1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009-2014 Gael Guennebaud <[email protected]> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H 11 #define EIGEN_SPARSE_SELFADJOINTVIEW_H 12 13 namespace Eigen { 14 15 /** \ingroup SparseCore_Module 16 * \class SparseSelfAdjointView 17 * 18 * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. 19 * 20 * \param MatrixType the type of the dense matrix storing the coefficients 21 * \param Mode can be either \c #Lower or \c #Upper 22 * 23 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix 24 * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() 25 * and most of the time this is the only way that it is used. 26 * 27 * \sa SparseMatrixBase::selfadjointView() 28 */ 29 namespace internal { 30 31 template<typename MatrixType, unsigned int Mode> 32 struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> { 33 }; 34 35 template<int SrcMode,int DstMode,typename MatrixType,int DestOrder> 36 void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); 37 38 template<int Mode,typename MatrixType,int DestOrder> 39 void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0); 40 41 } 42 43 template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView 44 : public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> > 45 { 46 public: 47 48 enum { 49 Mode = _Mode, 50 TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), 51 RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime, 52 ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime 53 }; 54 55 typedef EigenBase<SparseSelfAdjointView> Base; 56 typedef typename MatrixType::Scalar Scalar; 57 typedef typename MatrixType::StorageIndex StorageIndex; 58 typedef Matrix<StorageIndex,Dynamic,1> VectorI; 59 typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested; 60 typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; 61 62 explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) 63 { 64 eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); 65 } 66 67 inline Index rows() const { return m_matrix.rows(); } 68 inline Index cols() const { return m_matrix.cols(); } 69 70 /** \internal \returns a reference to the nested matrix */ 71 const _MatrixTypeNested& matrix() const { return m_matrix; } 72 typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; } 73 74 /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. 75 * 76 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. 77 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. 78 */ 79 template<typename OtherDerived> 80 Product<SparseSelfAdjointView, OtherDerived> 81 operator*(const SparseMatrixBase<OtherDerived>& rhs) const 82 { 83 return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived()); 84 } 85 86 /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. 87 * 88 * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. 89 * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. 90 */ 91 template<typename OtherDerived> friend 92 Product<OtherDerived, SparseSelfAdjointView> 93 operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) 94 { 95 return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs); 96 } 97 98 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ 99 template<typename OtherDerived> 100 Product<SparseSelfAdjointView,OtherDerived> 101 operator*(const MatrixBase<OtherDerived>& rhs) const 102 { 103 return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived()); 104 } 105 106 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ 107 template<typename OtherDerived> friend 108 Product<OtherDerived,SparseSelfAdjointView> 109 operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) 110 { 111 return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs); 112 } 113 114 /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: 115 * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. 116 * 117 * \returns a reference to \c *this 118 * 119 * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply 120 * call this function with u.adjoint(). 121 */ 122 template<typename DerivedU> 123 SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); 124 125 /** \returns an expression of P H P^-1 */ 126 // TODO implement twists in a more evaluator friendly fashion 127 SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const 128 { 129 return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm); 130 } 131 132 template<typename SrcMatrixType,int SrcMode> 133 SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix) 134 { 135 internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); 136 return *this; 137 } 138 139 SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) 140 { 141 PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; 142 return *this = src.twistedBy(pnull); 143 } 144 145 // Since we override the copy-assignment operator, we need to explicitly re-declare the copy-constructor 146 EIGEN_DEFAULT_COPY_CONSTRUCTOR(SparseSelfAdjointView) 147 148 template<typename SrcMatrixType,unsigned int SrcMode> 149 SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src) 150 { 151 PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull; 152 return *this = src.twistedBy(pnull); 153 } 154 155 void resize(Index rows, Index cols) 156 { 157 EIGEN_ONLY_USED_FOR_DEBUG(rows); 158 EIGEN_ONLY_USED_FOR_DEBUG(cols); 159 eigen_assert(rows == this->rows() && cols == this->cols() 160 && "SparseSelfadjointView::resize() does not actually allow to