1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" 5 // research report written by Ming Gu and Stanley C.Eisenstat 6 // The code variable names correspond to the names they used in their 7 // report 8 // 9 // Copyright (C) 2013 Gauthier Brun <[email protected]> 10 // Copyright (C) 2013 Nicolas Carre <[email protected]> 11 // Copyright (C) 2013 Jean Ceccato <[email protected]> 12 // Copyright (C) 2013 Pierre Zoppitelli <[email protected]> 13 // Copyright (C) 2013 Jitse Niesen <[email protected]> 14 // Copyright (C) 2014-2017 Gael Guennebaud <[email protected]> 15 // 16 // Source Code Form is subject to the terms of the Mozilla 17 // Public License v. 2.0. If a copy of the MPL was not distributed 18 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 19 20 #ifndef EIGEN_BDCSVD_H 21 #define EIGEN_BDCSVD_H 22 // #define EIGEN_BDCSVD_DEBUG_VERBOSE 23 // #define EIGEN_BDCSVD_SANITY_CHECKS 24 25 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 26 #undef eigen_internal_assert 27 #define eigen_internal_assert(X) assert(X); 28 #endif 29 30 namespace Eigen { 31 32 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 33 IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); 34 #endif 35 36 template<typename _MatrixType> class BDCSVD; 37 38 namespace internal { 39 40 template<typename _MatrixType> 41 struct traits<BDCSVD<_MatrixType> > 42 : traits<_MatrixType> 43 { 44 typedef _MatrixType MatrixType; 45 }; 46 47 } // end namespace internal 48 49 50 /** \ingroup SVD_Module 51 * 52 * 53 * \class BDCSVD 54 * 55 * \brief class Bidiagonal Divide and Conquer SVD 56 * 57 * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition 58 * 59 * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, 60 * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. 61 * You can control the switching size with the setSwitchSize() method, default is 16. 62 * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly 63 * recommended and can several order of magnitude faster. 64 * 65 * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. 66 * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless 67 * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will 68 * significantly degrade the accuracy. 69 * 70 * \sa class JacobiSVD 71 */ 72 template<typename _MatrixType> 73 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> > 74 { 75 typedef SVDBase<BDCSVD> Base; 76 77 public: 78 using Base::rows; 79 using Base::cols; 80 using Base::computeU; 81 using Base::computeV; 82 83 typedef _MatrixType MatrixType; 84 typedef typename MatrixType::Scalar Scalar; 85 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 86 typedef typename NumTraits<RealScalar>::Literal Literal; 87 enum { 88 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 89 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 90 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), 91 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 92 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 93 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), 94 MatrixOptions = MatrixType::Options 95 }; 96 97 typedef typename Base::MatrixUType MatrixUType; 98 typedef typename Base::MatrixVType MatrixVType; 99 typedef typename Base::SingularValuesType SingularValuesType; 100 101 typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; 102 typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; 103 typedef Matrix<RealScalar, Dynamic, 1> VectorType; 104 typedef Array<RealScalar, Dynamic, 1> ArrayXr; 105 typedef Array<Index,1,Dynamic> ArrayXi; 106 typedef Ref<ArrayXr> ArrayRef; 107 typedef Ref<ArrayXi> IndicesRef; 108 109 /** \brief Default Constructor. 110 * 111 * The default constructor is useful in cases in which the user intends to 112 * perform decompositions via BDCSVD::compute(const MatrixType&). 113 */ 114 BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0) 115 {} 116 117 118 /** \brief Default Constructor with memory preallocation 119 * 120 * Like the default constructor but with preallocation of the internal data 121 * according to the specified problem size. 122 * \sa BDCSVD() 123 */ 124 BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) 125 : m_algoswap(16), m_numIters(0) 126 { 127 allocate(rows, cols, computationOptions); 128 } 129 130 /** \brief Constructor performing the decomposition of given matrix. 131 * 132 * \param matrix the matrix to decompose 133 * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. 134 * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 135 * #ComputeFullV, #ComputeThinV. 136 * 137 * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not 138 * available with the (non - default) FullPivHouseholderQR preconditioner. 139 */ 140 BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) 141 : m_algoswap(16), m_numIters(0) 142 { 143 compute(matrix, computationOptions); 144 } 145 146 ~BDCSVD() 147 { 148 } 149 150 /** \brief Method performing the decomposition of given matrix using custom options. 151 * 152 * \param matrix the matrix to decompose 153 * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. 154 * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 155 * #ComputeFullV, #ComputeThinV. 156 * 157 * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not 158 * available with the (non - default) FullPivHouseholderQR preconditioner. 159 */ 160 BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); 161 162 /** \brief Method performing the decomposition of given matrix using current options. 163 * 164 * \param matrix the matrix to decompose 165 * 166 * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). 