xref: /aosp_15_r20/external/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_DGMRES_H
11 #define EIGEN_DGMRES_H
12 
13 #include "../../../../Eigen/Eigenvalues"
14 
15 namespace Eigen {
16 
17 template< typename _MatrixType,
18           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
19 class DGMRES;
20 
21 namespace internal {
22 
23 template< typename _MatrixType, typename _Preconditioner>
24 struct traits<DGMRES<_MatrixType,_Preconditioner> >
25 {
26   typedef _MatrixType MatrixType;
27   typedef _Preconditioner Preconditioner;
28 };
29 
30 /** \brief Computes a permutation vector to have a sorted sequence
31   * \param vec The vector to reorder.
32   * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
33   * \param ncut Put  the ncut smallest elements at the end of the vector
34   * WARNING This is an expensive sort, so should be used only
35   * for small size vectors
36   * TODO Use modified QuickSplit or std::nth_element to get the smallest values
37   */
38 template <typename VectorType, typename IndexType>
39 void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
40 {
41   eigen_assert(vec.size() == perm.size());
42   bool flag;
43   for (Index k  = 0; k < ncut; k++)
44   {
45     flag = false;
46     for (Index j = 0; j < vec.size()-1; j++)
47     {
48       if ( vec(perm(j)) < vec(perm(j+1)) )
49       {
50         std::swap(perm(j),perm(j+1));
51         flag = true;
52       }
53       if (!flag) break; // The vector is in sorted order
54     }
55   }
56 }
57 
58 }
59 /**
60  * \ingroup IterativeLinearSolvers_Module
61  * \brief A Restarted GMRES with deflation.
62  * This class implements a modification of the GMRES solver for
63  * sparse linear systems. The basis is built with modified
64  * Gram-Schmidt. At each restart, a few approximated eigenvectors
65  * corresponding to the smallest eigenvalues are used to build a
66  * preconditioner for the next cycle. This preconditioner
67  * for deflation can be combined with any other preconditioner,
68  * the IncompleteLUT for instance. The preconditioner is applied
69  * at right of the matrix and the combination is multiplicative.
70  *
71  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
72  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
73  * Typical usage :
74  * \code
75  * SparseMatrix<double> A;
76  * VectorXd x, b;
77  * //Fill A and b ...
78  * DGMRES<SparseMatrix<double> > solver;
79  * solver.set_restart(30); // Set restarting value
80  * solver.setEigenv(1); // Set the number of eigenvalues to deflate
81  * solver.compute(A);
82  * x = solver.solve(b);
83  * \endcode
84  *
85  * DGMRES can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
86  *
87  * References :
88  * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
89  *  Algebraic Solvers for Linear Systems Arising from Compressible
90  *  Flows, Computers and Fluids, In Press,
91  *  https://doi.org/10.1016/j.compfluid.2012.03.023
92  * [2] K. Burrage and J. Erhel, On the performance of various
93  * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
94  * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
95  *  preconditioned by deflation,J. Computational and Applied
96  *  Mathematics, 69(1996), 303-318.
97 
98  *
99  */
100 template< typename _MatrixType, typename _Preconditioner>
101 class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
102 {
103     typedef IterativeSolverBase<DGMRES> Base;
104     using Base::matrix;
105     using Base::m_error;
106     using Base::m_iterations;
107     using Base::m_info;
108     using Base::m_isInitialized;
109     using Base::m_tolerance;
110   public:
111     using Base::_solve_impl;
112     using Base::_solve_with_guess_impl;
113     typedef _MatrixType MatrixType;
114     typedef typename MatrixType::Scalar Scalar;
115     typedef typename MatrixType::StorageIndex StorageIndex;
116     typedef typename MatrixType::RealScalar RealScalar;
117     typedef _Preconditioner Preconditioner;
118     typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
119     typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
120     typedef Matrix<Scalar,Dynamic,1> DenseVector;
121     typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
122     typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
123 
124 
125   /** Default constructor. */
126   DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
127 
128   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
129     *
130     * This constructor is a shortcut for the default constructor followed
131     * by a call to compute().
132     *
133     * \warning this class stores a reference to the matrix A as well as some
134     * precomputed values that depend on it. Therefore, if \a A is changed
135     * this class becomes invalid. Call compute() to update it with the new
136     * matrix A, or modify a copy of A.
