xref: /aosp_15_r20/external/eigen/Eigen/src/KLUSupport/KLUSupport.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2017 Kyle Macfarlan <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_KLUSUPPORT_H
11 #define EIGEN_KLUSUPPORT_H
12 
13 namespace Eigen {
14 
15 /* TODO extract L, extract U, compute det, etc... */
16 
17 /** \ingroup KLUSupport_Module
18   * \brief A sparse LU factorization and solver based on KLU
19   *
20   * This class allows to solve for A.X = B sparse linear problems via a LU factorization
21   * using the KLU library. The sparse matrix A must be squared and full rank.
22   * The vectors or matrices X and B can be either dense or sparse.
23   *
24   * \warning The input matrix A should be in a \b compressed and \b column-major form.
25   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
26   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
27   *
28   * \implsparsesolverconcept
29   *
30   * \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU
31   */
32 
33 
klu_solve(klu_symbolic * Symbolic,klu_numeric * Numeric,Index ldim,Index nrhs,double B[],klu_common * Common,double)34 inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B [ ], klu_common *Common, double) {
35    return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
36 }
37 
klu_solve(klu_symbolic * Symbolic,klu_numeric * Numeric,Index ldim,Index nrhs,std::complex<double> B[],klu_common * Common,std::complex<double>)38 inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
39    return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), Common);
40 }
41 
klu_tsolve(klu_symbolic * Symbolic,klu_numeric * Numeric,Index ldim,Index nrhs,double B[],klu_common * Common,double)42 inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double) {
43    return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B, Common);
44 }
45 
klu_tsolve(klu_symbolic * Symbolic,klu_numeric * Numeric,Index ldim,Index nrhs,std::complex<double> B[],klu_common * Common,std::complex<double>)46 inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double>B[], klu_common *Common, std::complex<double>) {
47    return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), &numext::real_ref(B[0]), 0, Common);
48 }
49 
klu_factor(int Ap[],int Ai[],double Ax[],klu_symbolic * Symbolic,klu_common * Common,double)50 inline klu_numeric* klu_factor(int Ap [ ], int Ai [ ], double Ax [ ], klu_symbolic *Symbolic, klu_common *Common, double) {
51    return klu_factor(Ap, Ai, Ax, Symbolic, Common);
52 }
53 
klu_factor(int Ap[],int Ai[],std::complex<double> Ax[],klu_symbolic * Symbolic,klu_common * Common,std::complex<double>)54 inline klu_numeric* klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex<double>) {
55    return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
56 }
57 
58 
59 template<typename _MatrixType>
60 class KLU : public SparseSolverBase<KLU<_MatrixType> >
61 {
62   protected:
63     typedef SparseSolverBase<KLU<_MatrixType> > Base;
64     using Base::m_isInitialized;
65   public:
66     using Base::_solve_impl;
67     typedef _MatrixType MatrixType;
68     typedef typename MatrixType::Scalar Scalar;
69     typedef typename MatrixType::RealScalar RealScalar;
70     typedef typename MatrixType::StorageIndex StorageIndex;
71     typedef Matrix<Scalar,Dynamic,1> Vector;
72     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
73     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
74     typedef SparseMatrix<Scalar> LUMatrixType;
75     typedef SparseMatrix<Scalar,ColMajor,int> KLUMatrixType;
76     typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
77     enum {
78       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
79       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
80     };
81 
82   public:
83 
KLU()84     KLU()
85       : m_dummy(0,0), mp_matrix(m_dummy)
86     {
87       init();
88     }
89 
90     template<typename InputMatrixType>
KLU(const InputMatrixType & matrix)91     explicit KLU(const InputMatrixType& matrix)
92       : mp_matrix(matrix)
93     {
94       init();
95       compute(matrix);
96     }
97 
~KLU()98     ~KLU()
99     {
100       if(m_symbolic) klu_free_symbolic(&m_symbolic,&m_common);
101       if(m_numeric)  klu_free_numeric(&m_numeric,&m_common);
102     }
103 
rows()104     EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); }
cols()105     EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); }
106 
107     /** \brief Reports whether previous computation was successful.
