xref: /aosp_15_r20/external/eigen/unsupported/test/cxx11_tensor_sycl.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <[email protected]>
9 // Benoit Steiner <[email protected]>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 
16 #define EIGEN_TEST_NO_LONGDOUBLE
17 #define EIGEN_TEST_NO_COMPLEX
18 
19 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
20 #define EIGEN_USE_SYCL
21 
22 #include "main.h"
23 #include <unsupported/Eigen/CXX11/Tensor>
24 
25 using Eigen::array;
26 using Eigen::SyclDevice;
27 using Eigen::Tensor;
28 using Eigen::TensorMap;
29 
30 template <typename DataType, int DataLayout, typename IndexType>
test_sycl_mem_transfers(const Eigen::SyclDevice & sycl_device)31 void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) {
32   IndexType sizeDim1 = 5;
33   IndexType sizeDim2 = 5;
34   IndexType sizeDim3 = 1;
35   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
36   Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange);
37   Tensor<DataType, 3, DataLayout, IndexType> out1(tensorRange);
38   Tensor<DataType, 3, DataLayout, IndexType> out2(tensorRange);
39   Tensor<DataType, 3, DataLayout, IndexType> out3(tensorRange);
40 
41   in1 = in1.random();
42 
43   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
44   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out1.size()*sizeof(DataType)));
45 
46   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
47   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
48 
49   sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType));
50   sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType));
51   gpu1.device(sycl_device) = gpu1 * 3.14f;
52   gpu2.device(sycl_device) = gpu2 * 2.7f;
53   sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType));
54   sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType));
55   sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType));
56   sycl_device.synchronize();
57 
58   for (IndexType i = 0; i < in1.size(); ++i) {
59   //  std::cout << "SYCL DATA : " << out1(i) << "  vs  CPU DATA : " << in1(i) * 3.14f << "\n";
60     VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f);
61     VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f);
62     VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f);
63   }
64 
65   sycl_device.deallocate(gpu_data1);
66   sycl_device.deallocate(gpu_data2);
67 }
68 
69 template <typename DataType, int DataLayout, typename IndexType>
test_sycl_mem_sync(const Eigen::SyclDevice & sycl_device)70 void test_sycl_mem_sync(const Eigen::SyclDevice &sycl_device) {
71   IndexType size = 20;
72   array<IndexType, 1> tensorRange = {{size}};
73   Tensor<DataType, 1, DataLayout, IndexType> in1(tensorRange);
74   Tensor<DataType, 1, DataLayout, IndexType> in2(tensorRange);
75   Tensor<DataType, 1, DataLayout, IndexType> out(tensorRange);
76 
77   in1 = in1.random();
78   in2 = in1;
79 
80   DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
81 
82   TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu1(gpu_data, tensorRange);
83   sycl_device.memcpyHostToDevice(gpu_data, in1.data(),(in1.size())*sizeof(DataType));
84   sycl_device.synchronize();
85   in1.setZero();
86 
87   sycl_device.memcpyDeviceToHost(out.data(), gpu_data, out.size()*sizeof(DataType));
88   sycl_device.synchronize();
89 
90   for (IndexType i = 0; i < in1.size(); ++i) {
91     VERIFY_IS_APPROX(out(i), in2(i));
92   }
93 
94   sycl_device.deallocate(gpu_data);
95 }
96 
97 template <typename DataType, int DataLayout, typename IndexType>
test_sycl_mem_sync_offsets(const Eigen::SyclDevice & sycl_device)98 void test_sycl_mem_sync_offsets(const Eigen::SyclDevice &sycl_device) {
99   using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
100   IndexType full_size = 32;
101   IndexType half_size = full_size / 2;
102   array<IndexType, 1> tensorRange = {{full_size}};
103   tensor_type in1(tensorRange);
104   tensor_type out(tensorRange);
105 
106   DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
107   TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
108 
109   in1 = in1.random();
110   // Copy all data to device, then permute on copy back to host
111   sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
112   sycl_device.memcpyDeviceToHost(out.data(), gpu_data + half_size, half_size * sizeof(DataType));
113   sycl_device.memcpyDeviceToHost(out.data() + half_size, gpu_data, half_size * sizeof(DataType));
114 
115   for (IndexType i = 0; i < half_size; ++i) {
116     VERIFY_IS_APPROX(out(i), in1(i + half_size));
117     VERIFY_IS_APPROX(out(i + half_size), in1(i));
118   }
119 
120   in1 = in1.random();
121   out.setZero();
122   // Permute copies to device, then copy all back to host
123   sycl_device.memcpyHostToDevice(gpu_data + half_size, in1.data(), half_size * sizeof(DataType));
124   sycl_device.memcpyHostToDevice(gpu_data, in1.data() + half_size, half_size * sizeof(DataType));
125   sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
126 
127   for (IndexType i = 0; i < half_size; ++i) {
128     VERIFY_IS_APPROX(out(i), in1(i + half_size));
