1*99e0aae7SDavid Rees%This proof is used in Emboss to propagate alignment restrictions through 2*99e0aae7SDavid Rees%multiplication: if a and b are non-constant integers, their product can still 3*99e0aae7SDavid Rees%have a known alignment. 4*99e0aae7SDavid Rees% 5*99e0aae7SDavid Rees%Forgive me on the details and formatting, math majors, I never completed my 6*99e0aae7SDavid Rees%math degree. --bolms 7*99e0aae7SDavid Rees% 8*99e0aae7SDavid Rees%Thanks to Aaron Webster for helping me format this as an actual proof. 9*99e0aae7SDavid Rees\documentclass{article} 10*99e0aae7SDavid Rees\usepackage[utf8]{inputenc} 11*99e0aae7SDavid Rees\usepackage[english]{babel} 12*99e0aae7SDavid Rees\usepackage{amssymb,amsmath,amsthm} 13*99e0aae7SDavid Rees\title{Modular Congruence of the Product of Two Values with Known Modular Congruences} 14*99e0aae7SDavid Rees\author{Emboss Authors} 15*99e0aae7SDavid Rees\date{2017} 16*99e0aae7SDavid Rees 17*99e0aae7SDavid Rees\begin{document} 18*99e0aae7SDavid Rees\maketitle 19*99e0aae7SDavid Rees 20*99e0aae7SDavid Rees\newtheorem{theorem}{Theorem} 21*99e0aae7SDavid Rees 22*99e0aae7SDavid Rees%(Draft) 23*99e0aae7SDavid Rees%TODO(webstera): Try to simplify this proof. 24*99e0aae7SDavid Rees 25*99e0aae7SDavid Rees\begin{theorem} 26*99e0aae7SDavid ReesGiven 27*99e0aae7SDavid Rees 28*99e0aae7SDavid Rees\begin{align*} 29*99e0aae7SDavid Rees &{a} \equiv {r} \pmod{{m}} \\ 30*99e0aae7SDavid Rees &{b} \equiv {s} \pmod{{n}} \\ 31*99e0aae7SDavid Rees &{a}, {r}, {m}, {b}, {s}, {n} \in \mathbb{Z} 32*99e0aae7SDavid Rees\end{align*} 33*99e0aae7SDavid Rees 34*99e0aae7SDavid Reesthen 35*99e0aae7SDavid Rees 36*99e0aae7SDavid Rees\begin{align*} 37*99e0aae7SDavid Rees &{a}{b} \equiv {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 38*99e0aae7SDavid Rees\dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right) \cdot 39*99e0aae7SDavid ReesG\left({n}, {s}\right)} 40*99e0aae7SDavid Rees\end{align*} 41*99e0aae7SDavid Rees 42*99e0aae7SDavid Reeswhere $G$ is the greatest common divisor function. 43*99e0aae7SDavid Rees\end{theorem} 44*99e0aae7SDavid Rees 45*99e0aae7SDavid Rees\begin{proof} 46*99e0aae7SDavid Rees\begin{align} 47*99e0aae7SDavid Rees \text{Let }{q} &= G\left({m}, {r}\right) \label{eq:qdef} \\ 48*99e0aae7SDavid Rees {p} &= G\left({n}, {s}\right) \label{eq:pdef} \\ 49*99e0aae7SDavid Rees {z} &= G\left(\dfrac{{m}}{{q}}, \dfrac{{n}}{{p}}\right) = 50*99e0aae7SDavid Rees G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 51*99e0aae7SDavid Rees \dfrac{{n}}{G\left({n}, {s}\right)}\right) \label{eq:zdef} 52*99e0aae7SDavid Rees\end{align} 53*99e0aae7SDavid Rees 54*99e0aae7SDavid Reesby the definition of modular congruence: 55*99e0aae7SDavid Rees\begin{align} 56*99e0aae7SDavid Rees &\exists {x} \in \mathbb{Z} : {a} = {m}{x} + {r} \\ 57*99e0aae7SDavid Rees &\exists {y} \in \mathbb{Z} : {b} = {n}{y} + {s} 58*99e0aae7SDavid Rees\end{align} 59*99e0aae7SDavid Rees 60*99e0aae7SDavid Reesmultiplying $\dfrac{{q}}{{q}}$ and distributing $\dfrac{1}{{q}}$: 61*99e0aae7SDavid Rees\begin{align} 62*99e0aae7SDavid Rees &{a} = {q}\left(\dfrac{{m}{x}}{q} + \dfrac{{r}}{q}\right) 63*99e0aae7SDavid Rees\end{align} 64*99e0aae7SDavid Rees 65*99e0aae7SDavid Reesby the definition of ${q}$ in \eqref{eq:qdef}: 66*99e0aae7SDavid Rees\begin{align} 67*99e0aae7SDavid Rees &\dfrac{{m}{x}}{q}, \dfrac{{r}}{q} \in \mathbb{Z} \label{eq:rqinz} 68*99e0aae7SDavid Rees\end{align} 69*99e0aae7SDavid Rees 70*99e0aae7SDavid Reesmultiplying $\dfrac{{p}}{{p}}$ and distributing $\dfrac{1}{{p}}$: 71*99e0aae7SDavid Rees\begin{align} 72*99e0aae7SDavid Rees &{b} = {p}\left(\dfrac{{n}{y}}{{p}} + \dfrac{{s}}{{p}}\right) 73*99e0aae7SDavid Rees\end{align} 74*99e0aae7SDavid Rees 75*99e0aae7SDavid Reesby the definition of ${p}$ in \eqref{eq:pdef}: 76*99e0aae7SDavid Rees\begin{align} 77*99e0aae7SDavid Rees &\dfrac{{n}{y}}{{p}}, \dfrac{{s}}{{p}} \in \mathbb{Z} \label{eq:spinz} 78*99e0aae7SDavid Rees\end{align} 79*99e0aae7SDavid Rees 80*99e0aae7SDavid Reesmultiplying $\dfrac{{z}}{{z}}$: 81*99e0aae7SDavid Rees\begin{align} 82*99e0aae7SDavid Rees &{a} = {q}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} + \dfrac{{r}}{{q}}\right) \label{eq:aeqq} 83*99e0aae7SDavid Rees\end{align} 84*99e0aae7SDavid Rees 85*99e0aae7SDavid Reesby the definition of ${z}$ in \eqref{eq:zdef}: 86*99e0aae7SDavid Rees\begin{align} 87*99e0aae7SDavid Rees &\dfrac{{m}{x}}{{q}{z}} \in \mathbb{Z} \label{eq:mxqzinz} 88*99e0aae7SDavid Rees\end{align} 89*99e0aae7SDavid Rees 90*99e0aae7SDavid Reesmultiplying $\dfrac{{z}}{{z}}$: 91*99e0aae7SDavid Rees\begin{align} 92*99e0aae7SDavid Rees &{b} = {p}\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} + \dfrac{{s}}{{p}}\right) \label{eq:beqp} 93*99e0aae7SDavid Rees\end{align} 94*99e0aae7SDavid Rees 95*99e0aae7SDavid Reesby the definition of ${z}$ in \eqref{eq:zdef}: 96*99e0aae7SDavid Rees\begin{align} 97*99e0aae7SDavid Rees &\dfrac{{n}{y}}{{p}{z}} \in \mathbb{Z} \label{eq:nypzinz} 98*99e0aae7SDavid Rees\end{align} 99*99e0aae7SDavid Rees 100*99e0aae7SDavid Rees\eqref{eq:aeqq} and \eqref{eq:beqp}: 101*99e0aae7SDavid Rees\begin{align} 102*99e0aae7SDavid Rees &{a}{b} = {q}{p}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} + 103*99e0aae7SDavid Rees \dfrac{{r}}{{q}}\right)\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} + 104*99e0aae7SDavid Rees \dfrac{{s}}{{p}}\right) \label{eq:abeqqp} 105*99e0aae7SDavid Rees\end{align} 106*99e0aae7SDavid Rees 107*99e0aae7SDavid Reespartially distributing \eqref{eq:abeqqp}: 108*99e0aae7SDavid