xref: /aosp_15_r20/external/executorch/backends/qualcomm/builders/op_mean_dim.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Qualcomm Innovation Center, Inc.
2# All rights reserved
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6
7from typing import cast, Dict, List
8
9import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper
10
11import numpy as np
12import torch
13from executorch.backends.qualcomm.utils.constants import QCOM_AXIS_ORDER, QCOM_DATA
14
15from .node_visitor import NodeVisitor, register_node_visitor
16from .qnn_constants import OpReduceMean, QNN_OP_PACKAGE_NAME_QTI_AISW
17
18
19@register_node_visitor
20class MeanDim(NodeVisitor):
21    target = ["aten.mean.dim"]
22
23    def __init__(self, *args) -> None:
24        super().__init__(*args)
25
26    def define_node(
27        self,
28        node: torch.fx.Node,
29        nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper],
30    ) -> PyQnnWrapper.PyQnnOpWrapper:
31        input_node = node.args[0]
32        input_tensor = self.get_tensor(input_node, node)
33        input_tensor_wrapper = self.define_tensor(
34            input_node,
35            input_tensor,
36            PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE,
37            nodes_to_wrappers,
38            is_input_tensor=True,
39        )
40
41        # mean dims and keep dims
42        mean_dims = cast(List[int], node.args[1])
43        mean_dims = [
44            mean_dim % len(input_node.meta["val"].shape) for mean_dim in mean_dims
45        ]
46        if QCOM_AXIS_ORDER in node.meta:
47            mean_dims = [
48                node.meta[QCOM_AXIS_ORDER].index(mean_dim) for mean_dim in mean_dims
49            ]
50        mean_dims_shape = [len(mean_dims)]
51
52        output_tensor = self.get_tensor(node, node)
53        output_tensor_wrapper = self.define_tensor(
54            node,
55            output_tensor,
56            PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE,
57            nodes_to_wrappers,
58            is_input_tensor=False,
59        )
60
61        reduce_mean_op = PyQnnWrapper.PyQnnOpWrapper(
62            node.name,
63            QNN_OP_PACKAGE_NAME_QTI_AISW,
64            OpReduceMean.op_name,
65        )
66        reduce_mean_op.AddInputTensors([input_tensor_wrapper])
67        reduce_mean_op.AddOutputTensors([output_tensor_wrapper])
68        reduce_mean_op.AddTensorParam(
69            OpReduceMean.param_axes,
70            PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32,
71            len(mean_dims_shape),
72            mean_dims_shape,
73            np.array(mean_dims, dtype=np.uint32),
74            True,
75        )
76        if len(node.args) > 2:
77            keep_dims = cast(bool, node.args[2])
78            reduce_mean_op.AddScalarParam(
79                OpReduceMean.param_keep_dims,
80                PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8,
81                {QCOM_DATA: keep_dims},
82            )
83
84        return reduce_mean_op
85