1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Gael Guennebaud <[email protected]> 5 // Copyright (C) 2010 Benoit Jacob <[email protected]> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H 12 #define EIGEN_HOUSEHOLDER_SEQUENCE_H 13 14 namespace Eigen { 15 16 /** \ingroup Householder_Module 17 * \householder_module 18 * \class HouseholderSequence 19 * \brief Sequence of Householder reflections acting on subspaces with decreasing size 20 * \tparam VectorsType type of matrix containing the Householder vectors 21 * \tparam CoeffsType type of vector containing the Householder coefficients 22 * \tparam Side either OnTheLeft (the default) or OnTheRight 23 * 24 * This class represents a product sequence of Householder reflections where the first Householder reflection 25 * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by 26 * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace 27 * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but 28 * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections 29 * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods 30 * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), 31 * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. 32 * 33 * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the 34 * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i 35 * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ 36 * v_i \f$ is a vector of the form 37 * \f[ 38 * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 39 * \f] 40 * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. 41 * 42 * Typical usages are listed below, where H is a HouseholderSequence: 43 * \code 44 * A.applyOnTheRight(H); // A = A * H 45 * A.applyOnTheLeft(H); // A = H * A 46 * A.applyOnTheRight(H.adjoint()); // A = A * H^* 47 * A.applyOnTheLeft(H.adjoint()); // A = H^* * A 48 * MatrixXd Q = H; // conversion to a dense matrix 49 * \endcode 50 * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. 51 * 52 * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. 53 * 54 * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() 55 */ 56 57 namespace internal { 58 59 template<typename VectorsType, typename CoeffsType, int Side> 60 struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > 61 { 62 typedef typename VectorsType::Scalar Scalar; 63 typedef typename VectorsType::StorageIndex StorageIndex; 64 typedef typename VectorsType::StorageKind StorageKind; 65 enum { 66 RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime 67 : traits<VectorsType>::ColsAtCompileTime, 68 ColsAtCompileTime = RowsAtCompileTime, 69 MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime 70 : traits<VectorsType>::MaxColsAtCompileTime, 71 MaxColsAtCompileTime = MaxRowsAtCompileTime, 72 Flags = 0 73 }; 74 }; 75 76 struct HouseholderSequenceShape {}; 77 78 template<typename VectorsType, typename CoeffsType, int Side> 79 struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> > 80 : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> > 81 { 82 typedef HouseholderSequenceShape Shape; 83 }; 84 85 template<typename VectorsType, typename CoeffsType, int Side> 86 struct hseq_side_dependent_impl 87 { 88 typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; 89 typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; 90 static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) 91 { 92 Index start = k+1+h.m_shift; 93 return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); 94 } 95 }; 96 97 template<typename VectorsType, typename CoeffsType> 98 struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> 99 { 100 typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; 101 typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; 102 static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) 103 { 104 Index start = k+1+h.m_shift; 105 return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); 106 } 107 }; 108 109 template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type 110 { 111 typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType 112 ResultScalar; 113 typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, 114 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; 115 }; 116 117 } // end namespace internal 118 119 template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence 120 : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > 121 { 122 typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType; 123 124 public: 125 enum { 126 RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, 127 ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, 128 MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, 129 MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime 130 }; 131 typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; 132 133 typedef HouseholderSequence< 134 typename internal::conditional<NumTraits<Scalar>::IsComplex, 135 typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, 136 VectorsType>::type, 137 typename internal::conditional<NumTraits<Scalar>::IsComplex, 138 typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, 139 CoeffsType>::type, 140 Side 141 > ConjugateReturnType; 142 143 typedef HouseholderSequence< 144 VectorsType, 145 typename internal::conditional<NumTraits<Scalar>::IsComplex, 146 typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, 147 CoeffsType>::type, 148 Side 149 > AdjointReturnType; 150 151 typedef HouseholderSequence< 152 typename internal::conditional<NumTraits<Scalar>::IsComplex, 153 typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, 154 VectorsType>::type, 155 CoeffsType, 156 Side 157 > TransposeReturnType; 158 159 typedef HouseholderSequence< 160 typename internal::add_const<VectorsType>::type, 161 typename internal::add_const<CoeffsType>::type, 162 Side 163 > ConstHouseholderSequence; 164 165 /** \brief Constructor. 166 * \param[in] v %Matrix containing the essential parts of the Householder vectors 167 * \param[in] h Vector containing the Householder coefficients 168 * 169 * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The 170 * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th 171 * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the 172 * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many 173 * Householder reflections as there are columns. 174 * 175 * \note The %HouseholderSequence object stores \p v and \p h by reference. 176 * 177 * Example: \include HouseholderSequence_HouseholderSequence.cpp 178 * Output: \verbinclude HouseholderSequence_HouseholderSequence.out 179 * 180 * \sa setLength(), setShift() 181 */ 182 EIGEN_DEVICE_FUNC 183 HouseholderSequence(const VectorsType& v, const CoeffsType& h) 184 : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()), 185 m_shift(0) 186 { 187 } 188 189 /** \brief Copy constructor. */ 190 EIGEN_DEVICE_FUNC 191 HouseholderSequence(const HouseholderSequence& other) 192 : m_vectors(other.m_vectors), 193 m_coeffs(other.m_coeffs), 194 m_reverse(other.m_reverse), 195 m_length(other.m_length), 196 m_shift(other.m_shift) 197 { 198 } 199 200 /** \brief Number of rows of transformation viewed as a matrix. 201 * \returns Number of rows 202 * \details This equals the dimension of the space that the transformation acts on. 203 */ 204 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR 205 Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } 206 207 /** \brief Number of columns of transformation viewed as a matrix. 208 * \returns Number of columns 209 * \details This equals the dimension of the space that the transformation acts on. 210 */ 211 EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR 212 Index cols() const EIGEN_NOEXCEPT { return rows(); } 213 214 /** \brief Essential part of a Householder vector. 215 * \param[in] k Index of Householder reflection 216 * \returns Vector containing non-trivial entries of k-th Householder vector 217 * 218 * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of 219 * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector 220 * \f[ 221 * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. 222 * \f] 223 * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v 224 * passed to the constructor. 225 * 226 * \sa setShift(), shift() 227 */ 228 EIGEN_DEVICE_FUNC 229 const EssentialVectorType essentialVector(Index k) const 230 { 231 eigen_assert(k >= 0 && k < m_length); 232 return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); 233 } 234 235 /** \brief %Transpose of the Householder sequence. */ 236 TransposeReturnType transpose() const 237 { 238 return TransposeReturnType(m_vectors.conjugate(), m_coeffs) 239 .setReverseFlag(!m_reverse) 240 .setLength(m_length) 241 .setShift(m_shift); 242 } 243 244 /** \brief Complex conjugate of the Householder sequence. */ 245 ConjugateReturnType conjugate() const 246 { 247 return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) 248 .setReverseFlag(m_reverse) 249 .setLength(m_length) 250 .setShift(m_shift); 251 } 252 253 /** \returns an expression of the complex conjugate of \c *this if Cond==true, 254 * returns \c *this otherwise. 