xref: /aosp_15_r20/external/eigen/test/stl_iterators.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2018-2019 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <iterator>
12 #include <numeric>
13 
14 template< class Iterator >
15 std::reverse_iterator<Iterator>
make_reverse_iterator(Iterator i)16 make_reverse_iterator( Iterator i )
17 {
18   return std::reverse_iterator<Iterator>(i);
19 }
20 
21 #if !EIGEN_HAS_CXX11
22 template<class ForwardIt>
is_sorted_until(ForwardIt firstIt,ForwardIt lastIt)23 ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
24 {
25     if (firstIt != lastIt) {
26         ForwardIt next = firstIt;
27         while (++next != lastIt) {
28             if (*next < *firstIt)
29                 return next;
30             firstIt = next;
31         }
32     }
33     return lastIt;
34 }
35 template<class ForwardIt>
is_sorted(ForwardIt firstIt,ForwardIt lastIt)36 bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
37 {
38     return ::is_sorted_until(firstIt, lastIt) == lastIt;
39 }
40 #else
41 using std::is_sorted;
42 #endif
43 
44 template<typename XprType>
is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &)45 bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
46 
47 template<typename XprType>
is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &)48 bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
49 
50 template<typename Iter>
is_default_constructible_and_assignable(const Iter & it)51 bool is_default_constructible_and_assignable(const Iter& it)
52 {
53 #if EIGEN_HAS_CXX11
54   VERIFY(std::is_default_constructible<Iter>::value);
55   VERIFY(std::is_nothrow_default_constructible<Iter>::value);
56 #endif
57   Iter it2;
58   it2 = it;
59   return (it==it2);
60 }
61 
62 template<typename Xpr>
check_begin_end_for_loop(Xpr xpr)63 void check_begin_end_for_loop(Xpr xpr)
64 {
65   const Xpr& cxpr(xpr);
66   Index i = 0;
67 
68   i = 0;
69   for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
70 
71   i = 0;
72   for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
73 
74   i = 0;
75   for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
76 
77   i = 0;
78   for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
79 
80   {
81     // simple API check
82     typename Xpr::const_iterator cit = xpr.begin();
83     cit = xpr.cbegin();
84 
85     #if EIGEN_HAS_CXX11
86     auto tmp1 = xpr.begin();
87     VERIFY(tmp1==xpr.begin());
88     auto tmp2 = xpr.cbegin();
89     VERIFY(tmp2==xpr.cbegin());
90     #endif
91   }
92 
93   VERIFY( xpr.end() -xpr.begin()  == xpr.size() );
94   VERIFY( xpr.cend()-xpr.begin()  == xpr.size() );
95   VERIFY( xpr.end() -xpr.cbegin() == xpr.size() );
96   VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() );
97 
98   if(xpr.size()>0) {
99     VERIFY(xpr.begin() != xpr.end());
100     VERIFY(xpr.begin() < xpr.end());
101     VERIFY(xpr.begin() <= xpr.end());
102     VERIFY(!(xpr.begin() == xpr.end()));
103     VERIFY(!(xpr.begin() > xpr.end()));
104     VERIFY(!(xpr.begin() >= xpr.end()));
105 
106     VERIFY(xpr.cbegin() != xpr.end());
107     VERIFY(xpr.cbegin() < xpr.end());
108     VERIFY(xpr.cbegin() <= xpr.end());
109     VERIFY(!(xpr.cbegin() == xpr.end()));
110     VERIFY(!(xpr.cbegin() > xpr.end()));
111     VERIFY(!(xpr.cbegin() >= xpr.end()));
112 
113     VERIFY(xpr.begin() != xpr.cend());
114     VERIFY(xpr.begin() < xpr.cend());
115     VERIFY(xpr.begin() <= xpr.cend());
116     VERIFY(!(xpr.begin() == xpr.cend()));
117     VERIFY(!(xpr.begin() > xpr.cend()));
118     VERIFY(!(xpr.begin() >= xpr.cend()));
119   }
120 }
121 
122 template<typename Scalar, int Rows, int Cols>
test_stl_iterators(int rows=Rows,int cols=Cols)123 void test_stl_iterators(int rows=Rows, int cols=Cols)
124 {
125   typedef Matrix<Scalar,Rows,1> VectorType;
126   #if EIGEN_HAS_CXX11
127   typedef Matrix<Scalar,1,Cols> RowVectorType;
128   #endif
129   typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
130   typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
131   VectorType v = VectorType::Random(rows);
132   const VectorType& cv(v);
133   ColMatrixType A = ColMatrixType::Random(rows,cols);
134   const ColMatrixType& cA(A);
135   RowMatrixType B = RowMatrixType::Random(rows,cols);
136 
137   Index i, j;
138 
139   // Verify that iterators are default constructible (See bug #1900)
140   {
141     VERIFY( is_default_constructible_and_assignable(v.begin()));
142     VERIFY( is_default_constructible_and_assignable(v.end()));
143     VERIFY( is_default_constructible_and_assignable(cv.begin()));
144     VERIFY( is_default_constructible_and_assignable(cv.end()));
145 
146     VERIFY( is_default_constructible_and_assignable(A.row(0).begin()));
147     VERIFY( is_default_constructible_and_assignable(A.row(0).end()));
148     VERIFY( is_default_constructible_and_assignable(cA.row(0).begin()));
149     VERIFY( is_default_constructible_and_assignable(cA.row(0).end()));
150 
151     VERIFY( is_default_constructible_and_assignable(B.row(0).begin()));
