xref: /aosp_15_r20/external/eigen/test/real_qz.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Alexey Korepanov <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_RUNTIME_NO_MALLOC
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
real_qz(const MatrixType & m)15 template<typename MatrixType> void real_qz(const MatrixType& m)
16 {
17   /* this test covers the following files:
18      RealQZ.h
19   */
20   using std::abs;
21   typedef typename MatrixType::Scalar Scalar;
22 
23   Index dim = m.cols();
24 
25   MatrixType A = MatrixType::Random(dim,dim),
26              B = MatrixType::Random(dim,dim);
27 
28 
29   // Regression test for bug 985: Randomly set rows or columns to zero
30   Index k=internal::random<Index>(0, dim-1);
31   switch(internal::random<int>(0,10)) {
32   case 0:
33     A.row(k).setZero(); break;
34   case 1:
35     A.col(k).setZero(); break;
36   case 2:
37     B.row(k).setZero(); break;
38   case 3:
39     B.col(k).setZero(); break;
40   default:
41     break;
42   }
43 
44   RealQZ<MatrixType> qz(dim);
45   // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
46   //Eigen::internal::set_is_malloc_allowed(false);
47   qz.compute(A,B);
48   //Eigen::internal::set_is_malloc_allowed(true);
49 
50   VERIFY_IS_EQUAL(qz.info(), Success);
51   // check for zeros
52   bool all_zeros = true;
53   for (Index i=0; i<A.cols(); i++)
54     for (Index j=0; j<i; j++) {
55       if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
56       {
57         std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
58         all_zeros = false;
59       }
60       if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
61       {
62         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
63         all_zeros = false;
64       }
65       if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
66       {
67         std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j)  << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
68         all_zeros = false;
69       }
70     }
71   VERIFY_IS_EQUAL(all_zeros, true);
72   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
73   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
74   VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
75   VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
76 }
77 
EIGEN_DECLARE_TEST(real_qz)78 EIGEN_DECLARE_TEST(real_qz)
79 {
80   int s = 0;
81   for(int i = 0; i < g_repeat; i++) {
82     CALL_SUBTEST_1( real_qz(Matrix4f()) );
83     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
84     CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
85 
86     // some trivial but implementation-wise tricky cases
87     CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
88     CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
89     CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
90     CALL_SUBTEST_4( real_qz(Matrix2d()) );
91   }
92 
93   TEST_SET_BUT_UNUSED_VARIABLE(s)
94 }
95