1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Alexey Korepanov <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_RUNTIME_NO_MALLOC
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14
real_qz(const MatrixType & m)15 template<typename MatrixType> void real_qz(const MatrixType& m)
16 {
17 /* this test covers the following files:
18 RealQZ.h
19 */
20 using std::abs;
21 typedef typename MatrixType::Scalar Scalar;
22
23 Index dim = m.cols();
24
25 MatrixType A = MatrixType::Random(dim,dim),
26 B = MatrixType::Random(dim,dim);
27
28
29 // Regression test for bug 985: Randomly set rows or columns to zero
30 Index k=internal::random<Index>(0, dim-1);
31 switch(internal::random<int>(0,10)) {
32 case 0:
33 A.row(k).setZero(); break;
34 case 1:
35 A.col(k).setZero(); break;
36 case 2:
37 B.row(k).setZero(); break;
38 case 3:
39 B.col(k).setZero(); break;
40 default:
41 break;
42 }
43
44 RealQZ<MatrixType> qz(dim);
45 // TODO enable full-prealocation of required memory, this probably requires an in-place mode for HessenbergDecomposition
46 //Eigen::internal::set_is_malloc_allowed(false);
47 qz.compute(A,B);
48 //Eigen::internal::set_is_malloc_allowed(true);
49
50 VERIFY_IS_EQUAL(qz.info(), Success);
51 // check for zeros
52 bool all_zeros = true;
53 for (Index i=0; i<A.cols(); i++)
54 for (Index j=0; j<i; j++) {
55 if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
56 {
57 std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
58 all_zeros = false;
59 }
60 if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
61 {
62 std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
63 all_zeros = false;
64 }
65 if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
66 {
67 std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
68 all_zeros = false;
69 }
70 }
71 VERIFY_IS_EQUAL(all_zeros, true);
72 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
73 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
74 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
75 VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
76 }
77
EIGEN_DECLARE_TEST(real_qz)78 EIGEN_DECLARE_TEST(real_qz)
79 {
80 int s = 0;
81 for(int i = 0; i < g_repeat; i++) {
82 CALL_SUBTEST_1( real_qz(Matrix4f()) );
83 s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
84 CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
85
86 // some trivial but implementation-wise tricky cases
87 CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
88 CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
89 CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
90 CALL_SUBTEST_4( real_qz(Matrix2d()) );
91 }
92
93 TEST_SET_BUT_UNUSED_VARIABLE(s)
94 }
95