests rely on the fact that current implementation reexports protected
11601   // constructors as public. These tests would need to be cleaned up first.
11602 
11603   // Single argument constructor is special-cased so that it can be
11604   // made explicit.
11605   template <typename A>
11606   explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
11607     static_assert(sizeof(*this) == sizeof(MockClass),
11608                   "The impl subclass shouldn't introduce any padding");
11609   }
11610 
11611   template <typename TArg1, typename TArg2, typename... An>
11612   StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
11613       : MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
11614                   std::forward<An>(args)...) {
11615     static_assert(sizeof(*this) == sizeof(MockClass),
11616                   "The impl subclass shouldn't introduce any padding");
11617   }
11618 
11619  private:
11620   GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
11621 };
11622 
11623 #undef GTEST_INTERNAL_EMPTY_BASE_CLASS
11624 
11625 }  // namespace testing
11626 
11627 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
11628 
11629 namespace testing {
11630 
11631 // Declares Google Mock flags that we want a user to use programmatically.
11632 GMOCK_DECLARE_bool_(catch_leaked_mocks);
11633 GMOCK_DECLARE_string_(verbose);
11634 GMOCK_DECLARE_int32_(default_mock_behavior);
11635 
11636 // Initializes Google Mock.  This must be called before running the
11637 // tests.  In particular, it parses the command line for the flags
11638 // that Google Mock recognizes.  Whenever a Google Mock flag is seen,
11639 // it is removed from argv, and *argc is decremented.
11640 //
11641 // No value is returned.  Instead, the Google Mock flag variables are
11642 // updated.
11643 //
11644 // Since Google Test is needed for Google Mock to work, this function
11645 // also initializes Google Test and parses its flags, if that hasn't
11646 // been done.
11647 GTEST_API_ void InitGoogleMock(int* argc, char** argv);
11648 
11649 // This overloaded version can be used in Windows programs compiled in
11650 // UNICODE mode.
11651 GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
11652 
11653 // This overloaded version can be used on Arduino/embedded platforms where
11654 // there is no argc/argv.
11655 GTEST_API_ void InitGoogleMock();
11656 
11657 }  // namespace testing
11658 
11659 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
11660