xref: /aosp_15_r20/external/eigen/Eigen/src/Householder/HouseholderSequence.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2010 Benoit Jacob <[email protected]>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
12 #define EIGEN_HOUSEHOLDER_SEQUENCE_H
13 
14 namespace Eigen {
15 
16 /** \ingroup Householder_Module
17   * \householder_module
18   * \class HouseholderSequence
19   * \brief Sequence of Householder reflections acting on subspaces with decreasing size
20   * \tparam VectorsType type of matrix containing the Householder vectors
21   * \tparam CoeffsType  type of vector containing the Householder coefficients
22   * \tparam Side        either OnTheLeft (the default) or OnTheRight
23   *
24   * This class represents a product sequence of Householder reflections where the first Householder reflection
25   * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
26   * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
27   * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
28   * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
29   * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
30   * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
31   * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
32   *
33   * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
34   * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
35   * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
36   * v_i \f$ is a vector of the form
37   * \f[
38   * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
39   * \f]
40   * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
41   *
42   * Typical usages are listed below, where H is a HouseholderSequence:
43   * \code
44   * A.applyOnTheRight(H);             // A = A * H
45   * A.applyOnTheLeft(H);              // A = H * A
46   * A.applyOnTheRight(H.adjoint());   // A = A * H^*
47   * A.applyOnTheLeft(H.adjoint());    // A = H^* * A
48   * MatrixXd Q = H;                   // conversion to a dense matrix
49   * \endcode
50   * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
51   *
52   * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
53   *
54   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
55   */
56 
57 namespace internal {
58 
59 template<typename VectorsType, typename CoeffsType, int Side>
60 struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
61 {
62   typedef typename VectorsType::Scalar Scalar;
63   typedef typename VectorsType::StorageIndex StorageIndex;
64   typedef typename VectorsType::StorageKind StorageKind;
65   enum {
66     RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
67                                         : traits<VectorsType>::ColsAtCompileTime,
68     ColsAtCompileTime = RowsAtCompileTime,
69     MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
70                                            : traits<VectorsType>::MaxColsAtCompileTime,
71     MaxColsAtCompileTime = MaxRowsAtCompileTime,
72     Flags = 0
73   };
74 };
75 
76 struct HouseholderSequenceShape {};
77 
78 template<typename VectorsType, typename CoeffsType, int Side>
79 struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
80   : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> >
81 {
82   typedef HouseholderSequenceShape Shape;
83 };
84 
85 template<typename VectorsType, typename CoeffsType, int Side>
86 struct hseq_side_dependent_impl
87 {
88   typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
89   typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
90   static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
91   {
92     Index start = k+1+h.m_shift;
93     return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
94   }
95 };
96 
97 template<typename VectorsType, typename CoeffsType>
98 struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
99 {
100   typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
101   typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
102   static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
103   {
104     Index start = k+1+h.m_shift;
105     return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
106   }
107 };
108 
109 template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
110 {
111   typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
112     ResultScalar;
113   typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
114                  0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
115 };
116 
117 } // end namespace internal
118 
119 template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
120   : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
121 {
122     typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
123 
124   public:
125     enum {
126       RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
127       ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
128       MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
129       MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
130     };
131     typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
132 
133     typedef HouseholderSequence<
134       typename internal::conditional<NumTraits<Scalar>::IsComplex,
135         typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
136         VectorsType>::type,
137       typename internal::conditional<NumTraits<Scalar>::IsComplex,
138         typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
139         CoeffsType>::type,
140       Side
141     > ConjugateReturnType;
142 
143     typedef HouseholderSequence<
144       VectorsType,
145       typename internal::conditional<NumTraits<Scalar>::IsComplex,
146         typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
147         CoeffsType>::type,
148       Side
149     > AdjointReturnType;
150 
151     typedef HouseholderSequence<
152       typename internal::conditional<NumTraits<Scalar>::IsComplex,
153         typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
154         VectorsType>::type,
155       CoeffsType,
156       Side
157     > TransposeReturnType;
158 
159     typedef HouseholderSequence<
160       typename internal::add_const<VectorsType>::type,
161       typename internal::add_const<CoeffsType>::type,
162       Side
163     > ConstHouseholderSequence;
164 
165     /** \brief Constructor.