resize."); 161 } 162 163 protected: 164 165 MatrixTypeNested m_matrix; 166 //mutable VectorI m_countPerRow; 167 //mutable VectorI m_countPerCol; 168 private: 169 template<typename Dest> void evalTo(Dest &) const; 170 }; 171 172 /*************************************************************************** 173 * Implementation of SparseMatrixBase methods 174 ***************************************************************************/ 175 176 template<typename Derived> 177 template<unsigned int UpLo> 178 typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const 179 { 180 return SparseSelfAdjointView<const Derived, UpLo>(derived()); 181 } 182 183 template<typename Derived> 184 template<unsigned int UpLo> 185 typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() 186 { 187 return SparseSelfAdjointView<Derived, UpLo>(derived()); 188 } 189 190 /*************************************************************************** 191 * Implementation of SparseSelfAdjointView methods 192 ***************************************************************************/ 193 194 template<typename MatrixType, unsigned int Mode> 195 template<typename DerivedU> 196 SparseSelfAdjointView<MatrixType,Mode>& 197 SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha) 198 { 199 SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint(); 200 if(alpha==Scalar(0)) 201 m_matrix = tmp.template triangularView<Mode>(); 202 else 203 m_matrix += alpha * tmp.template triangularView<Mode>(); 204 205 return *this; 206 } 207 208 namespace internal { 209 210 // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> 211 // in the future selfadjoint-ness should be defined by the expression traits 212 // such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) 213 template<typename MatrixType, unsigned int Mode> 214 struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> > 215 { 216 typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; 217 typedef SparseSelfAdjointShape Shape; 218 }; 219 220 struct SparseSelfAdjoint2Sparse {}; 221 222 template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; }; 223 template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; }; 224 225 template< typename DstXprType, typename SrcXprType, typename Functor> 226 struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse> 227 { 228 typedef typename DstXprType::StorageIndex StorageIndex; 229 typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType; 230 231 template<typename DestScalar,int StorageOrder> 232 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/) 233 { 234 internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst); 235 } 236 237 // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: 238 template<typename DestScalar,int StorageOrder,typename AssignFunc> 239 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func) 240 { 241 SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); 242 run(tmp, src, AssignOpType()); 243 call_assignment_no_alias_no_transpose(dst, tmp, func); 244 } 245 246 template<typename DestScalar,int StorageOrder> 247 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, 248 const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) 249 { 250 SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); 251 run(tmp, src, AssignOpType()); 252 dst += tmp; 253 } 254 255 template<typename DestScalar,int StorageOrder> 256 static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, 257 const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */) 258 { 259 SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols()); 260 run(tmp, src, AssignOpType()); 261 dst -= tmp; 262 } 263 264 template<typename DestScalar> 265 static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/) 266 { 267 // TODO directly evaluate into dst; 268 SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols()); 269 internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp); 270 dst = tmp; 271 } 272 }; 273 274 } // end namespace internal 275 276 /*************************************************************************** 277 * Implementation of sparse self-adjoint time dense matrix 278 ***************************************************************************/ 279 280 namespace internal { 281 282 template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType> 283 inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) 284 { 285 EIGEN_ONLY_USED_FOR_DEBUG(alpha); 286 287 typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested; 288 typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned; 289 typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval; 290 typedef typename LhsEval::InnerIterator LhsIterator; 291 typedef typename SparseLhsType::Scalar LhsScalar; 292 293 enum { 294 LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, 295 ProcessFirstHalf = 296 ((Mode&(Upper|Lower))==(Upper|Lower)) 297 || ( (Mode&Upper) && !LhsIsRowMajor) 298 || ( (Mode&Lower) && LhsIsRowMajor), 299 ProcessSecondHalf = !ProcessFirstHalf 300 }; 301 302 SparseLhsTypeNested lhs_nested(lhs); 303 LhsEval lhsEval(lhs_nested); 304 305 // work on one column at once 306 for (Index k=0; k<rhs.cols(); ++k) 307 { 308 for (Index j=0; j<lhs.outerSize(); ++j) 309 { 310 LhsIterator i(lhsEval,j); 311 // handle diagonal coeff 312 if (ProcessSecondHalf) 313 { 314 while (i && i.index()<j) ++i; 315 if(i && i.index()==j) 316 { 317 res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); 