xref: /aosp_15_r20/external/flac/src/libFLAC/fixed_intrin_sse2.c (revision 600f14f40d737144c998e2ec7a483122d3776fbc)
1 /* libFLAC - Free Lossless Audio Codec library
2  * Copyright (C) 2000-2009  Josh Coalson
3  * Copyright (C) 2011-2023  Xiph.Org Foundation
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * - Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * - Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * - Neither the name of the Xiph.org Foundation nor the names of its
17  * contributors may be used to endorse or promote products derived from
18  * this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #ifdef HAVE_CONFIG_H
34 #  include <config.h>
35 #endif
36 
37 #include "private/cpu.h"
38 
39 #ifndef FLAC__INTEGER_ONLY_LIBRARY
40 #ifndef FLAC__NO_ASM
41 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
42 #include "private/fixed.h"
43 #ifdef FLAC__SSE2_SUPPORTED
44 
45 #include <emmintrin.h> /* SSE2 */
46 #include <math.h>
47 #include "private/macros.h"
48 #include "share/compat.h"
49 #include "FLAC/assert.h"
50 
51 #ifdef FLAC__CPU_IA32
52 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
53 #else
54 #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
55 #endif
56 
57 #ifdef local_abs
58 #undef local_abs
59 #endif
60 #define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))
61 
62 FLAC__SSE_TARGET("sse2")
FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[],uint32_t data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])63 uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
64 {
65 	FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
66 	FLAC__int32 i, data_len_int;
67 	uint32_t order;
68 	__m128i total_err0, total_err1, total_err2, total_err3, total_err4;
69 	__m128i prev_err0,  prev_err1,  prev_err2,  prev_err3;
70 	__m128i tempA, tempB, bitmask;
71 	FLAC__int32 data_scalar[4];
72 	FLAC__int32 prev_err0_scalar[4];
73 	FLAC__int32 prev_err1_scalar[4];
74 	FLAC__int32 prev_err2_scalar[4];
75 	FLAC__int32 prev_err3_scalar[4];
76 	total_err0 = _mm_setzero_si128();
77 	total_err1 = _mm_setzero_si128();
78 	total_err2 = _mm_setzero_si128();
79 	total_err3 = _mm_setzero_si128();
80 	total_err4 = _mm_setzero_si128();
81 	data_len_int = data_len;
82 
83 	for(i = 0; i < 4; i++){
84 		prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
85 		prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)];
86 		prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]);
87 		prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]);
88 	}
89 	prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar);
90 	prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar);
91 	prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar);
92 	prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar);
93 	for(i = 0; i < data_len_int / 4; i++){
94 		data_scalar[0] = data[i];
95 		data_scalar[1] = data[i+data_len/4];
96 		data_scalar[2] = data[i+2*(data_len/4)];
97 		data_scalar[3] = data[i+3*(data_len/4)];
98 		tempA = _mm_loadu_si128((const __m128i*)data_scalar);
99 		/* Next three intrinsics calculate tempB as abs of tempA */
100 		bitmask = _mm_srai_epi32(tempA, 31);
101 		tempB   = _mm_xor_si128(tempA, bitmask);
102 		tempB   = _mm_sub_epi32(tempB, bitmask);
103 		total_err0 = _mm_add_epi32(total_err0,tempB);
104 		tempB = _mm_sub_epi32(tempA,prev_err0);
105 		prev_err0 = tempA;
106 		/* Next three intrinsics calculate tempA as abs of tempB */
107 		bitmask = _mm_srai_epi32(tempB, 31);
108 		tempA   = _mm_xor_si128(tempB, bitmask);
109 		tempA   = _mm_sub_epi32(tempA, bitmask);
110 		total_err1 = _mm_add_epi32(total_err1,tempA);
111 		tempA = _mm_sub_epi32(tempB,prev_err1);
112 		prev_err1 = tempB;
113 		/* Next three intrinsics calculate tempB as abs of tempA */
114 		bitmask = _mm_srai_epi32(tempA, 31);
115 		tempB   = _mm_xor_si128(tempA, bitmask);
116 		tempB   = _mm_sub_epi32(tempB, bitmask);
117 		total_err2 = _mm_add_epi32(total_err2,tempB);
118 		tempB = _mm_sub_epi32(tempA,prev_err2);
119 		prev_err2 = tempA;
120 		/* Next three intrinsics calculate tempA as abs of tempB */
121 		bitmask = _mm_srai_epi32(tempB, 31);
122 		tempA   = _mm_xor_si128(tempB, bitmask);
123 		tempA   = _mm_sub_epi32(tempA, bitmask);
124 		total_err3 = _mm_add_epi32(total_err3,tempA);
125 		tempA = _mm_sub_epi32(tempB,prev_err3);
126 		prev_err3 = tempB;
127 		/* Next three intrinsics calculate tempB as abs of tempA */
128 		bitmask = _mm_srai_epi32(tempA, 31);
129 		tempB   = _mm_xor_si128(tempA, bitmask);
130 		tempB   = _mm_sub_epi32(tempB, bitmask);
131 		total_err4 = _mm_add_epi32(total_err4,tempB);
132 	}
133 	_mm_storeu_si128((__m128i*)data_scalar,total_err0);
134 	total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
135 	_mm_storeu_si128((__m128i*)data_scalar,total_err1);
136 	total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
137 	_mm_storeu_si128((__m128i*)data_scalar,total_err2);
138 	total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
139 	_mm_storeu_si128((__m128i*)data_scalar,total_err3);
140 	total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
141 	_mm_storeu_si128((__m128i*)data_scalar,total_err4);
142 	total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
143 
144 	/* Now the remainder of samples needs to be processed */
145 	i *= 4;
146 	if(data_len % 4 > 0){
147 		FLAC__int32 last_error_0 = data[i-1];
148 		FLAC__int32 last_error_1 = data[i-1] - data[i-2];
149 		FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]);
150 		FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]);
151 		FLAC__int32 error, save;
152 		for(; i < data_len_int; i++) {
153 			error  = data[i]     ; total_error_0 += local_abs(error);                      save = error;
154 			error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
155 			error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
156 			error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
157 			error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
158 		}
159 	}
160 
161 	/* prefer lower order */
162 	if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
163 		order = 0;
164 	else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
165 		order = 1;
166 	else if(total_error_2 <= flac_min(total_error_3, total_error_4))
167 		order = 2;
168 	else if(total_error_3 <= total_error_4)
169 		order = 3;
170 	else
171 		order = 4;
172 
173 	/* Estimate the expected number of bits per residual signal sample. */
174 	/* 'total_error*' is linearly related to the variance of the residual */
175 	/* signal, so we use it directly to compute E(|x|) */
176 	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
177 	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
178 	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
179 	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
180 	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
181 
182 	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
183 	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
184 	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
185 	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
186 	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
187 
188 	return order;
189 }
190 
191 #endif /* FLAC__SSE2_SUPPORTED */
192 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
193 #endif /* FLAC__NO_ASM */
194 #endif /* FLAC__INTEGER_ONLY_LIBRARY */
195