166       * \param[in]  v      %Matrix containing the essential parts of the Householder vectors
167       * \param[in]  h      Vector containing the Householder coefficients
168       *
169       * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
170       * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
171       * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
172       * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
173       * Householder reflections as there are columns.
174       *
175       * \note The %HouseholderSequence object stores \p v and \p h by reference.
176       *
177       * Example: \include HouseholderSequence_HouseholderSequence.cpp
178       * Output: \verbinclude HouseholderSequence_HouseholderSequence.out
179       *
180       * \sa setLength(), setShift()
181       */
182     EIGEN_DEVICE_FUNC
183     HouseholderSequence(const VectorsType& v, const CoeffsType& h)
184       : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()),
185         m_shift(0)
186     {
187     }
188 
189     /** \brief Copy constructor. */
190     EIGEN_DEVICE_FUNC
191     HouseholderSequence(const HouseholderSequence& other)
192       : m_vectors(other.m_vectors),
193         m_coeffs(other.m_coeffs),
194         m_reverse(other.m_reverse),
195         m_length(other.m_length),
196         m_shift(other.m_shift)
197     {
198     }
199 
200     /** \brief Number of rows of transformation viewed as a matrix.
201       * \returns Number of rows
202       * \details This equals the dimension of the space that the transformation acts on.
203       */
204     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
205     Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
206 
207     /** \brief Number of columns of transformation viewed as a matrix.
208       * \returns Number of columns
209       * \details This equals the dimension of the space that the transformation acts on.
210       */
211     EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
212     Index cols() const EIGEN_NOEXCEPT { return rows(); }
213 
214     /** \brief Essential part of a Householder vector.
215       * \param[in]  k  Index of Householder reflection
216       * \returns    Vector containing non-trivial entries of k-th Householder vector
217       *
218       * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
219       * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
220       * \f[
221       * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
222       * \f]
223       * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
224       * passed to the constructor.
225       *
226       * \sa setShift(), shift()
227       */
228     EIGEN_DEVICE_FUNC
229     const EssentialVectorType essentialVector(Index k) const
230     {
231       eigen_assert(k >= 0 && k < m_length);
232       return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
233     }
234 
235     /** \brief %Transpose of the Householder sequence. */
236     TransposeReturnType transpose() const
237     {
238       return TransposeReturnType(m_vectors.conjugate(), m_coeffs)
239               .setReverseFlag(!m_reverse)
240               .setLength(m_length)
241               .setShift(m_shift);
242     }
243 
244     /** \brief Complex conjugate of the Householder sequence. */
245     ConjugateReturnType conjugate() const
246     {
247       return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
248              .setReverseFlag(m_reverse)
249              .setLength(m_length)
250              .setShift(m_shift);
251     }
252 
253     /** \returns an expression of the complex conjugate of \c *this if Cond==true,
254      *           returns \c *this otherwise.