108       *
109       * \returns \c Success if computation was successful,
110       *          \c NumericalIssue if the matrix.appears to be negative.
111       */
info()112     ComputationInfo info() const
113     {
114       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
115       return m_info;
116     }
117 #if 0 // not implemented yet
118     inline const LUMatrixType& matrixL() const
119     {
120       if (m_extractedDataAreDirty) extractData();
121       return m_l;
122     }
123 
124     inline const LUMatrixType& matrixU() const
125     {
126       if (m_extractedDataAreDirty) extractData();
127       return m_u;
128     }
129 
130     inline const IntColVectorType& permutationP() const
131     {
132       if (m_extractedDataAreDirty) extractData();
133       return m_p;
134     }
135 
136     inline const IntRowVectorType& permutationQ() const
137     {
138       if (m_extractedDataAreDirty) extractData();
139       return m_q;
140     }
141 #endif
142     /** Computes the sparse Cholesky decomposition of \a matrix
143      *  Note that the matrix should be column-major, and in compressed format for best performance.
144      *  \sa SparseMatrix::makeCompressed().
145      */
146     template<typename InputMatrixType>
compute(const InputMatrixType & matrix)147     void compute(const InputMatrixType& matrix)
148     {
149       if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
150       if(m_numeric)  klu_free_numeric(&m_numeric, &m_common);
151       grab(matrix.derived());
152       analyzePattern_impl();
153       factorize_impl();
154     }
155 
156     /** Performs a symbolic decomposition on the sparcity of \a matrix.
157       *
158       * This function is particularly useful when solving for several problems having the same structure.
159       *
160       * \sa factorize(), compute()
161       */
162     template<typename InputMatrixType>
analyzePattern(const InputMatrixType & matrix)163     void analyzePattern(const InputMatrixType& matrix)
164     {
165       if(m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
166       if(m_numeric)  klu_free_numeric(&m_numeric, &m_common);
167 
168       grab(matrix.derived());
169 
170       analyzePattern_impl();
171     }
172 
173 
174     /** Provides access to the control settings array used by KLU.
175       *
176       * See KLU documentation for details.
177       */
kluCommon()178     inline const klu_common& kluCommon() const
179     {
180       return m_common;
181     }
182 
183     /** Provides access to the control settings array used by UmfPack.
184       *
185       * If this array contains NaN's, the default values are used.
186       *
187       * See KLU documentation for details.
188       */
kluCommon()189     inline klu_common& kluCommon()
190     {
191       return m_common;
192     }
193 
194     /** Performs a numeric decomposition of \a matrix
195       *
196       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
197       *
198       * \sa analyzePattern(), compute()
199       */
200     template<typename InputMatrixType>
factorize(const InputMatrixType & matrix)201     void factorize(const InputMatrixType& matrix)
202     {
203       eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
204       if(m_numeric)
205         klu_free_numeric(&m_numeric,&m_common);
206 
207       grab(matrix.derived());
208 
209       factorize_impl();
210     }
211 
212     /** \internal */
213     template<typename BDerived,typename XDerived>
214     bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
215 
216 #if 0 // not implemented yet
217     Scalar determinant() const;
218 
219     void extractData() const;
220 #endif
221 
222   protected:
223 
init()224     void init()
225     {
226       m_info                  = InvalidInput;
227       m_isInitialized         = false;
228       m_numeric               = 0;
229       m_symbolic              = 0;
230       m_extractedDataAreDirty = true;
231 
232       klu_defaults(&m_common);
233     }
234 
analyzePattern_impl()235     void analyzePattern_impl()