137     */
138   template<typename MatrixDerived>
139   explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
140 
141   ~DGMRES() {}
142 
143   /** \internal */
144   template<typename Rhs,typename Dest>
145   void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
146   {
147     EIGEN_STATIC_ASSERT(Rhs::ColsAtCompileTime==1 || Dest::ColsAtCompileTime==1, YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX);
148 
149     m_iterations = Base::maxIterations();
150     m_error = Base::m_tolerance;
151 
152     dgmres(matrix(), b, x, Base::m_preconditioner);
153   }
154 
155   /**
156    * Get the restart value
157     */
158   Index restart() { return m_restart; }
159 
160   /**
161    * Set the restart value (default is 30)
162    */
163   void set_restart(const Index restart) { m_restart=restart; }
164 
165   /**
166    * Set the number of eigenvalues to deflate at each restart
167    */
168   void setEigenv(const Index neig)
169   {
170     m_neig = neig;
171     if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
172   }
173 
174   /**
175    * Get the size of the deflation subspace size
176    */
177   Index deflSize() {return m_r; }
178 
179   /**
180    * Set the maximum size of the deflation subspace
181    */
182   void setMaxEigenv(const Index maxNeig) { m_maxNeig = maxNeig; }
183 
184   protected:
185     // DGMRES algorithm
186     template<typename Rhs, typename Dest>
187     void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
188     // Perform one cycle of GMRES
189     template<typename Dest>
190     Index dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const;
191     // Compute data to use for deflation
192     Index dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const;
193     // Apply deflation to a vector
194     template<typename RhsType, typename DestType>
195     Index dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
196     ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
197     ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
198     // Init data for deflation
199     void dgmresInitDeflation(Index& rows) const;
200     mutable DenseMatrix m_V; // Krylov basis vectors
201     mutable DenseMatrix m_H; // Hessenberg matrix
202     mutable DenseMatrix m_Hes; // Initial hessenberg matrix without Givens rotations applied
203     mutable Index m_restart; // Maximum size of the Krylov subspace
204     mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
205     mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
206     mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
207     mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
208     mutable StorageIndex m_neig; //Number of eigenvalues to extract at each restart
209     mutable Index m_r; // Current number of deflated eigenvalues, size of m_U
210     mutable Index m_maxNeig; // Maximum number of eigenvalues to deflate
211     mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
212     mutable bool m_isDeflAllocated;
213     mutable bool m_isDeflInitialized;
214 
215     //Adaptive strategy
216     mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
217     mutable bool m_force; // Force the use of deflation at each restart
218 
219 };
220 /**
221  * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
222  *
223  * A right preconditioner is used combined with deflation.
224  *
225  */
226 template< typename _MatrixType, typename _Preconditioner>
227 template<typename Rhs, typename Dest>
228 void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
229               const Preconditioner& precond) const
230 {
231   const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
232 
233   RealScalar normRhs = rhs.norm();
234   if(normRhs <= considerAsZero)
235   {
236     x.setZero();
237     m_error = 0;
238     return;
239   }
240 
241   //Initialization
242   m_isDeflInitialized = false;
243   Index n = mat.rows();
244   DenseVector r0(n);
245   Index nbIts = 0;
246   m_H.resize(m_restart+1, m_restart);
247   m_Hes.resize(m_restart, m_restart);
248   m_V.resize(n,m_restart+1);
249   //Initial residual vector and initial norm
250   if(x.squaredNorm()==0)
251     x = precond.solve(rhs);
252   r0 = rhs - mat * x;
253   RealScalar beta = r0.norm();
254 
255   m_error = beta/normRhs;
256   if(m_error < m_tolerance)
257     m_info = Success;
258   else
259     m_info = NoConvergence;
260 
261   // Iterative process
262   while (nbIts < m_iterations && m_info == NoConvergence)
263   {
264     dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
265 
266     // Compute the new residual vector for the restart
267     if (nbIts < m_iterations && m_info == NoConvergence) {
268       r0 = rhs - mat * x;
269       beta = r0.norm();
270     }
271   }
272 }
273 
274 /**
275  * \brief Perform one restart cycle of DGMRES
276  * \param mat The coefficient matrix
277  * \param precond The preconditioner
278  * \param x the new approximated solution
279  * \param r0 The initial residual vector
280  * \param beta The norm of the residual computed so far
281  * \param normRhs The norm of the right hand side vector
282  * \param nbIts The number of iterations
283  */
284 template< typename _MatrixType, typename _Preconditioner>
285 template<typename Dest>
286 Index DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, Index& nbIts) const
287 {
288   //Initialization
289   DenseVector g(m_restart+1); // Right hand side of the least square problem
290   g.setZero();
291   g(0) = Scalar(beta);
292   m_V.col(0) = r0/beta;
293   m_info = NoConvergence;
294   std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
295   Index it = 0; // Number of inner iterations
296   Index n = mat.rows();
297   DenseVector tv1(n), tv2(n);  //Temporary vectors
298   while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
299   {
300     // Apply preconditioner(s) at right
301     if (m_isDeflInitialized )
302     {
303       dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
304       tv2 = precond.solve(tv1);
305     }
306     else
307     {
308       tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
309     }
310     tv1 = mat * tv2;
311 
312     // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
313     Scalar coef;
314     for (Index i = 0; i <= it; ++i)
315     {