255      */
256     template<bool Cond>
257     EIGEN_DEVICE_FUNC
258     inline typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type
259     conjugateIf() const
260     {
261       typedef typename internal::conditional<Cond,ConjugateReturnType,ConstHouseholderSequence>::type ReturnType;
262       return ReturnType(m_vectors.template conjugateIf<Cond>(), m_coeffs.template conjugateIf<Cond>());
263     }
264 
265     /** \brief Adjoint (conjugate transpose) of the Householder sequence. */
266     AdjointReturnType adjoint() const
267     {
268       return AdjointReturnType(m_vectors, m_coeffs.conjugate())
269               .setReverseFlag(!m_reverse)
270               .setLength(m_length)
271               .setShift(m_shift);
272     }
273 
274     /** \brief Inverse of the Householder sequence (equals the adjoint). */
275     AdjointReturnType inverse() const { return adjoint(); }
276 
277     /** \internal */
278     template<typename DestType>
279     inline EIGEN_DEVICE_FUNC
280     void evalTo(DestType& dst) const
281     {
282       Matrix<Scalar, DestType::RowsAtCompileTime, 1,
283              AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
284       evalTo(dst, workspace);
285     }
286 
287     /** \internal */
288     template<typename Dest, typename Workspace>
289     EIGEN_DEVICE_FUNC
290     void evalTo(Dest& dst, Workspace& workspace) const
291     {
292       workspace.resize(rows());
293       Index vecs = m_length;
294       if(internal::is_same_dense(dst,m_vectors))
295       {
296         // in-place
297         dst.diagonal().setOnes();
298         dst.template triangularView<StrictlyUpper>().setZero();
299         for(Index k = vecs-1; k >= 0; --k)
300         {
301           Index cornerSize = rows() - k - m_shift;
302           if(m_reverse)
303             dst.bottomRightCorner(cornerSize, cornerSize)
304                .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
305           else
306             dst.bottomRightCorner(cornerSize, cornerSize)
307                .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
308 
309           // clear the off diagonal vector
310           dst.col(k).tail(rows()-k-1).setZero();
311         }
312         // clear the remaining columns if needed
313         for(Index k = 0; k<cols()-vecs ; ++k)
314           dst.col(k).tail(rows()-k-1).setZero();
315       }
316       else if(m_length>BlockSize)
317       {
318         dst.setIdentity(rows(), rows());
319         if(m_reverse)
320           applyThisOnTheLeft(dst,workspace,true);
321         else
322           applyThisOnTheLeft(dst,workspace,true);
323       }
324       else
325       {
326         dst.setIdentity(rows(), rows());
327         for(Index k = vecs-1; k >= 0; --k)
328         {
329           Index cornerSize = rows() - k - m_shift;
330           if(m_reverse)
331             dst.bottomRightCorner(cornerSize, cornerSize)
332                .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
333           else
334             dst.bottomRightCorner(cornerSize, cornerSize)
335                .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
336         }
337       }
338     }
339 
340     /** \internal */
341     template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
342     {
343       Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
344       applyThisOnTheRight(dst, workspace);
345     }
346 
347     /** \internal */
348     template<typename Dest, typename Workspace>
349     inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
350     {
351       workspace.resize(dst.rows());
352       for(Index k = 0; k < m_length; ++k)
353       {
354         Index actual_k = m_reverse ? m_length-k-1 : k;
355         dst.rightCols(rows()-m_shift-actual_k)
356            .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
357       }
358     }
359 
360     /** \internal */
361     template<typename Dest> inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const
362     {
363       Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace;
364       applyThisOnTheLeft(dst, workspace, inputIsIdentity);
365     }
366 
367     /** \internal */
368     template<typename Dest, typename Workspace>
369     inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const
370     {
371       if(inputIsIdentity && m_reverse)
372         inputIsIdentity = false;
373       // if the entries are large enough, then apply the reflectors by block
374       if(m_length>=BlockSize && dst.cols()>1)
375       {
376         // Make sure we have at least 2 useful blocks, otherwise it is point-less:
377         Index blockSize = m_length<Index(2*BlockSize) ? (m_length+1)/2 : Index(BlockSize);
378         for(Index i = 0; i < m_length; i+=blockSize)
379         {
380           Index end = m_reverse ? (std::min)(m_length,i+blockSize) : m_length-i;
381           Index k = m_reverse ? i : (std::max)(Index(0),end-blockSize);
382           Index bs = end-k;
383           Index start = k + m_shift;
384 
385           typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType;
386           SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start,
387                                                                    Side==OnTheRight ? start : k,
388                                                                    Side==OnTheRight ? bs : m_vectors.rows()-start,
389                                                                    Side==OnTheRight ? m_vectors.cols()-start : bs);
390           typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1);
391 
392           Index dstStart = dst.rows()-rows()+m_shift+k;
393           Index dstRows  = rows()-m_shift-k;
394           Block<Dest,Dynamic,Dynamic> sub_dst(dst,
395                                               dstStart,
396                                               inputIsIdentity ? dstStart : 0,
397                                               dstRows,
398                                               inputIsIdentity ? dstRows : dst.cols());
399           apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse);
400         }
401       }
402       else
403       {
404         workspace.resize(dst.cols());
405         for(Index k = 0; k < m_length; ++k)
406         {
407           Index actual_k = m_reverse ? k : m_length-k-1;
408           Index dstStart = rows()-m_shift-actual_k;
409           dst.bottomRightCorner(dstStart, inputIsIdentity ? dstStart : dst.cols())
410             .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
411         }
412       }
413     }
414 
415     /** \brief Computes the product of a Householder sequence with a matrix.
