xref: /aosp_15_r20/external/executorch/backends/xnnpack/operators/op_hardtanh.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Meta Platforms, Inc. and affiliates.
2# All rights reserved.
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6
7from typing import cast, Dict
8
9import torch
10from executorch.backends.xnnpack.operators.node_visitor import (
11    NodeVisitor,
12    register_node_visitor,
13)
14from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import (
15    OutputMinMax,
16    XNNClamp,
17    XNNGraph,
18    XNode,
19)
20from executorch.backends.xnnpack.utils.utils import get_input_node
21
22
23@register_node_visitor
24class HardTanhVisitor(NodeVisitor):
25    target = "aten.hardtanh.default"
26
27    def __init__(self, *args) -> None:
28        super().__init__(*args)
29
30    def define_node(
31        self,
32        node: torch.fx.Node,
33        xnn_graph: XNNGraph,
34        vals_to_ids: Dict[torch.fx.Node, int],
35        debug_handle: int,
36    ) -> None:
37        self.define_nodes_tensor_inputs_outputs(node, xnn_graph, vals_to_ids)
38
39        # default value of output_min and output_max
40        output_min = -1
41        output_max = 1
42
43        if len(node.args) > 1:
44            # update output_min
45            output_min = cast(float, node.args[1])
46
47            # update output_max
48            output_max = cast(float, node.args[2])
49
50        # input_id
51        input_id = vals_to_ids[get_input_node(node, 0)]
52
53        # output
54        output_id = vals_to_ids[node]
55
56        output_min_max = OutputMinMax(output_min=output_min, output_max=output_max)
57
58        ser_node = XNode(
59            xnode_union=XNNClamp(
60                input_id=input_id,
61                output_id=output_id,
62                flags=0,
63            ),
64            debug_handle=debug_handle,
65            output_min_max=output_min_max,
66        )
67        xnn_graph.xnodes.append(ser_node)
68