xref: /aosp_15_r20/external/eigen/unsupported/doc/examples/SYCL/CwiseMul.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 #include <iostream>
2 #define EIGEN_USE_SYCL
3 #include <unsupported/Eigen/CXX11/Tensor>
4 
5 using Eigen::array;
6 using Eigen::SyclDevice;
7 using Eigen::Tensor;
8 using Eigen::TensorMap;
9 
main()10 int main()
11 {
12   using DataType = float;
13   using IndexType = int64_t;
14   constexpr auto DataLayout = Eigen::RowMajor;
15 
16   auto devices = Eigen::get_sycl_supported_devices();
17   const auto device_selector = *devices.begin();
18   Eigen::QueueInterface queueInterface(device_selector);
19   auto sycl_device = Eigen::SyclDevice(&queueInterface);
20 
21   // create the tensors to be used in the operation
22   IndexType sizeDim1 = 3;
23   IndexType sizeDim2 = 3;
24   IndexType sizeDim3 = 3;
25   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
26 
27   // initialize the tensors with the data we want manipulate to
28   Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
29   Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
30   Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
31 
32   // set up some random data in the tensors to be multiplied
33   in1 = in1.random();
34   in2 = in2.random();
35 
36   // allocate memory for the tensors
37   DataType * gpu_in1_data  = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
38   DataType * gpu_in2_data  = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
39   DataType * gpu_out_data =  static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
40 
41   //
42   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
43   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
44   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
45 
46   // copy the memory to the device and do the c=a*b calculation
47   sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.size())*sizeof(DataType));
48   sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
49   gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
50   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
51   sycl_device.synchronize();
52 
53   // print out the results
54    for (IndexType i = 0; i < sizeDim1; ++i) {
55     for (IndexType j = 0; j < sizeDim2; ++j) {
56       for (IndexType k = 0; k < sizeDim3; ++k) {
57         std::cout << "device_out" << "(" << i << ", " << j << ", " << k << ") : " << out(i,j,k)
58                   << " vs host_out" << "(" << i << ", " << j << ", " << k << ") : " << in1(i,j,k) * in2(i,j,k) << "\n";
59       }
60     }
61   }
62   printf("c=a*b Done\n");
63 }
64