416       * \param[in]  other  %Matrix being multiplied.
417       * \returns    Expression object representing the product.
418       *
419       * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
420       * and \f$ M \f$ is the matrix \p other.
421       */
422     template<typename OtherDerived>
423     typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
424     {
425       typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
426         res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
427       applyThisOnTheLeft(res, internal::is_identity<OtherDerived>::value && res.rows()==res.cols());
428       return res;
429     }
430 
431     template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
432 
433     /** \brief Sets the length of the Householder sequence.
434       * \param [in]  length  New value for the length.
435       *
436       * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
437       * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
438       * is smaller. After this function is called, the length equals \p length.
439       *
440       * \sa length()
441       */
442     EIGEN_DEVICE_FUNC
443     HouseholderSequence& setLength(Index length)
444     {
445       m_length = length;
446       return *this;
447     }
448 
449     /** \brief Sets the shift of the Householder sequence.
450       * \param [in]  shift  New value for the shift.
451       *
452       * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
453       * column of the matrix \p v passed to the constructor corresponds to the i-th Householder
454       * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
455       * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
456       * Householder reflection.
457       *
458       * \sa shift()
459       */
460     EIGEN_DEVICE_FUNC
461     HouseholderSequence& setShift(Index shift)
462     {
463       m_shift = shift;
464       return *this;
465     }
466 
467     EIGEN_DEVICE_FUNC
468     Index length() const { return m_length; }  /**< \brief Returns the length of the Householder sequence. */
469 
470     EIGEN_DEVICE_FUNC
471     Index shift() const { return m_shift; }    /**< \brief Returns the shift of the Householder sequence. */
472 
473     /* Necessary for .adjoint() and .conjugate() */
474     template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
475 
476   protected:
477 
478     /** \internal
479       * \brief Sets the reverse flag.
480       * \param [in]  reverse  New value of the reverse flag.
481       *
482       * By default, the reverse flag is not set. If the reverse flag is set, then this object represents
483       * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
484       * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$.
485       *
486       * \sa reverseFlag(), transpose(), adjoint()
487       */
488     HouseholderSequence& setReverseFlag(bool reverse)
489     {
490       m_reverse = reverse;
491       return *this;
492     }
493 
494     bool reverseFlag() const { return m_reverse; }     /**< \internal \brief Returns the reverse flag. */
495 
496     typename VectorsType::Nested m_vectors;
497     typename CoeffsType::Nested m_coeffs;
498     bool m_reverse;
499     Index m_length;
500     Index m_shift;
501     enum { BlockSize = 48 };
502 };
503 
504 /** \brief Computes the product of a matrix with a Householder sequence.
505   * \param[in]  other  %Matrix being multiplied.
506   * \param[in]  h      %HouseholderSequence being multiplied.
507   * \returns    Expression object representing the product.
508   *
509   * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
510   * Householder sequence represented by \p h.
511   */
512 template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
513 typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
514 {
515   typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
516     res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
517   h.applyThisOnTheRight(res);
518   return res;
519 }
520 
521 /** \ingroup Householder_Module \householder_module
522   * \brief Convenience function for constructing a Householder sequence.
523   * \returns A HouseholderSequence constructed from the specified arguments.
524   */
525 template<typename VectorsType, typename CoeffsType>
526 HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
527 {
528   return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
529 }
530 
531 /** \ingroup Householder_Module \householder_module
532   * \brief Convenience function for constructing a Householder sequence.
533   * \returns A HouseholderSequence constructed from the specified arguments.
534   * \details This function differs from householderSequence() in that the template argument \p OnTheSide of
535   * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
536   */
537 template<typename VectorsType, typename CoeffsType>
538 HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
539 {
540   return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
541 }
542 
543 } // end namespace Eigen
544 
545 #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
546