167 */ 168 BDCSVD& compute(const MatrixType& matrix) 169 { 170 return compute(matrix, this->m_computationOptions); 171 } 172 173 void setSwitchSize(int s) 174 { 175 eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); 176 m_algoswap = s; 177 } 178 179 private: 180 void allocate(Index rows, Index cols, unsigned int computationOptions); 181 void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); 182 void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); 183 void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); 184 void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); 185 void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); 186 void deflation43(Index firstCol, Index shift, Index i, Index size); 187 void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); 188 void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); 189 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> 190 void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); 191 void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1); 192 static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); 193 194 protected: 195 MatrixXr m_naiveU, m_naiveV; 196 MatrixXr m_computed; 197 Index m_nRec; 198 ArrayXr m_workspace; 199 ArrayXi m_workspaceI; 200 int m_algoswap; 201 bool m_isTranspose, m_compU, m_compV; 202 203 using Base::m_singularValues; 204 using Base::m_diagSize; 205 using Base::m_computeFullU; 206 using Base::m_computeFullV; 207 using Base::m_computeThinU; 208 using Base::m_computeThinV; 209 using Base::m_matrixU; 210 using Base::m_matrixV; 211 using Base::m_info; 212 using Base::m_isInitialized; 213 using Base::m_nonzeroSingularValues; 214 215 public: 216 int m_numIters; 217 }; //end class BDCSVD 218 219 220 // Method to allocate and initialize matrix and attributes 221 template<typename MatrixType> 222 void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions) 223 { 224 m_isTranspose = (cols > rows); 225 226 if (Base::allocate(rows, cols, computationOptions)) 227 return; 228 229 m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize ); 230 m_compU = computeV(); 231 m_compV = computeU(); 232 if (m_isTranspose) 233 std::swap(m_compU, m_compV); 234 235 if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 ); 236 else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 ); 237 238 if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize); 239 240 m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3); 241 m_workspaceI.resize(3*m_diagSize); 242 }// end allocate 243 244 template<typename MatrixType> 245 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) 246 { 247 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 248 std::cout << "\n\n\n======================================================================================================================\n\n\n"; 249 #endif 250 allocate(matrix.rows(), matrix.cols(), computationOptions); 251 using std::abs; 252 253 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); 254 255 //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return 256 if(matrix.cols() < m_algoswap) 257 { 258 // FIXME this line involves temporaries 259 JacobiSVD<MatrixType> jsvd(matrix,computationOptions); 260 m_isInitialized = true; 261 m_info = jsvd.info(); 262 if (m_info == Success || m_info == NoConvergence) { 263 if(computeU()) m_matrixU = jsvd.matrixU(); 264 if(computeV()) m_matrixV = jsvd.matrixV(); 265 m_singularValues = jsvd.singularValues(); 266 m_nonzeroSingularValues = jsvd.nonzeroSingularValues(); 267 } 268 return *this; 269 } 270 271 //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows 272 RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); 273 if (!(numext::isfinite)(scale)) { 274 m_isInitialized = true; 275 m_info = InvalidInput; 276 return *this; 277 } 278 279 if(scale==Literal(0)) scale = Literal(1); 280 MatrixX copy; 281 if (m_isTranspose) copy = matrix.adjoint()/scale; 282 else copy = matrix/scale; 283 284 //**** step 1 - Bidiagonalization 285 // FIXME this line involves temporaries 286 internal::UpperBidiagonalization<MatrixX> bid(copy); 287 288 //**** step 2 - Divide & Conquer 289 m_naiveU.setZero(); 290 m_naiveV.setZero(); 291 // FIXME this line involves a temporary matrix 292 m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); 293 m_computed.template bottomRows<1>().setZero(); 294 divide(0, m_diagSize - 1, 0, 0, 0); 295 if (m_info != Success && m_info != NoConvergence) { 296 m_isInitialized = true; 297 return *this; 298 } 299 300 //**** step 3 - Copy singular values and vectors 301 for (int i=0; i<m_diagSize; i++) 302 { 303 RealScalar a = abs(m_computed.coeff(i, i)); 304 m_singularValues.coeffRef(i) = a * scale; 305 if (a<considerZero) 306 { 307 m_nonzeroSingularValues = i; 308 m_singularValues.tail(m_diagSize - i - 1).setZero(); 309 break; 310 } 311 else if (i == m_diagSize - 1) 312 { 313 m_nonzeroSingularValues = i + 1; 314 break; 315 } 316 } 317 318 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 319 // std::cout << "m_naiveU\n" << m_naiveU << "\n\n"; 320 // std::cout << "m_naiveV\n" << m_naiveV << "\n\n"; 321 #endif 322 if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); 323 else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); 324 325 m_isInitialized = true; 326 return *this; 327 }// end compute 328 329 330 template<typename MatrixType> 331 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> 332 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV) 333 { 334 // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa 335 if (computeU()) 336 { 337 Index Ucols = m_computeThinU ? m_diagSize : householderU.cols(); 338 m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); 339 m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); 340 householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer 341 } 342 if (computeV()) 343 { 344 Index Vcols = m_computeThinV ? m_diagSize : householderV.cols(); 345 m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); 346 m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); 347 householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer 348 } 349 } 350 351 /** \internal 352 * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: 353 * A = [A1] 354 * [A2] 355 * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. 