xref: /aosp_15_r20/external/flac/src/libFLAC/fixed_intrin_avx2.c (revision 600f14f40d737144c998e2ec7a483122d3776fbc)
1 /* libFLAC - Free Lossless Audio Codec library
2  * Copyright (C) 2000-2009  Josh Coalson
3  * Copyright (C) 2011-2023  Xiph.Org Foundation
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * - Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * - Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * - Neither the name of the Xiph.org Foundation nor the names of its
17  * contributors may be used to endorse or promote products derived from
18  * this software without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
24  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #ifdef HAVE_CONFIG_H
34 #  include <config.h>
35 #endif
36 
37 #include "private/cpu.h"
38 
39 #ifndef FLAC__INTEGER_ONLY_LIBRARY
40 #ifndef FLAC__NO_ASM
41 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
42 #include "private/fixed.h"
43 #ifdef FLAC__AVX2_SUPPORTED
44 
45 #include <immintrin.h>
46 #include <math.h>
47 #include "private/macros.h"
48 #include "share/compat.h"
49 #include "FLAC/assert.h"
50 
51 #ifdef local_abs
52 #undef local_abs
53 #endif
54 #define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))
55 
56 FLAC__SSE_TARGET("avx2")
FLAC__fixed_compute_best_predictor_wide_intrin_avx2(const FLAC__int32 data[],uint32_t data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])57 uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_avx2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
58 {
59 	FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
60 	FLAC__int32 i, data_len_int;
61 	uint32_t order;
62 	__m256i total_err0, total_err1, total_err2, total_err3, total_err4;
63 	__m256i prev_err0,  prev_err1,  prev_err2,  prev_err3;
64 	__m256i tempA, tempB, bitmask;
65 	FLAC__int64 data_scalar[4];
66 	FLAC__int64 prev_err0_scalar[4];
67 	FLAC__int64 prev_err1_scalar[4];
68 	FLAC__int64 prev_err2_scalar[4];
69 	FLAC__int64 prev_err3_scalar[4];
70 	total_err0 = _mm256_setzero_si256();
71 	total_err1 = _mm256_setzero_si256();
72 	total_err2 = _mm256_setzero_si256();
73 	total_err3 = _mm256_setzero_si256();
74 	total_err4 = _mm256_setzero_si256();
75 	data_len_int = data_len;
76 
77 	for(i = 0; i < 4; i++){
78 		prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
79 		prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)];
80 		prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]);
81 		prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]);
82 	}
83 	prev_err0 = _mm256_loadu_si256((const __m256i*)(void*)prev_err0_scalar);
84 	prev_err1 = _mm256_loadu_si256((const __m256i*)(void*)prev_err1_scalar);
85 	prev_err2 = _mm256_loadu_si256((const __m256i*)(void*)prev_err2_scalar);
86 	prev_err3 = _mm256_loadu_si256((const __m256i*)(void*)prev_err3_scalar);
87 	for(i = 0; i < data_len_int / 4; i++){
88 		data_scalar[0] = data[i];
89 		data_scalar[1] = data[i+data_len/4];
90 		data_scalar[2] = data[i+2*data_len/4];
91 		data_scalar[3] = data[i+3*data_len/4];
92 		tempA = _mm256_loadu_si256((const __m256i*)(void*)data_scalar);
93 		/* Next three intrinsics calculate tempB as abs of tempA */
94 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
95 		tempB = _mm256_xor_si256(tempA, bitmask);
96 		tempB = _mm256_sub_epi64(tempB, bitmask);
97 		total_err0 = _mm256_add_epi64(total_err0,tempB);
98 		tempB = _mm256_sub_epi64(tempA,prev_err0);
99 		prev_err0 = tempA;
100 		/* Next three intrinsics calculate tempA as abs of tempB */
101 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB);
102 		tempA = _mm256_xor_si256(tempB, bitmask);
103 		tempA = _mm256_sub_epi64(tempA, bitmask);
104 		total_err1 = _mm256_add_epi64(total_err1,tempA);
105 		tempA = _mm256_sub_epi64(tempB,prev_err1);
106 		prev_err1 = tempB;
