xref: /aosp_15_r20/external/eigen/test/nomalloc.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 // discard stack allocation as that too bypasses malloc
12 #define EIGEN_STACK_ALLOCATION_LIMIT 0
13 // heap allocation will raise an assert if enabled at runtime
14 #define EIGEN_RUNTIME_NO_MALLOC
15 
16 #include "main.h"
17 #include <Eigen/Cholesky>
18 #include <Eigen/Eigenvalues>
19 #include <Eigen/LU>
20 #include <Eigen/QR>
21 #include <Eigen/SVD>
22 
nomalloc(const MatrixType & m)23 template<typename MatrixType> void nomalloc(const MatrixType& m)
24 {
25   /* this test check no dynamic memory allocation are issued with fixed-size matrices
26   */
27   typedef typename MatrixType::Scalar Scalar;
28 
29   Index rows = m.rows();
30   Index cols = m.cols();
31 
32   MatrixType m1 = MatrixType::Random(rows, cols),
33              m2 = MatrixType::Random(rows, cols),
34              m3(rows, cols);
35 
36   Scalar s1 = internal::random<Scalar>();
37 
38   Index r = internal::random<Index>(0, rows-1),
39         c = internal::random<Index>(0, cols-1);
40 
41   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
42   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
43   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
44   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
45 
46   m2.col(0).noalias() = m1 * m1.col(0);
47   m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
48   m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
49   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
50 
51   m2.row(0).noalias() = m1.row(0) * m1;
52   m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
53   m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
54   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
55   VERIFY_IS_APPROX(m2,m2);
56 
57   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
58   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
59   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
60   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
61 
62   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
63   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
64   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
65   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
66   VERIFY_IS_APPROX(m2,m2);
67 
68   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
69   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
70   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
71   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
72 
73   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
74   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
75   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
76   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
77   VERIFY_IS_APPROX(m2,m2);
78 
79   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
80   m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1);
81   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2
82 
83   // The following fancy matrix-matrix products are not safe yet regarding static allocation
84   m2.template selfadjointView<Lower>().rankUpdate(m1);
85   m2 += m2.template triangularView<Upper>() * m1;
86   m2.template triangularView<Upper>() = m2 * m2;
87   m1 += m1.template selfadjointView<Lower>() * m2;
88   VERIFY_IS_APPROX(m2,m2);
89 }
90 
91 template<typename Scalar>
ctms_decompositions()92 void ctms_decompositions()
93 {
94   const int maxSize = 16;
95   const int size    = 12;
96 
97   typedef Eigen::Matrix<Scalar,
98                         Eigen::Dynamic, Eigen::Dynamic,
99                         0,
100                         maxSize, maxSize> Matrix;
101 
102   typedef Eigen::Matrix<Scalar,
103                         Eigen::Dynamic, 1,
104                         0,
105                         maxSize, 1> Vector;
106 
107   typedef Eigen::Matrix<std::complex<Scalar>,
108                         Eigen::Dynamic, Eigen::Dynamic,
109                         0,
110                         maxSize, maxSize> ComplexMatrix;
111 
112   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
113   Matrix X(size,size);
114   const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
115   const Matrix saA = A.adjoint() * A;
116   const Vector b(Vector::Random(size));
117   Vector x(size);
118 
119   // Cholesky module
120   Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
121   X = LLT.solve(B);
122   x = LLT.solve(b);
123   Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
124   X = LDLT.solve(B);
125   x = LDLT.solve(b);
126 
127   // Eigenvalues module
128   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
129   Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
130   Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
131   Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
132   Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
133   Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);
134 
135   // LU module
136   Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
137   X = ppLU.solve(B);
138   x = ppLU.solve(b);
139   Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
140   X = fpLU.solve(B);
141   x = fpLU.solve(b);
142 
143   // QR module
144   Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
145   X = hQR.solve(B);
146   x = hQR.solve(b);
147   Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
148   X = cpQR.solve(B);
149   x = cpQR.solve(b);
150   Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
151   // FIXME X = fpQR.solve(B);
152   x = fpQR.solve(b);
153 
154   // SVD module
155   Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
156 }
157 
test_zerosized()158 void test_zerosized() {
159   // default constructors:
160   Eigen::MatrixXd A;
161   Eigen::VectorXd v;
162   // explicit zero-sized:
163   Eigen::ArrayXXd A0(0,0);
164   Eigen::ArrayXd v0(0);
165 
166   // assigning empty objects to each other:
167   A=A0;
168   v=v0;
169 }
170 
test_reference(const MatrixType & m)171 template<typename MatrixType> void test_reference(const MatrixType& m) {
172   typedef typename MatrixType::Scalar Scalar;
173   enum { Flag          =  MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
174   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
175   Index rows = m.rows(), cols=m.cols();
176   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag         > MatrixX;
177   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
178   // Dynamic reference:
179   typedef Eigen::Ref<const MatrixX  > Ref;
180   typedef Eigen::Ref<const MatrixXT > RefT;
181 
182   Ref r1(m);
183   Ref r2(m.block(rows/3, cols/4, rows/2, cols/2));
184   RefT r3(m.transpose());
185   RefT r4(m.topLeftCorner(rows/2, cols/2).transpose());
186 
187   VERIFY_RAISES_ASSERT(RefT r5(m));
188   VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
189   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
190 
191   // Copy constructors shall also never malloc
192   Ref r8 = r1;
193   RefT r9 = r3;
194 
195   // Initializing from a compatible Ref shall also never malloc
196   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m;
197 
198   // Initializing from an incompatible Ref will malloc:
199   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
200   VERIFY_RAISES_ASSERT(RefAligned r12=r10);
201   VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides
202 
203 }
204 
EIGEN_DECLARE_TEST(nomalloc)205 EIGEN_DECLARE_TEST(nomalloc)
206 {
207   // create some dynamic objects
208   Eigen::MatrixXd M1 = MatrixXd::Random(3,3);
209   Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary
210 
211   // from here on prohibit malloc:
212   Eigen::internal::set_is_malloc_allowed(false);
213 
214   // check that our operator new is indeed called:
215   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
216   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
217   CALL_SUBTEST_2(nomalloc(Matrix4d()) );
218   CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
219 
220   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
221   CALL_SUBTEST_4(ctms_decompositions<float>());
222 
223   CALL_SUBTEST_5(test_zerosized());
224 
225   CALL_SUBTEST_6(test_reference(Matrix<float,32,32>()));
226   CALL_SUBTEST_7(test_reference(R1));
227   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
228 }
229