152     VERIFY( is_default_constructible_and_assignable(B.row(0).end()));
153   }
154 
155   // Check we got a fast pointer-based iterator when expected
156   {
157     VERIFY( is_pointer_based_stl_iterator(v.begin()) );
158     VERIFY( is_pointer_based_stl_iterator(v.end()) );
159     VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
160     VERIFY( is_pointer_based_stl_iterator(cv.end()) );
161 
162     j = internal::random<Index>(0,A.cols()-1);
163     VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
164     VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
165     VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
166     VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
167 
168     i = internal::random<Index>(0,A.rows()-1);
169     VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
170     VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
171     VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
172     VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
173 
174     VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
175     VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
176     VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
177     VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
178 
179     VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
180     VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
181 
182     VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
183     VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
184   }
185 
186   {
187     check_begin_end_for_loop(v);
188     check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1)));
189     check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1)));
190     check_begin_end_for_loop(v+v);
191   }
192 
193 #if EIGEN_HAS_CXX11
194   // check swappable
195   {
196     using std::swap;
197     // pointer-based
198     {
199       VectorType v_copy = v;
200       auto a = v.begin();
201       auto b = v.end()-1;
202       swap(a,b);
203       VERIFY_IS_EQUAL(v,v_copy);
204       VERIFY_IS_EQUAL(*b,*v.begin());
205       VERIFY_IS_EQUAL(*b,v(0));
206       VERIFY_IS_EQUAL(*a,v.end()[-1]);
207       VERIFY_IS_EQUAL(*a,v(last));
208     }
209 
210     // generic
211     {
212       RowMatrixType B_copy = B;
213       auto Br = B.reshaped();
214       auto a = Br.begin();
215       auto b = Br.end()-1;
216       swap(a,b);
217       VERIFY_IS_EQUAL(B,B_copy);
218       VERIFY_IS_EQUAL(*b,*Br.begin());
219       VERIFY_IS_EQUAL(*b,Br(0));
220       VERIFY_IS_EQUAL(*a,Br.end()[-1]);
221       VERIFY_IS_EQUAL(*a,Br(last));
222     }
223   }
224 
225   // check non-const iterator with for-range loops
226   {
227     i = 0;
228     for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
229 
230     j = internal::random<Index>(0,A.cols()-1);
231     i = 0;
232     for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
233 
234     i = 0;
235     for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
236 
237     j = 0;
238     i = internal::random<Index>(0,A.rows()-1);
239     for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
240 
241     i = 0;
242     for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
243   }
244 
245   // same for const_iterator
246   {
247     i = 0;
248     for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
249 
250     i = 0;
251     for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
252 
253     j = 0;
254     i = internal::random<Index>(0,A.rows()-1);
255     for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
256   }
257 
258   // check reshaped() on row-major
259   {
260     i = 0;
261     Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
262     for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
263   }
264 
265   // check write access
266   {
267     VectorType w(v.size());
268     i = 0;
269     for(auto& x : w) { x = v(i++); }
270     VERIFY_IS_EQUAL(v,w);
271   }
272 
273   // check for dangling pointers
274   {
275     // no dangling because pointer-based
276     {
277       j = internal::random<Index>(0,A.cols()-1);
278       auto it = A.col(j).begin();
279       for(i=0;i<rows;++i) {
280         VERIFY_IS_EQUAL(it[i],A(i,j));
281       }
282     }
283 
284     // no dangling because pointer-based
285     {
286       i = internal::random<Index>(0,A.rows()-1);
287       auto it = A.row(i).begin();
288       for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
289     }
290 
291     {
292       j = internal::random<Index>(0,A.cols()-1);
293       // this would produce a dangling pointer:
294       // auto it = (A+2*A).col(j).begin();
295       // we need to name the temporary expression:
296       auto tmp = (A+2*A).col(j);
297       auto it = tmp.begin();
298       for(i=0;i<rows;++i) {
299         VERIFY_IS_APPROX(it[i],3*A(i,j));
300       }
301     }
302   }
303 
304   {
305     // check basic for loop on vector-wise iterators
306     j=0;
307     for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
308       VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
309       VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
310     }
311     j=0;
312     for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
313       (*it).coeffRef(0) = (*it).coeff(0); // compilation check
314       it->coeffRef(0) = it->coeff(0);     // compilation check
315       VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
316       VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
317     }
318 
319     // check valuetype gives us a copy
320     j=0;
321     for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
322       typename decltype(it)::value_type tmp = *it;
323       VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() );
324       VERIFY_IS_APPROX( tmp, A.col(j) );
325     }
326   }
327 
328 #endif
329 
330   if(rows>=3) {
331     VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
332 
333     VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1));
334   }
335 
336   if(cols>=3) {
337     VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1));
338   }
339 
340   // check std::sort
341   {
342     // first check that is_sorted returns false when required
343     if(rows>=2)
344     {
345       v(1) = v(0)-Scalar(1);
346       #if EIGEN_HAS_CXX11
347       VERIFY(!is_sorted(std::begin(v),std::end(v)));
348       #else
349       VERIFY(!is_sorted(v.cbegin(),v.cend()));
350       #endif
351     }
352 
353     // on a vector
354     {
355       std::sort(v.begin(),v.end());
356       VERIFY(is_sorted(v.begin(),v.end()));
357       VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin())));
358     }
359 
360     // on a column of a column-major matrix -> pointer-based iterator and default increment
361     {
362       j = internal::random<Index>(0,A.cols()-1);
363       // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
364       typename ColMatrixType::ColXpr Acol = A.col(j);
365       std::sort(Acol.begin(),Acol.end());
366       VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
367       A.setRandom();
368 
369       std::sort(A.col(j).begin(),A.col(j).end());
370       VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
371       A.setRandom();
372     }
373 
374     // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
375     {
376       i = internal::random<Index>(0,A.rows()-1);
377       typename ColMatrixType::RowXpr Arow = A.row(i);
378       VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
379       std::sort(Arow.begin(),Arow.end());
380       VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
381       A.setRandom();
382 
383       std::sort(A.row(i).begin(),A.row(i).end());
384       VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
385       A.setRandom();
386     }
387 
388     // with a generic iterator
389     {
390       Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped();
391       std::sort(B1.begin(),B1.end());
392       VERIFY(is_sorted(B1.cbegin(),B1.cend()));
393       B.setRandom();
394 
395       // assertion because nested expressions are different
396       // std::sort(B.reshaped().begin(),B.reshaped().end());
397       // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
398       // B.setRandom();
399     }
400   }
401 
402   // check with partial_sum
403   {
404     j = internal::random<Index>(0,A.cols()-1);
405     typename ColMatrixType::ColXpr Acol = A.col(j);
406     std::partial_sum(Acol.begin(), Acol.end(), v.begin());
407     VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
408 
409     // inplace
410     std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
411     VERIFY_IS_APPROX(v, Acol);
412   }
413 
414   // stress random access as required by std::nth_element
415   if(rows>=3)
416   {
417     v.setRandom();
418     VectorType v1 = v;
419     std::sort(v1.begin(),v1.end());
420     std::nth_element(v.begin(), v.begin()+rows/2, v.end());
421     VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
422 
423     v.setRandom();
424     v1 = v;
425     std::sort(v1.begin()+rows/2,v1.end());
426     std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
427     VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
428   }
429 
430 #if EIGEN_HAS_CXX11
431   // check rows/cols iterators with range-for loops
432   {
433     j = 0;
434     for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
435     j = 0;
436     for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
437 
438     j = 0;
439     for(auto c : B.colwise()) {
440       i = 0;
441       for(auto& x : c) {
442         VERIFY_IS_EQUAL(x, B(i,j));
443         x = A(i,j);
444         ++i;
445       }
446       ++j;
447     }
448     VERIFY_IS_APPROX(A,B);
449     B.setRandom();
450 
451     i = 0;
452     for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
453     i = 0;
454     for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
455   }
456 
457 