356 * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large 357 * enough. 358 */ 359 template<typename MatrixType> 360 void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1) 361 { 362 Index n = A.rows(); 363 if(n>100) 364 { 365 // If the matrices are large enough, let's exploit the sparse structure of A by 366 // splitting it in half (wrt n1), and packing the non-zero columns. 367 Index n2 = n - n1; 368 Map<MatrixXr> A1(m_workspace.data() , n1, n); 369 Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n); 370 Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n); 371 Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n); 372 Index k1=0, k2=0; 373 for(Index j=0; j<n; ++j) 374 { 375 if( (A.col(j).head(n1).array()!=Literal(0)).any() ) 376 { 377 A1.col(k1) = A.col(j).head(n1); 378 B1.row(k1) = B.row(j); 379 ++k1; 380 } 381 if( (A.col(j).tail(n2).array()!=Literal(0)).any() ) 382 { 383 A2.col(k2) = A.col(j).tail(n2); 384 B2.row(k2) = B.row(j); 385 ++k2; 386 } 387 } 388 389 A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1); 390 A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); 391 } 392 else 393 { 394 Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n); 395 tmp.noalias() = A*B; 396 A = tmp; 397 } 398 } 399 400 // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the 401 // place of the submatrix we are currently working on. 402 403 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; 404 //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; 405 // lastCol + 1 - firstCol is the size of the submatrix. 406 //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) 407 //@param firstRowW : Same as firstRowW with the column. 408 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix 409 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. 410 template<typename MatrixType> 411 void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift) 412 { 413 // requires rows = cols + 1; 414 using std::pow; 415 using std::sqrt; 416 using std::abs; 417 const Index n = lastCol - firstCol + 1; 418 const Index k = n/2; 419 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); 420 RealScalar alphaK; 421 RealScalar betaK; 422 RealScalar r0; 423 RealScalar lambda, phi, c0, s0; 424 VectorType l, f; 425 // We use the other algorithm which is more efficient for small 426 // matrices. 427 if (n < m_algoswap) 428 { 429 // FIXME this line involves temporaries 430 JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)); 431 m_info = b.info(); 432 if (m_info != Success && m_info != NoConvergence) return; 433 if (m_compU) 434 m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU(); 435 else 436 { 437 m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0); 438 m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n); 439 } 440 if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV(); 441 m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); 442 m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); 443 return; 444 } 445 // We use the divide and conquer algorithm 446 alphaK = m_computed(firstCol + k, firstCol + k); 447 betaK = m_computed(firstCol + k + 1, firstCol + k); 448 // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices 449 // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the 450 // right submatrix before the left one. 451 divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); 452 if (m_info != Success && m_info != NoConvergence) return; 453 divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); 454 if (m_info != Success && m_info != NoConvergence) return; 455 456 if (m_compU) 457 { 458 lambda = m_naiveU(firstCol + k, firstCol + k); 459 phi = m_naiveU(firstCol + k + 1, lastCol + 1); 460 } 461 else 462 { 463 lambda = m_naiveU(1, firstCol + k); 464 phi = m_naiveU(0, lastCol + 1); 465 } 466 r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); 467 if (m_compU) 468 { 469 l = m_naiveU.row(firstCol + k).segment(firstCol, k); 470 f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); 471 } 472 else 473 { 474 l = m_naiveU.row(1).segment(firstCol, k); 475 f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); 476 } 477 if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); 478 if (r0<considerZero) 479 { 480 c0 = Literal(1); 481 s0 = Literal(0); 482 } 483 else 484 { 485 c0 = alphaK * lambda / r0; 486 s0 = betaK * phi / r0; 487 } 488 489 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 490 assert(m_naiveU.allFinite()); 491 assert(m_naiveV.allFinite()); 492 assert(m_computed.allFinite()); 493 #endif 494 495 if (m_compU) 496 { 497 MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); 498 // we shiftW Q1 to the right 499 for (Index i = firstCol + k - 1; i >= firstCol; i--) 500 m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); 501 // we shift q1 at the left with a factor c0 502 m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); 503 // last column = q1 * - s0 504 m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); 505 // first column = q2 * s0 506 m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; 507 // q2 *= c0 508 m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; 509 } 510 else 511 { 512 RealScalar q1 = m_naiveU(0, firstCol + k); 513 // we shift Q1 to the right 514 for (Index i = firstCol + k - 1; i >= firstCol; i--) 515 m_naiveU(0, i + 1) = m_naiveU(0, i); 516 // we shift q1 at the left with a factor c0 517 m_naiveU(0, firstCol) = (q1 * c0); 518 // last column = q1 * - s0 519 m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); 