318 ++i; 319 } 320 } 321 322 // premultiplied rhs for scatters 323 typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k)); 324 // accumulator for partial scalar product 325 typename DenseResType::Scalar res_j(0); 326 for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) 327 { 328 LhsScalar lhs_ij = i.value(); 329 if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); 330 res_j += lhs_ij * rhs.coeff(i.index(),k); 331 res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; 332 } 333 res.coeffRef(j,k) += alpha * res_j; 334 335 // handle diagonal coeff 336 if (ProcessFirstHalf && i && (i.index()==j)) 337 res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); 338 } 339 } 340 } 341 342 343 template<typename LhsView, typename Rhs, int ProductType> 344 struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> 345 : generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> > 346 { 347 template<typename Dest> 348 static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) 349 { 350 typedef typename LhsView::_MatrixTypeNested Lhs; 351 typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; 352 typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; 353 LhsNested lhsNested(lhsView.matrix()); 354 RhsNested rhsNested(rhs); 355 356 internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha); 357 } 358 }; 359 360 template<typename Lhs, typename RhsView, int ProductType> 361 struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> 362 : generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> > 363 { 364 template<typename Dest> 365 static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) 366 { 367 typedef typename RhsView::_MatrixTypeNested Rhs; 368 typedef typename nested_eval<Lhs,Dynamic>::type LhsNested; 369 typedef typename nested_eval<Rhs,Dynamic>::type RhsNested; 370 LhsNested lhsNested(lhs); 371 RhsNested rhsNested(rhsView.matrix()); 372 373 // transpose everything 374 Transpose<Dest> dstT(dst); 375 internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); 376 } 377 }; 378 379 // NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix 380 // TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore 381 382 template<typename LhsView, typename Rhs, int ProductTag> 383 struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape> 384 : public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject> 385 { 386 typedef Product<LhsView, Rhs, DefaultProduct> XprType; 387 typedef typename XprType::PlainObject PlainObject; 388 typedef evaluator<PlainObject> Base; 389 390 product_evaluator(const XprType& xpr) 391 : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) 392 { 393 ::new (static_cast<Base*>(this)) Base(m_result); 394 generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs()); 395 } 396 397 protected: 398 typename Rhs::PlainObject m_lhs; 399 PlainObject m_result; 400 }; 401 402 template<typename Lhs, typename RhsView, int ProductTag> 403 struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape> 404 : public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject> 405 { 406 typedef Product<Lhs, RhsView, DefaultProduct> XprType; 407 typedef typename XprType::PlainObject PlainObject; 408 typedef evaluator<PlainObject> Base; 409 410 product_evaluator(const XprType& xpr) 411 : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) 412 { 413 ::new (static_cast<Base*>(this)) Base(m_result); 414 generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs); 415 } 416 417 protected: 418 typename Lhs::PlainObject m_rhs; 419 PlainObject m_result; 420 }; 421 422 } // namespace internal 423 424 /*************************************************************************** 425 * Implementation of symmetric copies and permutations 426 ***************************************************************************/ 427 namespace internal { 428 429 template<int Mode,typename MatrixType,int DestOrder> 430 void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) 431 { 432 typedef typename MatrixType::StorageIndex StorageIndex; 433 typedef typename MatrixType::Scalar Scalar; 434 typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest; 435 typedef Matrix<StorageIndex,Dynamic,1> VectorI; 436 typedef evaluator<MatrixType> MatEval; 437 typedef typename evaluator<MatrixType>::InnerIterator MatIterator; 438 439 MatEval matEval(mat); 440 Dest& dest(_dest.derived()); 441 enum { 442 StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) 443 }; 444 445 Index size = mat.rows(); 446 VectorI count; 447 count.resize(size); 448 count.setZero(); 449 dest.resize(size,size); 450 for(Index j = 0; j<size; ++j) 451 { 452 Index jp = perm ? perm[j] : j; 453 for(MatIterator it(matEval,j); it; ++it) 454 { 455 Index i = it.index(); 456 Index r = it.row(); 457 Index c = it.col(); 458 Index ip = perm ? perm[i] : i; 459 if(Mode==int(Upper|Lower)) 460 count[StorageOrderMatch ? jp : ip]++; 461 else if(r==c) 462 count[ip]++; 463 else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c)) 464 { 465 count[ip]++; 466 count[jp]++; 467 } 468 } 469 } 470 Index nnz = count.sum(); 471 472 // reserve space 473 dest.resizeNonZeros(nnz); 474 dest.outerIndexPtr()[0] = 0; 475 for(Index j=0; j<size; ++j) 476 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; 477 for(Index j=0; j<size; ++j) 478 count[j] = dest.outerIndexPtr()[j]; 479 480 // copy data 481 for(StorageIndex j = 0; j<size; ++j) 482 { 483 for(MatIterator