255 */ 256 template<bool Cond> 257 EIGEN_DEVICE_FUNC 258 inline typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type 259 conjugateIf() const 260 { 261 typedef typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type ReturnType; 262 return ReturnType(m_vectors.template conjugateIf<Cond>(), m_coeffs.template conjugateIf<Cond>()); 263 } 264 265 /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ 266 AdjointReturnType adjoint() const 267 { 268 return AdjointReturnType(m_vectors, m_coeffs.conjugate()) 269 .setReverseFlag(!m_reverse) 270 .setLength(m_length) 271 .setShift(m_shift); 272 } 273 274 /** \brief Inverse of the Householder sequence (equals the adjoint). */ 275 AdjointReturnType inverse() const { return adjoint(); } 276 277 /** \internal */ 278 template<typename DestType> 279 inline EIGEN_DEVICE_FUNC 280 void evalTo(DestType& dst) const 281 { 282 Matrix<Scalar, DestType::RowsAtCompileTime, 1, 283 AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); 284 evalTo(dst, workspace); 285 } 286 287 /** \internal */ 288 template<typename Dest, typename Workspace> 289 EIGEN_DEVICE_FUNC 290 void evalTo(Dest& dst, Workspace& workspace) const 291 { 292 workspace.resize(rows()); 293 Index vecs = m_length; 294 if(internal::is_same_dense(dst,m_vectors)) 295 { 296 // in-place 297 dst.diagonal().setOnes(); 298 dst.template triangularView<StrictlyUpper>().setZero(); 299 for(Index k = vecs-1; k >= 0; --k) 300 { 301 Index cornerSize = rows() - k - m_shift; 302 if(m_reverse) 303 dst.bottomRightCorner(cornerSize, cornerSize) 304 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); 305 else 306 dst.bottomRightCorner(cornerSize, cornerSize) 307 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); 308 309 // clear the off diagonal vector 310 dst.col(k).tail(rows()-k-1).setZero(); 311 } 312 // clear the remaining columns if needed 313 for(Index k = 0; k<cols()-vecs ; ++k) 314 dst.col(k).tail(rows()-k-1).setZero(); 315 } 316 else if(m_length>BlockSize) 317 { 318 dst.setIdentity(rows(), rows()); 319 if(m_reverse) 320 applyThisOnTheLeft(dst,workspace,true); 321 else 322 applyThisOnTheLeft(dst,workspace,true); 323 } 324 else 325 { 326 dst.setIdentity(rows(), rows()); 327 for(Index k = vecs-1; k >= 0; --k) 328 { 329 Index cornerSize = rows() - k - m_shift; 330 if(m_reverse) 331 dst.bottomRightCorner(cornerSize, cornerSize) 332 .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); 333 else 334 dst.bottomRightCorner(cornerSize, cornerSize) 335 .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); 336 } 337 } 338 } 339 340 /** \internal */ 341 template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const 342 { 343 Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); 344 applyThisOnTheRight(dst, workspace); 345 } 346 347 /** \internal */ 348 template<typename Dest, typename Workspace> 349 inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const 350 { 351 workspace.resize(dst.rows()); 352 for(Index k = 0; k < m_length; ++k) 353 { 354 Index actual_k = m_reverse ? m_length-k-1 : k; 355 dst.rightCols(rows()-m_shift-actual_k) 356 .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); 357 } 358 } 359 360 /** \internal */ 361 template<typename Dest> inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const 362 { 363 Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace; 364 applyThisOnTheLeft(dst, workspace, inputIsIdentity); 365 } 366 367 /** \internal */ 368 template<typename Dest, typename Workspace> 369 inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const 370 { 371 if(inputIsIdentity && m_reverse) 372 inputIsIdentity = false; 373 // if the entries are large enough, then apply the reflectors by block 374 if(m_length>=BlockSize && dst.cols()>1) 375 { 376 // Make sure we have at least 2 useful blocks, otherwise it is point-less: 377 Index blockSize = m_length<Index(2*BlockSize) ? (m_length+1)/2 : Index(BlockSize); 378 for(Index i = 0; i < m_length; i+=blockSize) 379 { 380 Index end = m_reverse ? (std::min)(m_length,i+blockSize) : m_length-i; 381 Index k = m_reverse ? i : (std::max)(Index(0),end-blockSize); 382 Index bs = end-k; 383 Index start = k + m_shift; 384 385 typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType; 386 SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, 387 Side==OnTheRight ? start : k, 388 Side==OnTheRight ? bs : m_vectors.rows()-start, 389 Side==OnTheRight ? m_vectors.cols()-start : bs); 390 typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1); 391 392 Index dstStart = dst.rows()-rows()+m_shift+k; 393 Index dstRows = rows()-m_shift-k; 394 Block<Dest,Dynamic,Dynamic> sub_dst(dst, 395 dstStart, 396 inputIsIdentity ? dstStart : 0, 397 dstRows, 398 inputIsIdentity ? dstRows : dst.cols()); 399 apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); 400 } 401 } 402 else 403 { 404 workspace.resize(dst.cols()); 405 for(Index k = 0; k < m_length; ++k) 406 { 407 Index actual_k = m_reverse ? k : m_length-k-1; 408 Index dstStart = rows()-m_shift-actual_k; 409 dst.bottomRightCorner(dstStart, inputIsIdentity ? dstStart : dst.cols()) 410 .