520 // first column = q2 * s0 521 m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; 522 // q2 *= c0 523 m_naiveU(1, lastCol + 1) *= c0; 524 m_naiveU.row(1).segment(firstCol + 1, k).setZero(); 525 m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); 526 } 527 528 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 529 assert(m_naiveU.allFinite()); 530 assert(m_naiveV.allFinite()); 531 assert(m_computed.allFinite()); 532 #endif 533 534 m_computed(firstCol + shift, firstCol + shift) = r0; 535 m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); 536 m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); 537 538 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 539 ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); 540 #endif 541 // Second part: try to deflate singular values in combined matrix 542 deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); 543 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 544 ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); 545 std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; 546 std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; 547 std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; 548 static int count = 0; 549 std::cout << "# " << ++count << "\n\n"; 550 assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); 551 // assert(count<681); 552 // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); 553 #endif 554 555 // Third part: compute SVD of combined matrix 556 MatrixXr UofSVD, VofSVD; 557 VectorType singVals; 558 computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); 559 560 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 561 assert(UofSVD.allFinite()); 562 assert(VofSVD.allFinite()); 563 #endif 564 565 if (m_compU) 566 structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); 567 else 568 { 569 Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1); 570 tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; 571 m_naiveU.middleCols(firstCol, n + 1) = tmp; 572 } 573 574 if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); 575 576 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 577 assert(m_naiveU.allFinite()); 578 assert(m_naiveV.allFinite()); 579 assert(m_computed.allFinite()); 580 #endif 581 582 m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); 583 m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; 584 }// end divide 585 586 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in 587 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing 588 // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except 589 // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. 590 // 591 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better 592 // handling of round-off errors, be consistent in ordering 593 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf 594 template <typename MatrixType> 595 void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) 596 { 597 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); 598 using std::abs; 599 ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); 600 m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); 601 ArrayRef diag = m_workspace.head(n); 602 diag(0) = Literal(0); 603 604 // Allocate space for singular values and vectors 605 singVals.resize(n); 606 U.resize(n+1, n+1); 607 if (m_compV) V.resize(n, n); 608 609 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 610 if (col0.hasNaN() || diag.hasNaN()) 611 std::cout << "\n\nHAS NAN\n\n"; 612 #endif 613 614 // Many singular values might have been deflated, the zero ones have been moved to the end, 615 // but others are interleaved and we must ignore them at this stage. 616 // To this end, let's compute a permutation skipping them: 617 Index actual_n = n; 618 while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); } 619 Index m = 0; // size of the deflated problem 620 for(Index k=0;k<actual_n;++k) 621 if(abs(col0(k))>considerZero) 622 m_workspaceI(m++) = k; 623 Map<ArrayXi> perm(m_workspaceI.data(),m); 624 625 Map<ArrayXr> shifts(m_workspace.data()+1*n, n); 626 Map<ArrayXr> mus(m_workspace.data()+2*n, n); 627 Map<ArrayXr> zhat(m_workspace.data()+3*n, n); 628 629 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 630 std::cout << "computeSVDofM using:\n"; 631 std::cout << " z: " << col0.transpose() << "\n"; 632 std::cout << " d: " << diag.transpose() << "\n"; 633 #endif 634 635 // Compute singVals, shifts, and mus 636 computeSingVals(col0, diag, perm, singVals, shifts, mus); 637 638 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 639 std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; 640 std::cout << " sing-val: " << singVals.transpose() << "\n"; 641 std::cout << " mu: " << mus.transpose() << "\n"; 642 std::cout << " shift: " << shifts.transpose() << "\n"; 643 644 { 645 std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n"; 646 std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; 647 assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all()); 648 std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; 649 assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all()); 650 } 651 #endif 652 653 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 654 assert(singVals.allFinite()); 655 assert(mus.allFinite()); 656 assert(shifts.allFinite()); 657 #endif 658 659 // Compute zhat 660 perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); 661 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 662 std::cout << " zhat: " << zhat.transpose() << "\n"; 663 #endif 664 665 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 666 assert(zhat.allFinite()); 667 #endif 668 669 computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); 670 671 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 672 std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; 673 std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; 674 #endif 675 676 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 677 assert(m_naiveU.allFinite()); 678 assert(m_naiveV.allFinite()); 679 assert(m_computed.allFinite()); 680 assert(U.allFinite()); 681 assert(V.allFinite()); 682 // assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); 683 // assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); 684 #endif 685 686 // Because of deflation, the singular values might not be completely sorted. 