xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/Transform.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5 // Copyright (C) 2009 Benoit Jacob <[email protected]>
6 // Copyright (C) 2010 Hauke Heibel <[email protected]>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_TRANSFORM_H
13 #define EIGEN_TRANSFORM_H
14 
15 namespace Eigen {
16 
17 namespace internal {
18 
19 template<typename Transform>
20 struct transform_traits
21 {
22   enum
23   {
24     Dim = Transform::Dim,
25     HDim = Transform::HDim,
26     Mode = Transform::Mode,
27     IsProjective = (int(Mode)==int(Projective))
28   };
29 };
30 
31 template< typename TransformType,
32           typename MatrixType,
33           int Case = transform_traits<TransformType>::IsProjective ? 0
34                    : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
35                    : 2,
36           int RhsCols = MatrixType::ColsAtCompileTime>
37 struct transform_right_product_impl;
38 
39 template< typename Other,
40           int Mode,
41           int Options,
42           int Dim,
43           int HDim,
44           int OtherRows=Other::RowsAtCompileTime,
45           int OtherCols=Other::ColsAtCompileTime>
46 struct transform_left_product_impl;
47 
48 template< typename Lhs,
49           typename Rhs,
50           bool AnyProjective =
51             transform_traits<Lhs>::IsProjective ||
52             transform_traits<Rhs>::IsProjective>
53 struct transform_transform_product_impl;
54 
55 template< typename Other,
56           int Mode,
57           int Options,
58           int Dim,
59           int HDim,
60           int OtherRows=Other::RowsAtCompileTime,
61           int OtherCols=Other::ColsAtCompileTime>
62 struct transform_construct_from_matrix;
63 
64 template<typename TransformType> struct transform_take_affine_part;
65 
66 template<typename _Scalar, int _Dim, int _Mode, int _Options>
67 struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
68 {
69   typedef _Scalar Scalar;
70   typedef Eigen::Index StorageIndex;
71   typedef Dense StorageKind;
72   enum {
73     Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
74     RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
75     ColsAtCompileTime = Dim1,
76     MaxRowsAtCompileTime = RowsAtCompileTime,
77     MaxColsAtCompileTime = ColsAtCompileTime,
78     Flags = 0
79   };
80 };
81 
82 template<int Mode> struct transform_make_affine;
83 
84 } // end namespace internal
85 
86 /** \geometry_module \ingroup Geometry_Module
87   *
88   * \class Transform
89   *
90   * \brief Represents an homogeneous transformation in a N dimensional space
91   *
92   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
93   * \tparam _Dim the dimension of the space
94   * \tparam _Mode the type of the transformation. Can be:
95   *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
96   *                         where the last row is assumed to be [0 ... 0 1].
97   *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
98   *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix
99   *                             without any assumption.
100   *              - #Isometry: same as #Affine with the additional assumption that
101   *                           the linear part represents a rotation. This assumption is exploited
102   *                           to speed up some functions such as inverse() and rotation().
103   * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor.
104   *                  These Options are passed directly to the underlying matrix type.
105   *
106   * The homography is internally represented and stored by a matrix which
107   * is available through the matrix() method. To understand the behavior of
108   * this class you have to think a Transform object as its internal
109   * matrix representation. The chosen convention is right multiply:
110   *
111   * \code v' = T * v \endcode
112   *
113   * Therefore, an affine transformation matrix M is shaped like this:
114   *
115   * \f$ \left( \begin{array}{cc}
116   * linear & translation\\
117   * 0 ... 0 & 1
118   * \end{array} \right) \f$
119   *
120   * Note that for a projective transformation the last row can be anything,
121   * and then the interpretation of different parts might be slightly different.
122   *
123   * However, unlike a plain matrix, the Transform class provides many features
124   * simplifying both its assembly and usage. In particular, it can be composed
125   * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix)
126   * and can be directly used to transform implicit homogeneous vectors. All these
127   * operations are handled via the operator*. For the composition of transformations,
128   * its principle consists to first convert the right/left hand sides of the product
129   * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
130   * Of course, internally, operator* tries to perform the minimal number of operations
131   * according to the nature of each terms. Likewise, when applying the transform
132   * to points, the latters are automatically promoted to homogeneous vectors
133   * before doing the matrix product. The conventions to homogeneous representations
134   * are performed as follow:
135   *
136   * \b Translation t (Dim)x(1):
137   * \f$ \left( \begin{array}{cc}
138   * I & t \\
139   * 0\,...\,0 & 1
140   * \end{array} \right) \f$
141   *
142   * \b Rotation R (Dim)x(Dim):
143   * \f$ \left( \begin{array}{cc}
144   * R & 0\\
145   * 0\,...\,0 & 1
146   * \end{array} \right) \f$
147   *<!--
148   * \b Linear \b Matrix L (Dim)x(Dim):
149   * \f$ \left( \begin{array}{cc}
150   * L & 0\\
151   * 0\,...\,0 & 1
152   * \end{array} \right) \f$
153   *
154   * \b Affine \b Matrix A (Dim)x(Dim+1):
155   * \f$ \left( \begin{array}{c}
156   * A\\
157   * 0\,...\,0\,1
158   * \end{array} \right) \f$
159   *-->
160   * \b Scaling \b DiagonalMatrix S (Dim)x(Dim):
161   * \f$ \left( \begin{array}{cc}
162   * S & 0\\
163   * 0\,...\,0 & 1
164   * \end{array} \right) \f$
165   *
166   * \b Column \b point v (Dim)x(1):
167   * \f$ \left( \begin{array}{c}
168   * v\\
169   * 1
170   * \end{array} \right) \f$
171   *
172   * \b Set \b of \b column \b points V1...Vn (Dim)x(n):
173   * \f$ \left( \begin{array}{ccc}
174   * v_1 & ... & v_n\\
175   * 1 & ... & 1
176   * \end{array} \right) \f$
177   *
178   * The concatenation of a Transform object with any kind of other transformation
179   * always returns a Transform object.
180   *
181   * A little exception to the "as pure matrix product" rule is the case of the
182   * transformation of non homogeneous vectors by an affine transformation. In
183   * that case the last matrix row can be ignored, and the product returns non
184   * homogeneous vectors.
185   *
186   * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
187   * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
188   * The solution is either to use a Dim x Dynamic matrix or explicitly request a
189   * vector transformation by making the vector homogeneous:
190   * \code
191   * m' = T * m.colwise().homogeneous();
192   * \endcode
193   * Note that there is zero overhead.
194   *
195   * Conversion methods from/to Qt's QMatrix and QTransform are available if the
196   * preprocessor token EIGEN_QT_SUPPORT is defined.
197   *
198   * This class can be extended with the help of the plugin mechanism described on the page
199   * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
200   *
201   * \sa class Matrix, class Quaternion
202   */
203 template<typename _Scalar, int _Dim, int _Mode, int _Options>
204 class Transform
205 {
206 public:
207   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
208   enum {
209     Mode = _Mode,
210     Options = _Options,
211     Dim = _Dim,     ///< space dimension in which the transformation holds
212     HDim = _Dim+1,  ///< size of a respective homogeneous vector
213     Rows = int(Mode)==(AffineCompact) ? