xref: /aosp_15_r20/external/eigen/test/sparse_block.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "sparse.h"
11 #include "AnnoyingScalar.h"
12 
13 template<typename T>
14 typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type
innervec(T & A,Index i)15 innervec(T& A, Index i)
16 {
17   return A.row(i);
18 }
19 
20 template<typename T>
21 typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type
innervec(T & A,Index i)22 innervec(T& A, Index i)
23 {
24   return A.col(i);
25 }
26 
sparse_block(const SparseMatrixType & ref)27 template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref)
28 {
29   const Index rows = ref.rows();
30   const Index cols = ref.cols();
31   const Index inner = ref.innerSize();
32   const Index outer = ref.outerSize();
33 
34   typedef typename SparseMatrixType::Scalar Scalar;
35   typedef typename SparseMatrixType::RealScalar RealScalar;
36   typedef typename SparseMatrixType::StorageIndex StorageIndex;
37 
38   double density = (std::max)(8./(rows*cols), 0.01);
39   typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix;
40   typedef Matrix<Scalar,Dynamic,1> DenseVector;
41   typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
42   typedef SparseVector<Scalar> SparseVectorType;
43 
44   Scalar s1 = internal::random<Scalar>();
45   {
46     SparseMatrixType m(rows, cols);
47     DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
48     initSparse<Scalar>(density, refMat, m);
49 
50     VERIFY_IS_APPROX(m, refMat);
51 
52     // test InnerIterators and Block expressions
53     for (int t=0; t<10; ++t)
54     {
55       Index j = internal::random<Index>(0,cols-2);
56       Index i = internal::random<Index>(0,rows-2);
57       Index w = internal::random<Index>(1,cols-j);
58       Index h = internal::random<Index>(1,rows-i);
59 
60       VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
61       for(Index c=0; c<w; c++)
62       {
63         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
64         for(Index r=0; r<h; r++)
65         {
66           VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
67           VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
68         }
69       }
70       for(Index r=0; r<h; r++)
71       {
72         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
73         for(Index c=0; c<w; c++)
74         {
75           VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
76           VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c));
77         }
78       }
79 
80       VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w));
81       VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h));
82       for(Index r=0; r<h; r++)
83       {
84         VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r));
85         VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r));
86         for(Index c=0; c<w; c++)
87         {
88           VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
89           VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
90 
91           VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
92           VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
93           if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
94           {
95             VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
96           }
97           if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
98           {
99             VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
100           }
101         }
102       }
103       for(Index c=0; c<w; c++)
104       {
105         VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c));
106         VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c));
107       }
108     }
109 
110     for(Index c=0; c<cols; c++)
111     {
112       VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
113       VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
114     }
115 
116     for(Index r=0; r<rows; r++)
117     {
118       VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
119       VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
120     }
121   }
122 
123   // test innerVector()
124   {
125     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
126     SparseMatrixType m2(rows, cols);
127     initSparse<Scalar>(density, refMat2, m2);
128     Index j0 = internal::random<Index>(0,outer-1);
129     Index j1 = internal::random<Index>(0,outer-1);
130     Index r0 = internal::random<Index>(0,rows-1);
131     Index c0 = internal::random<Index>(0,cols-1);
132 
133     VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0));
134     VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1));
135 
136     m2.innerVector(j0) *= Scalar(2);
137     innervec(refMat2,j0) *= Scalar(2);
138     VERIFY_IS_APPROX(m2, refMat2);
139 
140     m2.row(r0) *= Scalar(3);
141     refMat2.row(r0) *= Scalar(3);
142     VERIFY_IS_APPROX(m2, refMat2);
143 
144     m2.col(c0) *= Scalar(4);
145     refMat2.col(c0) *= Scalar(4);
146     VERIFY_IS_APPROX(m2, refMat2);
147 
148     m2.row(r0) /= Scalar(3);
149     refMat2.row(r0) /= Scalar(3);
150     VERIFY_IS_APPROX(m2, refMat2);
151 
152     m2.col(c0) /= Scalar(4);
153     refMat2.col(c0) /= Scalar(4);
154     VERIFY_IS_APPROX(m2, refMat2);
155 
156     SparseVectorType v1;
157     VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4);
158     VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4);
159 
160     SparseMatrixType m3(rows,cols);
161     m3.reserve(VectorXi::Constant(outer,int(inner/2)));
162     for(Index j=0; j<outer; ++j)
163       for(Index k=0; k<(std::min)(j,inner); ++k)
164         m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1);
165     for(Index j=0; j<(std::min)(outer, inner); ++j)
166     {
167       VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
168       if(j>0)
169         VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
170     }
171     m3.makeCompressed();
172     for(Index j=0; j<(std::min)(outer, inner); ++j)
173     {
174       VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
175       if(j>0)
176         VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
177     }
178 
179     VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
180 
181 //     m2.innerVector(j0) = 2*m2.innerVector(j1);
182 //     refMat2.col(j0) = 2*refMat2.col(j1);
183 //     VERIFY_IS_APPROX(m2, refMat2);
184   }
185 
186   // test innerVectors()
187   {
188     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
189     SparseMatrixType m2(rows, cols);
190     initSparse<Scalar>(density, refMat2, m2);
191     if(internal::random<float>(0,1)>0.5f) m2.makeCompressed();
192     Index j0 = internal::random<Index>(0,outer-2);
193     Index j1 = internal::random<Index>(0,outer-2);
194     Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
195     if(SparseMatrixType::IsRowMajor)
196       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
197     else
198       VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
199     if(SparseMatrixType::IsRowMajor)
200       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
201                        refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
202     else
203       VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
204                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
205 
206     VERIFY_IS_APPROX(m2, refMat2);
207 
208     VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros());
209 
210     m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
211     if(SparseMatrixType::IsRowMajor)
212       refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
213     else
214       refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
215 
216     VERIFY_IS_APPROX(m2, refMat2);
217   }
218 
219   // test generic blocks
220   {
221     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
222     SparseMatrixType m2(rows, cols);
223     initSparse<Scalar>(density, refMat2, m2);
224     Index j0 = internal::random<Index>(0,outer-2);
225     Index j1 = internal::random<Index>(0,outer-2);
226     Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1));
227     if(SparseMatrixType::IsRowMajor)
228       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
229     else
230       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
231 
232     if(SparseMatrixType::IsRowMajor)
233       VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
234                       refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
235     else
236       VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
237                       refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
238 
239     Index i = internal::random<Index>(0,m2.outerSize()-1);
240     if(SparseMatrixType::IsRowMajor) {
241       m2.innerVector(i) = m2.innerVector(i) * s1;
242       refMat2.row(i) = refMat2.row(i) * s1;
243       VERIFY_IS_APPROX(m2,refMat2);
244     } else {
245       m2.innerVector(i) = m2.innerVector(i) * s1;
246       refMat2.col(i) = refMat2.col(i) * s1;
247       VERIFY_IS_APPROX(m2,refMat2);
248     }
249 
250     Index r0 = internal::random<Index>(0,rows-2);
251     Index c0 = internal::random<Index>(0,cols-2);
252     Index r1 = internal::random<Index>(1,rows-r0);
253     Index c1 = internal::random<Index>(1,cols-c0);
254 
255     VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
256     VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
257 
258     VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
259     VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
260 
261     VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1));
262     VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1));
263 
264     if(m2.nonZeros()>0)
265     {
266       VERIFY_IS_APPROX(m2, refMat2);
267       SparseMatrixType m3(rows, cols);
268       DenseMatrix refMat3(rows, cols); refMat3.setZero();
269       Index n = internal::random<Index>(1,10);
270       for(Index k=0; k<n; ++k)
271       {
272         Index o1 = internal::random<Index>(0,outer-1);
273         Index o2 = internal::random<Index>(0,outer-1);
274         if(SparseMatrixType::IsRowMajor)
275         {
276           m3.innerVector(o1) = m2.row(o2);
277           refMat3.row(o1) = refMat2.row(o2);
278         }
279         else
280         {
281           m3.innerVector(o1) = m2.col(o2);
282           refMat3.col(o1) = refMat2.col(o2);
283         }
284         if(internal::random<bool>())
285           m3.makeCompressed();
286       }
287       if(m3.nonZeros()>0)
288       VERIFY_IS_APPROX(m3, refMat3);
289     }
290   }
291 }
292 
EIGEN_DECLARE_TEST(sparse_block)293 EIGEN_DECLARE_TEST(sparse_block)
294 {
295   for(int i = 0; i < g_repeat; i++) {
296     int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
297     if(Eigen::internal::random<int>(0,4) == 0) {
298       r = c; // check square matrices in 25% of tries
299     }
300     EIGEN_UNUSED_VARIABLE(r+c);
301     CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) ));
302     CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) ));
303     CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) ));
304     CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
305     CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
306 
307     CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) ));
308     CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) ));
309 
310     r = Eigen::internal::random<int>(1,100);
311     c = Eigen::internal::random<int>(1,100);
312     if(Eigen::internal::random<int>(0,4) == 0) {
313       r = c; // check square matrices in 25% of tries
314     }
315 
316     CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
317     CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
318 #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
319     AnnoyingScalar::dont_throw = true;
320 #endif
321     CALL_SUBTEST_5((  sparse_block(SparseMatrix<AnnoyingScalar>(r,c)) ));
322   }
323 }
324