687 // Fortunately, reordering them is a O(n) problem 688 for(Index i=0; i<actual_n-1; ++i) 689 { 690 if(singVals(i)>singVals(i+1)) 691 { 692 using std::swap; 693 swap(singVals(i),singVals(i+1)); 694 U.col(i).swap(U.col(i+1)); 695 if(m_compV) V.col(i).swap(V.col(i+1)); 696 } 697 } 698 699 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 700 { 701 bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all(); 702 if(!singular_values_sorted) 703 std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n"; 704 assert(singular_values_sorted); 705 } 706 #endif 707 708 // Reverse order so that singular values in increased order 709 // Because of deflation, the zeros singular-values are already at the end 710 singVals.head(actual_n).reverseInPlace(); 711 U.leftCols(actual_n).rowwise().reverseInPlace(); 712 if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); 713 714 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 715 JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) ); 716 std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; 717 std::cout << " * sing-val: " << singVals.transpose() << "\n"; 718 // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; 719 #endif 720 } 721 722 template <typename MatrixType> 723 typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift) 724 { 725 Index m = perm.size(); 726 RealScalar res = Literal(1); 727 for(Index i=0; i<m; ++i) 728 { 729 Index j = perm(i); 730 // The following expression could be rewritten to involve only a single division, 731 // but this would make the expression more sensitive to overflow. 732 res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); 733 } 734 return res; 735 736 } 737 738 template <typename MatrixType> 739 void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, 740 VectorType& singVals, ArrayRef shifts, ArrayRef mus) 741 { 742 using std::abs; 743 using std::swap; 744 using std::sqrt; 745 746 Index n = col0.size(); 747 Index actual_n = n; 748 // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above 749 // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. 750 while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n; 751 752 for (Index k = 0; k < n; ++k) 753 { 754 if (col0(k) == Literal(0) || actual_n==1) 755 { 756 // if col0(k) == 0, then entry is deflated, so singular value is on diagonal 757 // if actual_n==1, then the deflated problem is already diagonalized 758 singVals(k) = k==0 ? col0(0) : diag(k); 759 mus(k) = Literal(0); 760 shifts(k) = k==0 ? col0(0) : diag(k); 761 continue; 762 } 763 764 // otherwise, use secular equation to find singular value 765 RealScalar left = diag(k); 766 RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); 767 if(k==actual_n-1) 768 right = (diag(actual_n-1) + col0.matrix().norm()); 769 else 770 { 771 // Skip deflated singular values, 772 // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. 773 // This should be equivalent to using perm[] 774 Index l = k+1; 775 while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); } 776 right = diag(l); 777 } 778 779 // first decide whether it's closer to the left end or the right end 780 RealScalar mid = left + (right-left) / Literal(2); 781 RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); 782 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 783 std::cout << "right-left = " << right-left << "\n"; 784 // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left) 785 // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n"; 786 std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0) 787 << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0) 788 << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0) 789 << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0) 790 << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0) 791 << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0) 792 << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0) 793 << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0) 794 << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0) 795 << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0) 796 << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0) 797 << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0) 798 << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n"; 799 #endif 800 RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right; 801 802 // measure everything relative to shift 803 Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n); 804 diagShifted = diag - shift; 805 806 if(k!=actual_n-1) 807 { 808 // check that after the shift, f(mid) is still negative: 809 RealScalar midShifted = (right - left) / RealScalar(2); 810 if(shift==right) 811 midShifted = -midShifted; 812 RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift); 813 if(fMidShifted>0) 814 { 815 // fMid was erroneous, fix it: 816 shift = fMidShifted > Literal(0) ? left : right; 817 diagShifted = diag - shift; 818 } 819 } 820 821 // initial guess 822 RealScalar muPrev, muCur; 823 if (shift == left) 824 { 825 muPrev = (right - left) * RealScalar(0.1); 826 if (k == actual_n-1) muCur = right - left; 827 else muCur = (right - left) * RealScalar(0.5); 828 } 829 else 830 { 831 muPrev = -(right - left) * RealScalar(0.1); 832 muCur = -(right - left) * RealScalar(0.5); 833 } 834 835 RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); 836 RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); 837 if (abs(fPrev) < abs(fCur)) 838 { 839 swap(fPrev, fCur); 840 swap(muPrev, muCur); 841 } 842 843 // rational interpolation: fit a function of the form a / mu + b through the two previous 844 // iterates and use its zero to compute the next iterate 845 bool useBisection = fPrev*fCur>Literal(0); 846 while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection) 847 { 848 ++m_numIters; 849 850 // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. 