107 		/* Next three intrinsics calculate tempB as abs of tempA */
108 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
109 		tempB = _mm256_xor_si256(tempA, bitmask);
110 		tempB = _mm256_sub_epi64(tempB, bitmask);
111 		total_err2 = _mm256_add_epi64(total_err2,tempB);
112 		tempB = _mm256_sub_epi64(tempA,prev_err2);
113 		prev_err2 = tempA;
114 		/* Next three intrinsics calculate tempA as abs of tempB */
115 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB);
116 		tempA = _mm256_xor_si256(tempB, bitmask);
117 		tempA = _mm256_sub_epi64(tempA, bitmask);
118 		total_err3 = _mm256_add_epi64(total_err3,tempA);
119 		tempA = _mm256_sub_epi64(tempB,prev_err3);
120 		prev_err3 = tempB;
121 		/* Next three intrinsics calculate tempB as abs of tempA */
122 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
123 		tempB = _mm256_xor_si256(tempA, bitmask);
124 		tempB = _mm256_sub_epi64(tempB, bitmask);
125 		total_err4 = _mm256_add_epi64(total_err4,tempB);
126 	}
127 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err0);
128 	total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
129 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err1);
130 	total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
131 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err2);
132 	total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
133 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err3);
134 	total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
135 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err4);
136 	total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
137 
138 	/* Ignore the remainder, we're ignore the first few samples too */
139 
140 	/* prefer lower order */
141 	if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
142 		order = 0;
143 	else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
144 		order = 1;
145 	else if(total_error_2 <= flac_min(total_error_3, total_error_4))
146 		order = 2;
147 	else if(total_error_3 <= total_error_4)
148 		order = 3;
149 	else
150 		order = 4;
151 
152 	/* Estimate the expected number of bits per residual signal sample. */
153 	/* 'total_error*' is linearly related to the variance of the residual */
154 	/* signal, so we use it directly to compute E(|x|) */
155 	FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
156 	FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
157 	FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
158 	FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
159 	FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
160 
161 	residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
162 	residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
163 	residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
164 	residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
165 	residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
166 
167 	return order;
168 }
169 
170 #ifdef local_abs64
171 #undef local_abs64
172 #endif
173 #define local_abs64(x) ((uint64_t)((x)<0? -(x) : (x)))
174 
175 #define CHECK_ORDER_IS_VALID(macro_order)  \
176 if(shadow_error_##macro_order <= INT32_MAX) { \
177 	if(total_error_##macro_order < smallest_error) { \
178 		order = macro_order; \
179 		smallest_error = total_error_##macro_order ; \
180 	} \
181 	residual_bits_per_sample[ macro_order ] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); \
182 } \
183 else \
184 	residual_bits_per_sample[ macro_order ] = 34.0f;
185 
186 FLAC__SSE_TARGET("avx2")
FLAC__fixed_compute_best_predictor_limit_residual_intrin_avx2(const FLAC__int32 data[],uint32_t data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])187 uint32_t FLAC__fixed_compute_best_predictor_limit_residual_intrin_avx2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
