1%This proof is used in Emboss to propagate alignment restrictions through 2%multiplication: if a and b are non-constant integers, their product can still 3%have a known alignment. 4% 5%Forgive me on the details and formatting, math majors, I never completed my 6%math degree. --bolms 7% 8%Thanks to Aaron Webster for helping me format this as an actual proof. 9\documentclass{article} 10\usepackage[utf8]{inputenc} 11\usepackage[english]{babel} 12\usepackage{amssymb,amsmath,amsthm} 13\title{Modular Congruence of the Product of Two Values with Known Modular Congruences} 14\author{Emboss Authors} 15\date{2017} 16 17\begin{document} 18\maketitle 19 20\newtheorem{theorem}{Theorem} 21 22%(Draft) 23%TODO(webstera): Try to simplify this proof. 24 25\begin{theorem} 26Given 27 28\begin{align*} 29 &{a} \equiv {r} \pmod{{m}} \\ 30 &{b} \equiv {s} \pmod{{n}} \\ 31 &{a}, {r}, {m}, {b}, {s}, {n} \in \mathbb{Z} 32\end{align*} 33 34then 35 36\begin{align*} 37 &{a}{b} \equiv {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 38\dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right) \cdot 39G\left({n}, {s}\right)} 40\end{align*} 41 42where $G$ is the greatest common divisor function. 43\end{theorem} 44 45\begin{proof} 46\begin{align} 47 \text{Let }{q} &= G\left({m}, {r}\right) \label{eq:qdef} \\ 48 {p} &= G\left({n}, {s}\right) \label{eq:pdef} \\ 49 {z} &= G\left(\dfrac{{m}}{{q}}, \dfrac{{n}}{{p}}\right) = 50 G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 51 \dfrac{{n}}{G\left({n}, {s}\right)}\right) \label{eq:zdef} 52\end{align} 53 54by the definition of modular congruence: 55\begin{align} 56 &\exists {x} \in \mathbb{Z} : {a} = {m}{x} + {r} \\ 57 &\exists {y} \in \mathbb{Z} : {b} = {n}{y} + {s} 58\end{align} 59 60multiplying $\dfrac{{q}}{{q}}$ and distributing $\dfrac{1}{{q}}$: 61\begin{align} 62 &{a} = {q}\left(\dfrac{{m}{x}}{q} + \dfrac{{r}}{q}\right) 63\end{align} 64 65by the definition of ${q}$ in \eqref{eq:qdef}: 66\begin{align} 67 &\dfrac{{m}{x}}{q}, \dfrac{{r}}{q} \in \mathbb{Z} \label{eq:rqinz} 68\end{align} 69 70multiplying $\dfrac{{p}}{{p}}$ and distributing $\dfrac{1}{{p}}$: 71\begin{align} 72 &{b} = {p}\left(\dfrac{{n}{y}}{{p}} + \dfrac{{s}}{{p}}\right) 73\end{align} 74 75by the definition of ${p}$ in \eqref{eq:pdef}: 76\begin{align} 77 &\dfrac{{n}{y}}{{p}}, \dfrac{{s}}{{p}} \in \mathbb{Z} \label{eq:spinz} 78\end{align} 79 80multiplying $\dfrac{{z}}{{z}}$: 81\begin{align} 82 &{a} = {q}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} + \dfrac{{r}}{{q}}\right) \label{eq:aeqq} 83\end{align} 84 85by the definition of ${z}$ in \eqref{eq:zdef}: 86\begin{align} 87 &\dfrac{{m}{x}}{{q}{z}} \in \mathbb{Z} \label{eq:mxqzinz} 88\end{align} 89 90multiplying $\dfrac{{z}}{{z}}$: 91\begin{align} 92 &{b} = {p}\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} + \dfrac{{s}}{{p}}\right) \label{eq:beqp} 93\end{align} 94 95by the definition of ${z}$ in \eqref{eq:zdef}: 96\begin{align} 97 &\dfrac{{n}{y}}{{p}{z}} \in \mathbb{Z} \label{eq:nypzinz} 98\end{align} 99 100\eqref{eq:aeqq} and \eqref{eq:beqp}: 101\begin{align} 102 &{a}{b} = {q}{p}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} + 103 \dfrac{{r}}{{q}}\right)\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} + 104 \dfrac{{s}}{{p}}\right) \label{eq:abeqqp} 105\end{align} 106 107partially distributing \eqref{eq:abeqqp}: 108\begin{align} 109 &{a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 110 \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot 111 \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 112 \dfrac{{s}}{{p}} + \dfrac{{r}}{{q}} \cdot \dfrac{{s}}{{p}}\right) \label{eq:abeqqpexp} 113\end{align} 114 115extracting the $\dfrac{{r}{s}}{{q}{p}}$ term from \eqref{eq:abeqqpexp} and cancelling $\dfrac{{q}{p}}{{q}{p}}$: 116\begin{align} 117 &{a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 118 \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot 119 \dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 120 \dfrac{{s}}{{p}}\right) + {r}{s} \label{eq:abeqqpextr} 121\end{align} 122 123factoring ${z}$ from \eqref{eq:abeqqpextr}: 124\begin{align} 125 &{a}{b} = {q}{p}{z}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot 126 \dfrac{{n}{y}}{{p}{z}} + \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} + 127 \dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{s}}{{p}}\right) + {r}{s} 128\end{align} 129 130because ${z}, \dfrac{{r}}{q}, \dfrac{{s}}{{p}}, \dfrac{{m}{x}}{{q}{z}}, 131 \dfrac{{n}{y}}{{p}{z}} \in \mathbb{Z}$, per \eqref{eq:zdef}, \eqref{eq:rqinz}, \eqref{eq:spinz}, \eqref{eq:mxqzinz}, \eqref{eq:nypzinz}: 132\begin{align} 133 &{z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{n}{y}}{{p}{z}} + 134 \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} + \dfrac{{m}{x}}{{q}{z}} \cdot 135 \dfrac{{s}}{{p}} \in \mathbb{Z} 136\end{align} 137 138by the definition of modulus: 139\begin{align} 140 &{a}{b} \equiv {r}{s} \pmod{{q}{p}{z}} 141\end{align} 142 143by the definitions of ${q}$, ${p}$, and ${z}$ in \eqref{eq:qdef}, \eqref{eq:pdef}, and \eqref{eq:zdef}: 144\begin{align} 145 &{a}{b} \equiv {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, 146 \dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right) 147 \cdot G\left({n}, {s}\right)} 148\end{align} 149 150\end{proof} 151\end{document} 152