316       coef = tv1.dot(m_V.col(i));
317       tv1 = tv1 - coef * m_V.col(i);
318       m_H(i,it) = coef;
319       m_Hes(i,it) = coef;
320     }
321     // Normalize the vector
322     coef = tv1.norm();
323     m_V.col(it+1) = tv1/coef;
324     m_H(it+1, it) = coef;
325 //     m_Hes(it+1,it) = coef;
326 
327     // FIXME Check for happy breakdown
328 
329     // Update Hessenberg matrix with Givens rotations
330     for (Index i = 1; i <= it; ++i)
331     {
332       m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
333     }
334     // Compute the new plane rotation
335     gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
336     // Apply the new rotation
337     m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
338     g.applyOnTheLeft(it,it+1, gr[it].adjoint());
339 
340     beta = std::abs(g(it+1));
341     m_error = beta/normRhs;
342     // std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
343     it++; nbIts++;
344 
345     if (m_error < m_tolerance)
346     {
347       // The method has converged
348       m_info = Success;
349       break;
350     }
351   }
352 
353   // Compute the new coefficients by solving the least square problem
354 //   it++;
355   //FIXME  Check first if the matrix is singular ... zero diagonal
356   DenseVector nrs(m_restart);
357   nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
358 
359   // Form the new solution
360   if (m_isDeflInitialized)
361   {
362     tv1 = m_V.leftCols(it) * nrs;
363     dgmresApplyDeflation(tv1, tv2);
364     x = x + precond.solve(tv2);
365   }
366   else
367     x = x + precond.solve(m_V.leftCols(it) * nrs);
368 
369   // Go for a new cycle and compute data for deflation
370   if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
371     dgmresComputeDeflationData(mat, precond, it, m_neig);
372   return 0;
373 
374 }
375 
376 
377 template< typename _MatrixType, typename _Preconditioner>
378 void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
379 {
380   m_U.resize(rows, m_maxNeig);
381   m_MU.resize(rows, m_maxNeig);
382   m_T.resize(m_maxNeig, m_maxNeig);
383   m_lambdaN = 0.0;
384   m_isDeflAllocated = true;
385 }
386 
387 template< typename _MatrixType, typename _Preconditioner>
388 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
389 {
390   return schurofH.matrixT().diagonal();
391 }
392 
393 template< typename _MatrixType, typename _Preconditioner>
394 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
395 {
396   const DenseMatrix& T = schurofH.matrixT();
397   Index it = T.rows();
398   ComplexVector eig(it);
399   Index j = 0;
400   while (j < it-1)
401   {
402     if (T(j+1,j) ==Scalar(0))
403     {
404       eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
405       j++;
406     }
407     else
408     {
409       eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
410       eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
411       j++;
412     }
413   }
414   if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
415   return eig;
416 }
417 
418 template< typename _MatrixType, typename _Preconditioner>
419 Index DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, StorageIndex& neig) const
420 {
421   // First, find the Schur form of the Hessenberg matrix H
422   typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
423   bool computeU = true;
424   DenseMatrix matrixQ(it,it);
425   matrixQ.setIdentity();
426   schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
427 
428   ComplexVector eig(it);
429   Matrix<StorageIndex,Dynamic,1>perm(it);
430   eig = this->schurValues(schurofH);
431 
432   // Reorder the absolute values of Schur values
433   DenseRealVector modulEig(it);
434   for (Index j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
435   perm.setLinSpaced(it,0,internal::convert_index<StorageIndex>(it-1));
436   internal::sortWithPermutation(modulEig, perm, neig);
437 
438   if (!m_lambdaN)
439   {
440     m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
441   }
442   //Count the real number of extracted eigenvalues (with complex conjugates)
443   Index nbrEig = 0;
444   while (nbrEig < neig)
445   {
446     if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
447     else nbrEig += 2;
448   }
449   // Extract the  Schur vectors corresponding to the smallest Ritz values
450   DenseMatrix Sr(it, nbrEig);
451   Sr.setZero();
452   for (Index j = 0; j < nbrEig; j++)
453   {
454     Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
455   }
456 
457   // Form the Schur vectors of the initial matrix using the Krylov basis
458   DenseMatrix X;
459   X = m_V.leftCols(it) * Sr;
460   if (m_r)
461   {
462    // Orthogonalize X against m_U using modified Gram-Schmidt
463    for (Index j = 0; j < nbrEig; j++)
464      for (Index k =0; k < m_r; k++)
465       X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
466   }
467 
468   // Compute m_MX = A * M^-1 * X
469   Index m = m_V.rows();
470   if (!m_isDeflAllocated)
471     dgmresInitDeflation(m);
472   DenseMatrix MX(m, nbrEig);
473   DenseVector tv1(m);
474   for (Index j = 0; j < nbrEig; j++)
475   {
476     tv1 = mat * X.col(j);
477     MX.col(j) = precond.solve(tv1);
478   }
479 
480   //Update m_T = [U'MU U'MX; X'MU X'MX]
481   m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
482   if(m_r)
483   {
484     m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
485     m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
486   }
487 
488   // Save X into m_U and m_MX in m_MU
489   for (Index j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
490   for (Index j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
491   // Increase the size of the invariant subspace
492   m_r += nbrEig;
493 
494   // Factorize m_T into m_luT
495   m_luT.compute(m_T.topLeftCorner(m_r, m_r));
496 
497   //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
498   m_isDeflInitialized = true;
499   return 0;
500 }
501 template<typename _MatrixType, typename _Preconditioner>
502 template<typename RhsType, typename DestType>
503 Index DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
504 {
505   DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
506   y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
507   return 0;
508 }
509 
510 } // end namespace Eigen
511 #endif
512