1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
5 // Copyright (C) 2014 Gael Guennebaud <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 static bool g_called;
12 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
13
14 #include "main.h"
15
linearStructure(const MatrixType & m)16 template<typename MatrixType> void linearStructure(const MatrixType& m)
17 {
18 using std::abs;
19 /* this test covers the following files:
20 CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h
21 */
22 typedef typename MatrixType::Scalar Scalar;
23 typedef typename MatrixType::RealScalar RealScalar;
24
25 Index rows = m.rows();
26 Index cols = m.cols();
27
28 // this test relies a lot on Random.h, and there's not much more that we can do
29 // to test it, hence I consider that we will have tested Random.h
30 MatrixType m1 = MatrixType::Random(rows, cols),
31 m2 = MatrixType::Random(rows, cols),
32 m3(rows, cols);
33
34 Scalar s1 = internal::random<Scalar>();
35 while (abs(s1)<RealScalar(1e-3)) s1 = internal::random<Scalar>();
36
37 Index r = internal::random<Index>(0, rows-1),
38 c = internal::random<Index>(0, cols-1);
39
40 VERIFY_IS_APPROX(-(-m1), m1);
41 VERIFY_IS_APPROX(m1+m1, 2*m1);
42 VERIFY_IS_APPROX(m1+m2-m1, m2);
43 VERIFY_IS_APPROX(-m2+m1+m2, m1);
44 VERIFY_IS_APPROX(m1*s1, s1*m1);
45 VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
46 VERIFY_IS_APPROX((-m1+m2)*s1, -s1*m1+s1*m2);
47 m3 = m2; m3 += m1;
48 VERIFY_IS_APPROX(m3, m1+m2);
49 m3 = m2; m3 -= m1;
50 VERIFY_IS_APPROX(m3, m2-m1);
51 m3 = m2; m3 *= s1;
52 VERIFY_IS_APPROX(m3, s1*m2);
53 if(!NumTraits<Scalar>::IsInteger)
54 {
55 m3 = m2; m3 /= s1;
56 VERIFY_IS_APPROX(m3, m2/s1);
57 }
58
59 // again, test operator() to check const-qualification
60 VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c)));
61 VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c)));
62 VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
63 VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c)));
64 VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1);
65 if(!NumTraits<Scalar>::IsInteger)
66 VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1);
67
68 // use .block to disable vectorization and compare to the vectorized version
69 VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1);
70 VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1));
71 VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1);
72 VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1);
73 }
74
75 // Make sure that complex * real and real * complex are properly optimized
real_complex(DenseIndex rows=MatrixType::RowsAtCompileTime,DenseIndex cols=MatrixType::ColsAtCompileTime)76 template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime)
77 {
78 typedef typename MatrixType::Scalar Scalar;
79 typedef typename MatrixType::RealScalar RealScalar;
80
81 RealScalar s = internal::random<RealScalar>();
82 MatrixType m1 = MatrixType::Random(rows, cols);
83
84 g_called = false;
85 VERIFY_IS_APPROX(s*m1, Scalar(s)*m1);
86 VERIFY(g_called && "real * matrix<complex> not properly optimized");
87
88 g_called = false;
89 VERIFY_IS_APPROX(m1*s, m1*Scalar(s));
90 VERIFY(g_called && "matrix<complex> * real not properly optimized");
91
92 g_called = false;
93 VERIFY_IS_APPROX(m1/s, m1/Scalar(s));
94 VERIFY(g_called && "matrix<complex> / real not properly optimized");
95
96 g_called = false;
97 VERIFY_IS_APPROX(s+m1.array(), Scalar(s)+m1.array());
98 VERIFY(g_called && "real + matrix<complex> not properly optimized");
99
100 g_called = false;
101 VERIFY_IS_APPROX(m1.array()+s, m1.array()+Scalar(s));
102 VERIFY(g_called && "matrix<complex> + real not properly optimized");
103
104 g_called = false;
105 VERIFY_IS_APPROX(s-m1.array(), Scalar(s)-m1.array());
106 VERIFY(g_called && "real - matrix<complex> not properly optimized");
107
108 g_called = false;
109 VERIFY_IS_APPROX(m1.array()-s, m1.array()-Scalar(s));
110 VERIFY(g_called && "matrix<complex> - real not properly optimized");
111 }
112
113 template<int>
linearstructure_overflow()114 void linearstructure_overflow()
115 {
116 // make sure that /=scalar and /scalar do not overflow
117 // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not
118 Matrix4d m2, m3;
119 m3 = m2 = Matrix4d::Random()*1e-20;
120 m2 = m2 / 4.9e-320;
121 VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones());
122 m3 /= 4.9e-320;
123 VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones());
124 }
125
EIGEN_DECLARE_TEST(linearstructure)126 EIGEN_DECLARE_TEST(linearstructure)
127 {
128 g_called = true;
129 VERIFY(g_called); // avoid `unneeded-internal-declaration` warning.
130 for(int i = 0; i < g_repeat; i++) {
131 CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) );
132 CALL_SUBTEST_2( linearStructure(Matrix2f()) );
133 CALL_SUBTEST_3( linearStructure(Vector3d()) );
134 CALL_SUBTEST_4( linearStructure(Matrix4d()) );
135 CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
136 CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
137 CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
138 CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
139 CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
140 CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
141
142 CALL_SUBTEST_11( real_complex<Matrix4cd>() );
143 CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) );
144 CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) );
145 }
146 CALL_SUBTEST_4( linearstructure_overflow<0>() );
147 }
148