129     VERIFY_IS_APPROX(out(i + half_size), in1(i));
130   }
131 
132   in1 = in1.random();
133   out.setZero();
134   DataType* gpu_data_out  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
135   TensorMap<tensor_type> gpu2(gpu_data_out, tensorRange);
136   // Copy all to device, permute copies on device, then copy all back to host
137   sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType));
138   sycl_device.memcpy(gpu_data_out + half_size, gpu_data, half_size * sizeof(DataType));
139   sycl_device.memcpy(gpu_data_out, gpu_data + half_size, half_size * sizeof(DataType));
140   sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, full_size * sizeof(DataType));
141 
142   for (IndexType i = 0; i < half_size; ++i) {
143     VERIFY_IS_APPROX(out(i), in1(i + half_size));
144     VERIFY_IS_APPROX(out(i + half_size), in1(i));
145   }
146 
147   sycl_device.deallocate(gpu_data_out);
148   sycl_device.deallocate(gpu_data);
149 }
150 
151 template <typename DataType, int DataLayout, typename IndexType>
test_sycl_memset_offsets(const Eigen::SyclDevice & sycl_device)152 void test_sycl_memset_offsets(const Eigen::SyclDevice &sycl_device) {
153   using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>;
154   IndexType full_size = 32;
155   IndexType half_size = full_size / 2;
156   array<IndexType, 1> tensorRange = {{full_size}};
157   tensor_type cpu_out(tensorRange);
158   tensor_type out(tensorRange);
159 
160   cpu_out.setZero();
161 
162   std::memset(cpu_out.data(), 0, half_size * sizeof(DataType));
163   std::memset(cpu_out.data() + half_size, 1, half_size * sizeof(DataType));
164 
165   DataType* gpu_data  = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType)));
166   TensorMap<tensor_type> gpu1(gpu_data, tensorRange);
167 
168   sycl_device.memset(gpu_data, 0, half_size * sizeof(DataType));
169   sycl_device.memset(gpu_data + half_size, 1, half_size * sizeof(DataType));
170   sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType));
171 
172   for (IndexType i = 0; i < full_size; ++i) {
173     VERIFY_IS_APPROX(out(i), cpu_out(i));
174   }
175 
176   sycl_device.deallocate(gpu_data);
177 }
178 
179 template <typename DataType, int DataLayout, typename IndexType>
test_sycl_computations(const Eigen::SyclDevice & sycl_device)180 void test_sycl_computations(const Eigen::SyclDevice &sycl_device) {
181 
182   IndexType sizeDim1 = 100;
183   IndexType sizeDim2 = 10;
184   IndexType sizeDim3 = 20;
185   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
186   Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
187   Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
188   Tensor<DataType, 3,DataLayout, IndexType> in3(tensorRange);
189   Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
190 
191   in2 = in2.random();
192   in3 = in3.random();
193 
194   DataType * gpu_in1_data  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
195   DataType * gpu_in2_data  = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
196   DataType * gpu_in3_data  = static_cast<DataType*>(sycl_device.allocate(in3.size()*sizeof(DataType)));
197   DataType * gpu_out_data =  static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
198 
199   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
200   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
201   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in3(gpu_in3_data, tensorRange);
202   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
203 
204   /// a=1.2f
205   gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
206   sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType));
207   sycl_device.synchronize();
208 
209   for (IndexType i = 0; i < sizeDim1; ++i) {
210     for (IndexType j = 0; j < sizeDim2; ++j) {
211       for (IndexType k = 0; k < sizeDim3; ++k) {
212         VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
213       }
214     }
215   }
216   printf("a=1.2f Test passed\n");
217 
218   /// a=b*1.2f
219   gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
220   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType));
221   sycl_device.synchronize();
222 
223   for (IndexType i = 0; i < sizeDim1; ++i) {
224     for (IndexType j = 0; j < sizeDim2; ++j) {
225       for (IndexType k = 0; k < sizeDim3; ++k) {
226         VERIFY_IS_APPROX(out(i,j,k),
227                          in1(i,j,k) * 1.2f);
228       }
229     }
230   }
231   printf("a=b*1.2f Test Passed\n");
232 
233   /// c=a*b
234   sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
235   gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
236   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
237   sycl_device.synchronize();
238 
239   for (IndexType i = 0; i < sizeDim1; ++i) {
240     for (IndexType j = 0; j < sizeDim2; ++j) {
241       for (IndexType k = 0; k < sizeDim3; ++k) {
242         VERIFY_IS_APPROX(out(i,j,k),
243                          in1(i,j,k) *
244                              in2(i,j,k));
245       }
246     }
247   }
248   printf("c=a*b Test Passed\n");
249 
250   /// c=a+b