it(matEval,j); it; ++it) 484 { 485 StorageIndex i = internal::convert_index<StorageIndex>(it.index()); 486 Index r = it.row(); 487 Index c = it.col(); 488 489 StorageIndex jp = perm ? perm[j] : j; 490 StorageIndex ip = perm ? perm[i] : i; 491 492 if(Mode==int(Upper|Lower)) 493 { 494 Index k = count[StorageOrderMatch ? jp : ip]++; 495 dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; 496 dest.valuePtr()[k] = it.value(); 497 } 498 else if(r==c) 499 { 500 Index k = count[ip]++; 501 dest.innerIndexPtr()[k] = ip; 502 dest.valuePtr()[k] = it.value(); 503 } 504 else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c)) 505 { 506 if(!StorageOrderMatch) 507 std::swap(ip,jp); 508 Index k = count[jp]++; 509 dest.innerIndexPtr()[k] = ip; 510 dest.valuePtr()[k] = it.value(); 511 k = count[ip]++; 512 dest.innerIndexPtr()[k] = jp; 513 dest.valuePtr()[k] = numext::conj(it.value()); 514 } 515 } 516 } 517 } 518 519 template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder> 520 void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm) 521 { 522 typedef typename MatrixType::StorageIndex StorageIndex; 523 typedef typename MatrixType::Scalar Scalar; 524 SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived()); 525 typedef Matrix<StorageIndex,Dynamic,1> VectorI; 526 typedef evaluator<MatrixType> MatEval; 527 typedef typename evaluator<MatrixType>::InnerIterator MatIterator; 528 529 enum { 530 SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, 531 StorageOrderMatch = int(SrcOrder) == int(DstOrder), 532 DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode, 533 SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode 534 }; 535 536 MatEval matEval(mat); 537 538 Index size = mat.rows(); 539 VectorI count(size); 540 count.setZero(); 541 dest.resize(size,size); 542 for(StorageIndex j = 0; j<size; ++j) 543 { 544 StorageIndex jp = perm ? perm[j] : j; 545 for(MatIterator it(matEval,j); it; ++it) 546 { 547 StorageIndex i = it.index(); 548 if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) 549 continue; 550 551 StorageIndex ip = perm ? perm[i] : i; 552 count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; 553 } 554 } 555 dest.outerIndexPtr()[0] = 0; 556 for(Index j=0; j<size; ++j) 557 dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; 558 dest.resizeNonZeros(dest.outerIndexPtr()[size]); 559 for(Index j=0; j<size; ++j) 560 count[j] = dest.outerIndexPtr()[j]; 561 562 for(StorageIndex j = 0; j<size; ++j) 563 { 564 565 for(MatIterator it(matEval,j); it; ++it) 566 { 567 StorageIndex i = it.index(); 568 if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j)) 569 continue; 570 571 StorageIndex jp = perm ? perm[j] : j; 572 StorageIndex ip = perm? perm[i] : i; 573 574 Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; 575 dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); 576 577 if(!StorageOrderMatch) std::swap(ip,jp); 578 if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp))) 579 dest.valuePtr()[k] = numext::conj(it.value()); 580 else 581 dest.valuePtr()[k] = it.value(); 582 } 583 } 584 } 585 586 } 587 588 // TODO implement twists in a more evaluator friendly fashion 589 590 namespace internal { 591 592 template<typename MatrixType, int Mode> 593 struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> { 594 }; 595 596 } 597 598 template<typename MatrixType,int Mode> 599 class SparseSymmetricPermutationProduct 600 : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> > 601 { 602 public: 603 typedef typename MatrixType::Scalar Scalar; 604 typedef typename MatrixType::StorageIndex StorageIndex; 605 enum { 606 RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime, 607 ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime 608 }; 609 protected: 610 typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm; 611 public: 612 typedef Matrix<StorageIndex,Dynamic,1> VectorI; 613 typedef typename MatrixType::Nested MatrixTypeNested; 614 typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression; 615 616 SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) 617 : m_matrix(mat), m_perm(perm) 618 {} 619 620 inline Index rows() const { return m_matrix.rows(); } 621 inline Index cols() const { return m_matrix.cols(); } 622 623 const NestedExpression& matrix() const { return m_matrix; } 624 const Perm& perm() const { return m_perm; } 625 626 protected: 627 MatrixTypeNested m_matrix; 628 const Perm& m_perm; 629 630 }; 631 632 namespace internal { 633 634 template<typename DstXprType, typename MatrixType, int Mode, typename Scalar> 635 struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse> 636 { 637 typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType; 638 typedef typename DstXprType::StorageIndex DstIndex; 639 template<int Options> 640 static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) 641 { 642 // internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data()); 643 SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp; 644 internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data()); 645 dst = tmp; 646 } 647 648 template<typename DestType,unsigned int DestMode> 649 static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &) 650 { 651 internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data()); 652 } 653 }; 654 655 } // end namespace internal 656 657 } // end namespace Eigen 658 659 #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H 660