xref: /aosp_15_r20/external/eigen/test/product_selfadjoint.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
product_selfadjoint(const MatrixType & m)12 template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
13 {
14   typedef typename MatrixType::Scalar Scalar;
15   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
16   typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
17 
18   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType;
19 
20   Index rows = m.rows();
21   Index cols = m.cols();
22 
23   MatrixType m1 = MatrixType::Random(rows, cols),
24              m2 = MatrixType::Random(rows, cols),
25              m3;
26   VectorType v1 = VectorType::Random(rows),
27              v2 = VectorType::Random(rows),
28              v3(rows);
29   RowVectorType r1 = RowVectorType::Random(rows),
30                 r2 = RowVectorType::Random(rows);
31   RhsMatrixType m4 = RhsMatrixType::Random(rows,10);
32 
33   Scalar s1 = internal::random<Scalar>(),
34          s2 = internal::random<Scalar>(),
35          s3 = internal::random<Scalar>();
36 
37   m1 = (m1.adjoint() + m1).eval();
38 
39   // rank2 update
40   m2 = m1.template triangularView<Lower>();
41   m2.template selfadjointView<Lower>().rankUpdate(v1,v2);
42   VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix());
43 
44   m2 = m1.template triangularView<Upper>();
45   m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3);
46   VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix());
47 
48   m2 = m1.template triangularView<Upper>();
49   m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1);
50   VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + numext::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix());
51 
52   if (rows>1)
53   {
54     m2 = m1.template triangularView<Lower>();
55     m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1));
56     m3 = m1;
57     m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint();
58     VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix());
59   }
60 }
61 
EIGEN_DECLARE_TEST(product_selfadjoint)62 EIGEN_DECLARE_TEST(product_selfadjoint)
63 {
64   int s = 0;
65   for(int i = 0; i < g_repeat ; i++) {
66     CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) );
67     CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) );
68     CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) );
69 
70     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
71     CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) );
72     TEST_SET_BUT_UNUSED_VARIABLE(s)
73 
74     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
75     CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) );
76     TEST_SET_BUT_UNUSED_VARIABLE(s)
77 
78     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
79     CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) );
80     TEST_SET_BUT_UNUSED_VARIABLE(s)
81 
82     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
83     CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) );
84     TEST_SET_BUT_UNUSED_VARIABLE(s)
85   }
86 }
87