251   gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
252   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
253   sycl_device.synchronize();
254   for (IndexType i = 0; i < sizeDim1; ++i) {
255     for (IndexType j = 0; j < sizeDim2; ++j) {
256       for (IndexType k = 0; k < sizeDim3; ++k) {
257         VERIFY_IS_APPROX(out(i,j,k),
258                          in1(i,j,k) +
259                              in2(i,j,k));
260       }
261     }
262   }
263   printf("c=a+b Test Passed\n");
264 
265   /// c=a*a
266   gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
267   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
268   sycl_device.synchronize();
269   for (IndexType i = 0; i < sizeDim1; ++i) {
270     for (IndexType j = 0; j < sizeDim2; ++j) {
271       for (IndexType k = 0; k < sizeDim3; ++k) {
272         VERIFY_IS_APPROX(out(i,j,k),
273                          in1(i,j,k) *
274                              in1(i,j,k));
275       }
276     }
277   }
278   printf("c= a*a Test Passed\n");
279 
280   //a*3.14f + b*2.7f
281   gpu_out.device(sycl_device) =  gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
282   sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType));
283   sycl_device.synchronize();
284   for (IndexType i = 0; i < sizeDim1; ++i) {
285     for (IndexType j = 0; j < sizeDim2; ++j) {
286       for (IndexType k = 0; k < sizeDim3; ++k) {
287         VERIFY_IS_APPROX(out(i,j,k),
288                          in1(i,j,k) * 3.14f
289                        + in2(i,j,k) * 2.7f);
290       }
291     }
292   }
293   printf("a*3.14f + b*2.7f Test Passed\n");
294 
295   ///d= (a>0.5? b:c)
296   sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType));
297   gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
298   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
299   sycl_device.synchronize();
300   for (IndexType i = 0; i < sizeDim1; ++i) {
301     for (IndexType j = 0; j < sizeDim2; ++j) {
302       for (IndexType k = 0; k < sizeDim3; ++k) {
303         VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
304                                                 ? in2(i, j, k)
305                                                 : in3(i, j, k));
306       }
307     }
308   }
309   printf("d= (a>0.5? b:c) Test Passed\n");
310   sycl_device.deallocate(gpu_in1_data);
311   sycl_device.deallocate(gpu_in2_data);
312   sycl_device.deallocate(gpu_in3_data);
313   sycl_device.deallocate(gpu_out_data);
314 }
315 template<typename Scalar1, typename Scalar2,  int DataLayout, typename IndexType>
test_sycl_cast(const Eigen::SyclDevice & sycl_device)316 static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){
317     IndexType size = 20;
318     array<IndexType, 1> tensorRange = {{size}};
319     Tensor<Scalar1, 1, DataLayout, IndexType> in(tensorRange);
320     Tensor<Scalar2, 1, DataLayout, IndexType> out(tensorRange);
321     Tensor<Scalar2, 1, DataLayout, IndexType> out_host(tensorRange);
322 
323     in = in.random();
324 
325     Scalar1* gpu_in_data  = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1)));
326     Scalar2 * gpu_out_data =  static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2)));
327 
328     TensorMap<Tensor<Scalar1, 1, DataLayout, IndexType>> gpu_in(gpu_in_data, tensorRange);
329     TensorMap<Tensor<Scalar2, 1, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
330     sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1));
331     gpu_out.device(sycl_device) = gpu_in. template cast<Scalar2>();
332     sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, out.size()*sizeof(Scalar2));
333     out_host = in. template cast<Scalar2>();
334     for(IndexType i=0; i< size; i++)
335     {
336       VERIFY_IS_APPROX(out(i), out_host(i));
337     }
338     printf("cast Test Passed\n");
339     sycl_device.deallocate(gpu_in_data);
340     sycl_device.deallocate(gpu_out_data);
341 }
sycl_computing_test_per_device(dev_Selector s)342 template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){
343   QueueInterface queueInterface(s);
344   auto sycl_device = Eigen::SyclDevice(&queueInterface);
345   test_sycl_mem_transfers<DataType, RowMajor, int64_t>(sycl_device);
346   test_sycl_computations<DataType, RowMajor, int64_t>(sycl_device);
347   test_sycl_mem_sync<DataType, RowMajor, int64_t>(sycl_device);
348   test_sycl_mem_sync_offsets<DataType, RowMajor, int64_t>(sycl_device);
349   test_sycl_memset_offsets<DataType, RowMajor, int64_t>(sycl_device);
350   test_sycl_mem_transfers<DataType, ColMajor, int64_t>(sycl_device);
351   test_sycl_computations<DataType, ColMajor, int64_t>(sycl_device);
352   test_sycl_mem_sync<DataType, ColMajor, int64_t>(sycl_device);
353   test_sycl_cast<DataType, int, RowMajor, int64_t>(sycl_device);
354   test_sycl_cast<DataType, int, ColMajor, int64_t>(sycl_device);
355 }
356 
EIGEN_DECLARE_TEST(cxx11_tensor_sycl)357 EIGEN_DECLARE_TEST(cxx11_tensor_sycl) {
358   for (const auto& device :Eigen::get_sycl_supported_devices()) {
359     CALL_SUBTEST(sycl_computing_test_per_device<float>(device));
360   }
361 }
362