188 {
189 	FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX;
190 	FLAC__uint64 shadow_error_0 = 0, shadow_error_1 = 0, shadow_error_2 = 0, shadow_error_3 = 0, shadow_error_4 = 0;
191 	FLAC__uint64 error_0, error_1, error_2, error_3, error_4;
192 	FLAC__int32 i, data_len_int;
193 	uint32_t order = 0;
194 	__m256i total_err0, total_err1, total_err2, total_err3, total_err4;
195 	__m256i shadow_err0, shadow_err1, shadow_err2, shadow_err3, shadow_err4;
196 	__m256i prev_err0,  prev_err1,  prev_err2,  prev_err3;
197 	__m256i tempA, tempB, bitmask;
198 	FLAC__int64 data_scalar[4];
199 	FLAC__int64 prev_err0_scalar[4];
200 	FLAC__int64 prev_err1_scalar[4];
201 	FLAC__int64 prev_err2_scalar[4];
202 	FLAC__int64 prev_err3_scalar[4];
203 	total_err0 = _mm256_setzero_si256();
204 	total_err1 = _mm256_setzero_si256();
205 	total_err2 = _mm256_setzero_si256();
206 	total_err3 = _mm256_setzero_si256();
207 	total_err4 = _mm256_setzero_si256();
208 	shadow_err0 = _mm256_setzero_si256();
209 	shadow_err1 = _mm256_setzero_si256();
210 	shadow_err2 = _mm256_setzero_si256();
211 	shadow_err3 = _mm256_setzero_si256();
212 	shadow_err4 = _mm256_setzero_si256();
213 	data_len_int = data_len;
214 
215 	/* First take care of preceding samples */
216 	for(i = -4; i < 0; i++) {
217 		error_0 = local_abs64((FLAC__int64)data[i]);
218 		error_1 = (i > -4) ? local_abs64((FLAC__int64)data[i] - data[i-1]) : 0 ;
219 		error_2 = (i > -3) ? local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]) : 0;
220 		error_3 = (i > -2) ? local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]) : 0;
221 
222 		total_error_0 += error_0;
223 		total_error_1 += error_1;
224 		total_error_2 += error_2;
225 		total_error_3 += error_3;
226 
227 		shadow_error_0 |= error_0;
228 		shadow_error_1 |= error_1;
229 		shadow_error_2 |= error_2;
230 		shadow_error_3 |= error_3;
231 	}
232 
233 	for(i = 0; i < 4; i++){
234 		prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
235 		prev_err1_scalar[i] = (FLAC__int64)(data[-1+i*(data_len_int/4)]) - data[-2+i*(data_len_int/4)];
236 		prev_err2_scalar[i] = prev_err1_scalar[i] - ((FLAC__int64)(data[-2+i*(data_len_int/4)]) - data[-3+i*(data_len_int/4)]);
237 		prev_err3_scalar[i] = prev_err2_scalar[i] - ((FLAC__int64)(data[-2+i*(data_len_int/4)]) - 2*(FLAC__int64)(data[-3+i*(data_len_int/4)]) + data[-4+i*(data_len_int/4)]);
238 	}
239 	prev_err0 = _mm256_loadu_si256((const __m256i*)(void*)prev_err0_scalar);
240 	prev_err1 = _mm256_loadu_si256((const __m256i*)(void*)prev_err1_scalar);
241 	prev_err2 = _mm256_loadu_si256((const __m256i*)(void*)prev_err2_scalar);
242 	prev_err3 = _mm256_loadu_si256((const __m256i*)(void*)prev_err3_scalar);
243 	for(i = 0; i < data_len_int / 4; i++){
244 		data_scalar[0] = data[i];
245 		data_scalar[1] = data[i+data_len/4];
246 		data_scalar[2] = data[i+2*data_len/4];
247 		data_scalar[3] = data[i+3*data_len/4];
248 		tempA = _mm256_loadu_si256((const __m256i*)(void*)data_scalar);
249 		/* Next three intrinsics calculate tempB as abs of tempA */
250 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
251 		tempB = _mm256_xor_si256(tempA, bitmask);
252 		tempB = _mm256_sub_epi64(tempB, bitmask);
253 		total_err0 = _mm256_add_epi64(total_err0,tempB);
254 		shadow_err0 = _mm256_or_si256(shadow_err0,tempB);
255 		tempB = _mm256_sub_epi64(tempA,prev_err0);
256 		prev_err0 = tempA;
257 		/* Next three intrinsics calculate tempA as abs of tempB */
258 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB);
259 		tempA = _mm256_xor_si256(tempB, bitmask);
260 		tempA = _mm256_sub_epi64(tempA, bitmask);
261 		total_err1 = _mm256_add_epi64(total_err1,tempA);
262 		shadow_err1 = _mm256_or_si256(shadow_err1,tempA);
263 		tempA = _mm256_sub_epi64(tempB,prev_err1);
264 		prev_err1 = tempB;