851 RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); 852 RealScalar b = fCur - a / muCur; 853 // And find mu such that f(mu)==0: 854 RealScalar muZero = -a/b; 855 RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); 856 857 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 858 assert((numext::isfinite)(fZero)); 859 #endif 860 861 muPrev = muCur; 862 fPrev = fCur; 863 muCur = muZero; 864 fCur = fZero; 865 866 if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true; 867 if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; 868 if (abs(fCur)>abs(fPrev)) useBisection = true; 869 } 870 871 // fall back on bisection method if rational interpolation did not work 872 if (useBisection) 873 { 874 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 875 std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; 876 #endif 877 RealScalar leftShifted, rightShifted; 878 if (shift == left) 879 { 880 // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), 881 // the factor 2 is to be more conservative 882 leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); 883 884 // check that we did it right: 885 eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); 886 // I don't understand why the case k==0 would be special there: 887 // if (k == 0) rightShifted = right - left; else 888 rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe 889 } 890 else 891 { 892 leftShifted = -(right - left) * RealScalar(0.51); 893 if(k+1<n) 894 rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); 895 else 896 rightShifted = -(std::numeric_limits<RealScalar>::min)(); 897 } 898 899 RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); 900 eigen_internal_assert(fLeft<Literal(0)); 901 902 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS 903 RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); 904 #endif 905 906 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 907 if(!(numext::isfinite)(fLeft)) 908 std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n"; 909 assert((numext::isfinite)(fLeft)); 910 911 if(!(numext::isfinite)(fRight)) 912 std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n"; 913 // assert((numext::isfinite)(fRight)); 914 #endif 915 916 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 917 if(!(fLeft * fRight<0)) 918 { 919 std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; " 920 << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n"; 921 std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " 922 << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift 923 << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift) 924 << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n"; 925 } 926 #endif 927 eigen_internal_assert(fLeft * fRight < Literal(0)); 928 929 if(fLeft<Literal(0)) 930 { 931 while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) 932 { 933 RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); 934 fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); 935 eigen_internal_assert((numext::isfinite)(fMid)); 936 937 if (fLeft * fMid < Literal(0)) 938 { 939 rightShifted = midShifted; 940 } 941 else 942 { 943 leftShifted = midShifted; 944 fLeft = fMid; 945 } 946 } 947 muCur = (leftShifted + rightShifted) / Literal(2); 948 } 949 else 950 { 951 // We have a problem as shifting on the left or right give either a positive or negative value 952 // at the middle of [left,right]... 953 // Instead fo abbording or entering an infinite loop, 954 // let's just use the middle as the estimated zero-crossing: 955 muCur = (right - left) * RealScalar(0.5); 956 if(shift == right) 957 muCur = -muCur; 958 } 959 } 960 961 singVals[k] = shift + muCur; 962 shifts[k] = shift; 963 mus[k] = muCur; 964 965 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 966 if(k+1<n) 967 std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n"; 968 #endif 969 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 970 assert(k==0 || singVals[k]>=singVals[k-1]); 971 assert(singVals[k]>=diag(k)); 972 #endif 973 974 // perturb singular value slightly if it equals diagonal entry to avoid division by zero later 975 // (deflation is supposed to avoid this from happening) 976 // - this does no seem to be necessary anymore - 977 // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); 978 // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); 979 } 980 } 981 982 983 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) 984 template <typename MatrixType> 985 void BDCSVD<MatrixType>::perturbCol0 986 (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, 987 const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat) 988 { 989 using std::sqrt; 990 Index n = col0.size(); 991 Index m = perm.size(); 992 if(m==0) 993 { 994 zhat.setZero(); 995 return; 996 } 997 Index lastIdx = perm(m-1); 998 // The offset permits to skip deflated entries while computing zhat 999 for (Index k = 0; k < n; ++k) 1000 { 1001 if (col0(k) == Literal(0)) // deflated 1002 zhat(k) = Literal(0); 1003 else 1004 { 1005 // see equation (3.6) 1006 RealScalar dk = diag(k); 1007 RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk)); 1008 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1009 if(prod<0) { 1010 std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n"; 1011 std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n"; 1012 std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n"; 1013 } 1014 assert(prod>=0); 1015 #endif 1016 1017 for(Index l = 0; l<m; ++l) 1018 { 1019 Index i = perm(l); 1020 if(i!