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); 411 } 412 } 413 } 414 415 /** \brief Computes the product of a Householder sequence with a matrix. 416 * \param[in] other %Matrix being multiplied. 417 * \returns Expression object representing the product. 418 * 419 * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this 420 * and \f$ M \f$ is the matrix \p other. 421 */ 422 template<typename OtherDerived> 423 typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const 424 { 425 typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type 426 res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); 427 applyThisOnTheLeft(res, internal::is_identity<OtherDerived>::value && res.rows()==res.cols()); 428 return res; 429 } 430 431 template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; 432 433 /** \brief Sets the length of the Householder sequence. 434 * \param [in] length New value for the length. 435 * 436 * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set 437 * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that 438 * is smaller. After this function is called, the length equals \p length. 439 * 440 * \sa length() 441 */ 442 EIGEN_DEVICE_FUNC 443 HouseholderSequence& setLength(Index length) 444 { 445 m_length = length; 446 return *this; 447 } 448 449 /** \brief Sets the shift of the Householder sequence. 450 * \param [in] shift New value for the shift. 451 * 452 * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th 453 * column of the matrix \p v passed to the constructor corresponds to the i-th Householder 454 * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} 455 * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th 456 * Householder reflection. 457 * 458 * \sa shift() 459 */ 460 EIGEN_DEVICE_FUNC 461 HouseholderSequence& setShift(Index shift) 462 { 463 m_shift = shift; 464 return *this; 465 } 466 467 EIGEN_DEVICE_FUNC 468 Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ 469 470 EIGEN_DEVICE_FUNC 471 Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ 472 473 /* Necessary for .adjoint() and .conjugate() */ 474 template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; 475 476 protected: 477 478 /** \internal 479 * \brief Sets the reverse flag. 480 * \param [in] reverse New value of the reverse flag. 481 * 482 * By default, the reverse flag is not set. If the reverse flag is set, then this object represents 483 * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. 484 * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$. 485 * 486 * \sa reverseFlag(), transpose(), adjoint() 487 */ 488 HouseholderSequence& setReverseFlag(bool reverse) 489 { 490 m_reverse = reverse; 491 return *this; 492 } 493 494 bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */ 495 496 typename VectorsType::Nested m_vectors; 497 typename CoeffsType::Nested m_coeffs; 498 bool m_reverse; 499 Index m_length; 500 Index m_shift; 501 enum { BlockSize = 48 }; 502 }; 503 504 /** \brief Computes the product of a matrix with a Householder sequence. 505 * \param[in] other %Matrix being multiplied. 506 * \param[in] h %HouseholderSequence being multiplied. 507 * \returns Expression object representing the product. 508 * 509 * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the 510 * Householder sequence represented by \p h. 511 */ 512 template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> 513 typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) 514 { 515 typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type 516 res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); 517 h.applyThisOnTheRight(res); 518 return res; 519 } 520 521 /** \ingroup Householder_Module \householder_module 522 * \brief Convenience function for constructing a Householder sequence. 523 * \returns A HouseholderSequence constructed from the specified arguments. 524 */ 525 template<typename VectorsType, typename CoeffsType> 526 HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) 527 { 528 return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); 529 } 530 531 /** \ingroup Householder_Module \householder_module 532 * \brief Convenience function for constructing a Householder sequence. 533 * \returns A HouseholderSequence constructed from the specified arguments. 534 * \details This function differs from householderSequence() in that the template argument \p OnTheSide of 535 * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. 536 */ 537 template<typename VectorsType, typename CoeffsType> 538 HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) 539 { 540 return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); 541 } 542 543 } // end namespace Eigen 544 545 #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H 546