265 		/* Next three intrinsics calculate tempB as abs of tempA */
266 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
267 		tempB = _mm256_xor_si256(tempA, bitmask);
268 		tempB = _mm256_sub_epi64(tempB, bitmask);
269 		total_err2 = _mm256_add_epi64(total_err2,tempB);
270 		shadow_err2 = _mm256_or_si256(shadow_err2,tempB);
271 		tempB = _mm256_sub_epi64(tempA,prev_err2);
272 		prev_err2 = tempA;
273 		/* Next three intrinsics calculate tempA as abs of tempB */
274 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempB);
275 		tempA = _mm256_xor_si256(tempB, bitmask);
276 		tempA = _mm256_sub_epi64(tempA, bitmask);
277 		total_err3 = _mm256_add_epi64(total_err3,tempA);
278 		shadow_err3 = _mm256_or_si256(shadow_err3,tempA);
279 		tempA = _mm256_sub_epi64(tempB,prev_err3);
280 		prev_err3 = tempB;
281 		/* Next three intrinsics calculate tempB as abs of tempA */
282 		bitmask = _mm256_cmpgt_epi64(_mm256_set1_epi64x(0), tempA);
283 		tempB = _mm256_xor_si256(tempA, bitmask);
284 		tempB = _mm256_sub_epi64(tempB, bitmask);
285 		total_err4 = _mm256_add_epi64(total_err4,tempB);
286 		shadow_err4 = _mm256_or_si256(shadow_err4,tempB);
287 	}
288 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err0);
289 	total_error_0 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
290 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err1);
291 	total_error_1 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
292 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err2);
293 	total_error_2 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
294 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err3);
295 	total_error_3 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
296 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,total_err4);
297 	total_error_4 += data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
298 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err0);
299 	shadow_error_0 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3];
300 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err1);
301 	shadow_error_1 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3];
302 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err2);
303 	shadow_error_2 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3];
304 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err3);
305 	shadow_error_3 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3];
306 	_mm256_storeu_si256((__m256i*)(void*)data_scalar,shadow_err4);
307 	shadow_error_4 |= data_scalar[0] | data_scalar[1] | data_scalar[2] | data_scalar[3];
308 
309 	/* Take care of remaining sample */
310 	for(i = (data_len/4)*4; i < data_len_int; i++) {
311 		error_0 = local_abs64((FLAC__int64)data[i]);
312 		error_1 = local_abs64((FLAC__int64)data[i] - data[i-1]);
313 		error_2 = local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]);
314 		error_3 = local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]);
315 		error_4 = local_abs64((FLAC__int64)data[i] - 4 * (FLAC__int64)data[i-1] + 6 * (FLAC__int64)data[i-2] - 4 * (FLAC__int64)data[i-3] + data[i-4]);
316 
317 		total_error_0 += error_0;
318 		total_error_1 += error_1;
319 		total_error_2 += error_2;
320 		total_error_3 += error_3;
321 		total_error_4 += error_4;
322 
323 		shadow_error_0 |= error_0;
324 		shadow_error_1 |= error_1;
325 		shadow_error_2 |= error_2;
326 		shadow_error_3 |= error_3;
327 		shadow_error_4 |= error_4;
328 	}
329 
330 
331 	CHECK_ORDER_IS_VALID(0);
332 	CHECK_ORDER_IS_VALID(1);
333 	CHECK_ORDER_IS_VALID(2);
334 	CHECK_ORDER_IS_VALID(3);
335 	CHECK_ORDER_IS_VALID(4);
336 
337 	return order;
338 }
339 
340 #endif /* FLAC__AVX2_SUPPORTED */
341 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
342 #endif /* FLAC__NO_ASM */
343 #endif /* FLAC__INTEGER_ONLY_LIBRARY */
344