=k) 1021 { 1022 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1023 if(i>=k && (l==0 || l-1>=m)) 1024 { 1025 std::cout << "Error in perturbCol0\n"; 1026 std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n"; 1027 std::cout << " " <<diag(i) << "\n"; 1028 Index j = (i<k /*|| l==0*/) ? i : perm(l-1); 1029 std::cout << " " << "j=" << j << "\n"; 1030 } 1031 #endif 1032 Index j = i<k ? i : perm(l-1); 1033 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1034 if(!(dk!=Literal(0) || diag(i)!=Literal(0))) 1035 { 1036 std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n"; 1037 } 1038 assert(dk!=Literal(0) || diag(i)!=Literal(0)); 1039 #endif 1040 prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk))); 1041 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1042 assert(prod>=0); 1043 #endif 1044 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1045 if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 ) 1046 std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) 1047 << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n"; 1048 #endif 1049 } 1050 } 1051 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1052 std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n"; 1053 #endif 1054 RealScalar tmp = sqrt(prod); 1055 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1056 assert((numext::isfinite)(tmp)); 1057 #endif 1058 zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp); 1059 } 1060 } 1061 } 1062 1063 // compute singular vectors 1064 template <typename MatrixType> 1065 void BDCSVD<MatrixType>::computeSingVecs 1066 (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, 1067 const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V) 1068 { 1069 Index n = zhat.size(); 1070 Index m = perm.size(); 1071 1072 for (Index k = 0; k < n; ++k) 1073 { 1074 if (zhat(k) == Literal(0)) 1075 { 1076 U.col(k) = VectorType::Unit(n+1, k); 1077 if (m_compV) V.col(k) = VectorType::Unit(n, k); 1078 } 1079 else 1080 { 1081 U.col(k).setZero(); 1082 for(Index l=0;l<m;++l) 1083 { 1084 Index i = perm(l); 1085 U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); 1086 } 1087 U(n,k) = Literal(0); 1088 U.col(k).normalize(); 1089 1090 if (m_compV) 1091 { 1092 V.col(k).setZero(); 1093 for(Index l=1;l<m;++l) 1094 { 1095 Index i = perm(l); 1096 V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); 1097 } 1098 V(0,k) = Literal(-1); 1099 V.col(k).normalize(); 1100 } 1101 } 1102 } 1103 U.col(n) = VectorType::Unit(n+1, n); 1104 } 1105 1106 1107 // page 12_13 1108 // i >= 1, di almost null and zi non null. 1109 // We use a rotation to zero out zi applied to the left of M 1110 template <typename MatrixType> 1111 void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift, Eigen::Index i, Eigen::Index size) 1112 { 1113 using std::abs; 1114 using std::sqrt; 1115 using std::pow; 1116 Index start = firstCol + shift; 1117 RealScalar c = m_computed(start, start); 1118 RealScalar s = m_computed(start+i, start); 1119 RealScalar r = numext::hypot(c,s); 1120 if (r == Literal(0)) 1121 { 1122 m_computed(start+i, start+i) = Literal(0); 1123 return; 1124 } 1125 m_computed(start,start) = r; 1126 m_computed(start+i, start) = Literal(0); 1127 m_computed(start+i, start+i) = Literal(0); 1128 1129 JacobiRotation<RealScalar> J(c/r,-s/r); 1130 if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); 1131 else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); 1132 }// end deflation 43 1133 1134 1135 // page 13 1136 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) 1137 // We apply two rotations to have zj = 0; 1138 // TODO deflation44 is still broken and not properly tested 1139 template <typename MatrixType> 1140 void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index firstColm, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index i, Eigen::Index j, Eigen::Index size) 1141 { 1142 using std::abs; 1143 using std::sqrt; 1144 using std::conj; 1145 using std::pow; 1146 RealScalar c = m_computed(firstColm+i, firstColm); 1147 RealScalar s = m_computed(firstColm+j, firstColm); 1148 RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); 1149 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1150 std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " 1151 << m_computed(firstColm + i-1, firstColm) << " " 1152 << m_computed(firstColm + i, firstColm) << " " 1153 << m_computed(firstColm + i+1, firstColm) << " " 1154 << m_computed(firstColm + i+2, firstColm) << "\n"; 1155 std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " " 1156 << m_computed(firstColm + i, firstColm+i) << " " 1157 << m_computed(firstColm + i+1, firstColm+i+1) << " " 1158 << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; 1159 #endif 1160 if (r==Literal(0)) 1161 { 1162 m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); 1163 return; 1164 } 1165 c/=r; 1166 s/=r; 1167 m_computed(firstColm + i, firstColm) = r; 1168 m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); 1169 m_computed(firstColm + j, firstColm) = Literal(0); 1170 1171 JacobiRotation<RealScalar> J(c,-s); 1172 if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); 1173 else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); 1174 if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); 1175 }// end deflation 44 1176 1177 1178 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] 1179 template <typename MatrixType> 1180 void BDCSVD<MatrixType>::deflation(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index k, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift) 1181 { 1182 using std::sqrt; 1183 using std::abs; 1184 const Index length = lastCol + 1 - firstCol; 1185 1186 Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1); 1187 Diagonal<MatrixXr> fulldiag(m_computed); 1188 VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length); 1189 1190 const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); 1191 RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); 1192 RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag); 1193 RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); 1194 1195 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1196 assert(m_naiveU.allFinite()); 1197 assert(m_naiveV.allFinite()); 1198 assert(m_computed.allFinite()); 1199 #endif 1200 1201 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1202 std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n"; 1203 #endif 1204 1205 //condition 4.1 1206 if (diag(0) < epsilon_coarse) 1207 { 1208 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1209 std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; 1210 #endif 1211 diag(0) = epsilon_coarse; 1212 } 1213 1214 //condition 4.2 1215 for (Index i=1;i<length;++i) 1216 if (abs(col0(i)) < epsilon_strict) 1217 { 1218 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1219 std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n"; 1220 #endif 1221 col0(i) = Literal(0); 1222 } 1223 1224 //condition 4.3 1225 for (Index i=1;i<length; i++) 1226 if (diag(i) < epsilon_coarse) 1227 { 1228 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1229 std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n"; 1230 #endif 1231 deflation43(firstCol, shift, i, length); 1232 } 1233 1234 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1235 assert(m_naiveU.allFinite()); 1236 assert(m_naiveV.allFinite()); 1237 assert(m_computed.allFinite()); 1238 #endif 1239 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1240 std::cout << "to be sorted: " << diag.transpose() << "\n\n"; 1241 std::cout << " : " << col0.transpose() << "\n\n"; 1242 #endif 1243 { 1244 // Check for total deflation 1245 // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting 1246 bool total_deflation = (col0.tail(length-1).array()<considerZero).all(); 1247 1248 // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. 1249 // First, compute the respective permutation. 1250 Index *permutation = m_workspaceI.data(); 1251 { 1252 permutation[0] = 0; 1253 Index p = 1; 1254 1255 // Move deflated diagonal entries at the end. 1256 for(Index i=1; i<length; ++i) 1257 if(abs(diag(i))<considerZero) 1258 permutation[p++] = i; 1259 1260 Index i=1, j=k+1; 1261 for( ; p < length; ++p) 1262 { 1263 if (i > k) permutation[p] = j++; 1264 else if (j >= length) permutation[p] = i++; 1265 else if (diag(i) < diag(j)) permutation[p] = j++; 1266 else permutation[p] = i++; 1267 } 1268 } 1269 1270 // If we have a total deflation, then we have to insert diag(0) at the right place 1271 if(total_deflation) 1272 { 1273 for(Index i=1; i<length; ++i) 1274 { 1275 Index pi = permutation[i]; 1276 if(abs(diag(pi))<considerZero || diag(0)<diag(pi)) 1277 permutation[i-1] = permutation[i]; 1278 else 1279 { 1280 permutation[i-1] = 0; 1281 break; 1282 } 1283 } 1284 } 1285 1286 // Current index of each col, and current column of each index 1287 Index *realInd = m_workspaceI.data()+length; 1288 Index *realCol = m_workspaceI.data()+2*length; 1289 1290 for(int pos = 0; pos< length; pos++) 1291 { 1292 realCol[pos] = pos; 1293 realInd[pos] = pos; 1294 } 1295 1296 for(Index i = total_deflation?0:1; i < length; i++) 1297 { 1298 const Index pi = permutation[length - (total_deflation ? i+1 : i)]; 1299 const Index J = realCol[pi]; 1300 1301 using std::swap; 1302 // swap diagonal and first column entries: 1303 swap(diag(i), diag(J)); 1304 if(i!=0 && J!=0) swap(col0(i), col0(J)); 1305 1306 // change columns 1307 if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1)); 1308 else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2)); 1309 if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); 1310 1311 //update real pos 1312 const Index realI = realInd[i]; 1313 realCol[realI] = J; 1314 realCol[pi] = i; 1315 realInd[J] = realI; 1316 realInd[i] = pi; 1317 } 1318 } 1319 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1320 std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n"; 1321 std::cout << " : " << col0.transpose() << "\n\n"; 1322 #endif 1323 1324 //condition 4.4 1325 { 1326 Index i = length-1; 1327 while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i; 1328 for(; i>1;--i) 1329 if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag ) 1330 { 1331 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE 1332 std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n"; 1333 #endif 1334 eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted"); 1335 deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length); 1336 } 1337 } 1338 1339 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1340 for(Index j=2;j<length;++j) 1341 assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero); 1342 #endif 1343 1344 #ifdef EIGEN_BDCSVD_SANITY_CHECKS 1345 assert(m_naiveU.allFinite()); 1346 assert(m_naiveV.allFinite()); 1347 assert(m_computed.allFinite()); 1348 #endif 1349 }//end deflation 1350 1351 /** \svd_module 1352 * 1353 * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm 1354 * 1355 * \sa class BDCSVD 1356 */ 1357 template<typename Derived> 1358 BDCSVD<typename MatrixBase<Derived>::PlainObject> 1359 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const 1360 { 1361 return BDCSVD<PlainObject>(*this, computationOptions); 1362 } 1363 1364 } // end namespace Eigen 1365 1366 #endif 1367