236     {
237       m_info = InvalidInput;
238       m_analysisIsOk = false;
239       m_factorizationIsOk = false;
240       m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
241                                      const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()),
242                                      &m_common);
243       if (m_symbolic) {
244          m_isInitialized = true;
245          m_info = Success;
246          m_analysisIsOk = true;
247          m_extractedDataAreDirty = true;
248       }
249     }
250 
factorize_impl()251     void factorize_impl()
252     {
253 
254       m_numeric = klu_factor(const_cast<StorageIndex*>(mp_matrix.outerIndexPtr()), const_cast<StorageIndex*>(mp_matrix.innerIndexPtr()), const_cast<Scalar*>(mp_matrix.valuePtr()),
255                                     m_symbolic, &m_common, Scalar());
256 
257 
258       m_info = m_numeric ? Success : NumericalIssue;
259       m_factorizationIsOk = m_numeric ? 1 : 0;
260       m_extractedDataAreDirty = true;
261     }
262 
263     template<typename MatrixDerived>
grab(const EigenBase<MatrixDerived> & A)264     void grab(const EigenBase<MatrixDerived> &A)
265     {
266       mp_matrix.~KLUMatrixRef();
267       ::new (&mp_matrix) KLUMatrixRef(A.derived());
268     }
269 
grab(const KLUMatrixRef & A)270     void grab(const KLUMatrixRef &A)
271     {
272       if(&(A.derived()) != &mp_matrix)
273       {
274         mp_matrix.~KLUMatrixRef();
275         ::new (&mp_matrix) KLUMatrixRef(A);
276       }
277     }
278 
279     // cached data to reduce reallocation, etc.
280 #if 0 // not implemented yet
281     mutable LUMatrixType m_l;
282     mutable LUMatrixType m_u;
283     mutable IntColVectorType m_p;
284     mutable IntRowVectorType m_q;
285 #endif
286 
287     KLUMatrixType m_dummy;
288     KLUMatrixRef mp_matrix;
289 
290     klu_numeric* m_numeric;
291     klu_symbolic* m_symbolic;
292     klu_common m_common;
293     mutable ComputationInfo m_info;
294     int m_factorizationIsOk;
295     int m_analysisIsOk;
296     mutable bool m_extractedDataAreDirty;
297 
298   private:
KLU(const KLU &)299     KLU(const KLU& ) { }
300 };
301 
302 #if 0 // not implemented yet
303 template<typename MatrixType>
304 void KLU<MatrixType>::extractData() const
305 {
306   if (m_extractedDataAreDirty)
307   {
308      eigen_assert(false && "KLU: extractData Not Yet Implemented");
309 
310     // get size of the data
311     int lnz, unz, rows, cols, nz_udiag;
312     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
313 
314     // allocate data
315     m_l.resize(rows,(std::min)(rows,cols));
316     m_l.resizeNonZeros(lnz);
317 
318     m_u.resize((std::min)(rows,cols),cols);
319     m_u.resizeNonZeros(unz);
320 
321     m_p.resize(rows);
322     m_q.resize(cols);
323 
324     // extract
325     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
326                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
327                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
328 
329     m_extractedDataAreDirty = false;
330   }
331 }
332 
333 template<typename MatrixType>
334 typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
335 {
336   eigen_assert(false && "KLU: extractData Not Yet Implemented");
337   return Scalar();
338 }
339 #endif
340 
341 template<typename MatrixType>
342 template<typename BDerived,typename XDerived>
_solve_impl(const MatrixBase<BDerived> & b,MatrixBase<XDerived> & x)343 bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
344 {
345   Index rhsCols = b.cols();
346   EIGEN_STATIC_ASSERT((XDerived::Flags&RowMajorBit)==0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
347   eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");
348 
349   x = b;
350   int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(), const_cast<klu_common*>(&m_common), Scalar());
351 
352   m_info = info!=0 ? Success : NumericalIssue;
353   return true;
354 }
355 
356 } // end namespace Eigen
357 
358 #endif // EIGEN_KLUSUPPORT_H
359