458   // check rows/cols iterators with STL algorithms
459   {
460     RowVectorType row = RowVectorType::Random(cols);
461     A.rowwise() = row;
462     VERIFY( std::all_of(A.rowwise().begin(),  A.rowwise().end(),  [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
463     VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
464 
465     VectorType col = VectorType::Random(rows);
466     A.colwise() = col;
467     VERIFY( std::all_of(A.colwise().begin(),   A.colwise().end(),   [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
468     VERIFY( std::all_of(A.colwise().rbegin(),  A.colwise().rend(),  [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
469     VERIFY( std::all_of(A.colwise().cbegin(),  A.colwise().cend(),  [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
470     VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
471 
472     i = internal::random<Index>(0,A.rows()-1);
473     A.setRandom();
474     A.row(i).setZero();
475     VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(),  A.rowwise().end(),  [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(),  i );
476     VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i );
477 
478     j = internal::random<Index>(0,A.cols()-1);
479     A.setRandom();
480     A.col(j).setZero();
481     VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(),  A.colwise().end(),  [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(),  j );
482     VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j );
483   }
484 
485   {
486     using VecOp = VectorwiseOp<ArrayXXi, 0>;
487     STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value ));
488     STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend  ())>::value ));
489     #if EIGEN_COMP_CXXVER>=14
490       STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value ));
491       STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend  (std::declval<const VecOp&>()))>::value ));
492     #endif
493   }
494 
495 #endif
496 }
497 
498 
499 #if EIGEN_HAS_CXX11
500 // When the compiler sees expression IsContainerTest<C>(0), if C is an
501 // STL-style container class, the first overload of IsContainerTest
502 // will be viable (since both C::iterator* and C::const_iterator* are
503 // valid types and NULL can be implicitly converted to them).  It will
504 // be picked over the second overload as 'int' is a perfect match for
505 // the type of argument 0.  If C::iterator or C::const_iterator is not
506 // a valid type, the first overload is not viable, and the second
507 // overload will be picked.
508 template <class C,
509           class Iterator = decltype(::std::declval<const C&>().begin()),
510           class = decltype(::std::declval<const C&>().end()),
511           class = decltype(++::std::declval<Iterator&>()),
512           class = decltype(*::std::declval<Iterator>()),
513           class = typename C::const_iterator>
IsContainerType(int)514 bool IsContainerType(int /* dummy */) { return true; }
515 
516 template <class C>
IsContainerType(long)517 bool IsContainerType(long /* dummy */) { return false; }
518 
519 template <typename Scalar, int Rows, int Cols>
test_stl_container_detection(int rows=Rows,int cols=Cols)520 void test_stl_container_detection(int rows=Rows, int cols=Cols)
521 {
522   typedef Matrix<Scalar,Rows,1> VectorType;
523   typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
524   typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
525 
526   ColMatrixType A = ColMatrixType::Random(rows, cols);
527   RowMatrixType B = RowMatrixType::Random(rows, cols);
528 
529   Index i = 1;
530 
531   using ColMatrixColType = decltype(A.col(i));
532   using ColMatrixRowType = decltype(A.row(i));
533   using RowMatrixColType = decltype(B.col(i));
534   using RowMatrixRowType = decltype(B.row(i));
535 
536   // Vector and matrix col/row are valid Stl-style container.
537   VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
538   VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
539   VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
540   VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
541   VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
542 
543   // But the matrix itself is not a valid Stl-style container.
544   VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
545   VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
546 }
547 #endif
548 
EIGEN_DECLARE_TEST(stl_iterators)549 EIGEN_DECLARE_TEST(stl_iterators)
550 {
551   for(int i = 0; i < g_repeat; i++) {
552     CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
553     CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
554     CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
555     CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
556   }
557 
558 #if EIGEN_HAS_CXX11
559   CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() ));
560   CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() ));
561 #endif
562 }
563