Rees\begin{align} 109*99e0aae7SDavid Rees &{a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 110*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot 111*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 112*99e0aae7SDavid Rees \dfrac{{s}}{{p}} + \dfrac{{r}}{{q}} \cdot \dfrac{{s}}{{p}}\right) \label{eq:abeqqpexp} 113*99e0aae7SDavid Rees\end{align} 114*99e0aae7SDavid Rees 115*99e0aae7SDavid Reesextracting the $\dfrac{{r}{s}}{{q}{p}}$ term from \eqref{eq:abeqqpexp} and cancelling $\dfrac{{q}{p}}{{q}{p}}$: 116*99e0aae7SDavid Rees\begin{align} 117*99e0aae7SDavid Rees &{a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 118*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot 119*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 120*99e0aae7SDavid Rees \dfrac{{s}}{{p}}\right) + {r}{s} \label{eq:abeqqpextr} 121*99e0aae7SDavid Rees\end{align} 122*99e0aae7SDavid Rees 123*99e0aae7SDavid Reesfactoring ${z}$ from \eqref{eq:abeqqpextr}: 124*99e0aae7SDavid Rees\begin{align} 125*99e0aae7SDavid Rees &{a}{b} = {q}{p}{z}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 126*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} + \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} + 127*99e0aae7SDavid Rees \dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{s}}{{p}}\right) + {r}{s} 128*99e0aae7SDavid Rees\end{align} 129*99e0aae7SDavid Rees 130*99e0aae7SDavid Reesbecause ${z}, \dfrac{{r}}{q}, \dfrac{{s}}{{p}}, \dfrac{{m}{x}}{{q}{z}}, 131*99e0aae7SDavid Rees \dfrac{{n}{y}}{{p}{z}} \in \mathbb{Z}$, per \eqref{eq:zdef}, \eqref{eq:rqinz}, \eqref{eq:spinz}, \eqref{eq:mxqzinz}, \eqref{eq:nypzinz}: 132*99e0aae7SDavid Rees\begin{align} 133*99e0aae7SDavid Rees &{z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{n}{y}}{{p}{z}} + 134*99e0aae7SDavid Rees \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} + \dfrac{{m}{x}}{{q}{z}} \cdot 135*99e0aae7SDavid Rees \dfrac{{s}}{{p}} \in \mathbb{Z} 136*99e0aae7SDavid Rees\end{align} 137*99e0aae7SDavid Rees 138*99e0aae7SDavid Reesby the definition of modulus: 139*99e0aae7SDavid Rees\begin{align} 140*99e0aae7SDavid Rees &{a}{b} \equiv {r}{s} \pmod{{q}{p}{z}} 141*99e0aae7SDavid Rees\end{align} 142*99e0aae7SDavid Rees 143*99e0aae7SDavid Reesby the definitions of ${q}$, ${p}$, and ${z}$ in \eqref{eq:qdef}, \eqref{eq:pdef}, and \eqref{eq:zdef}: 144*99e0aae7SDavid Rees\begin{align} 145*99e0aae7SDavid Rees &{a}{b} \equiv {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 146*99e0aae7SDavid Rees \dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right) 147*99e0aae7SDavid Rees \cdot G\left({n}, {s}\right)} 148*99e0aae7SDavid Rees\end{align} 149*99e0aae7SDavid Rees 150*99e0aae7SDavid Rees\end{proof} 151*99e0aae7SDavid Rees\end{document} 152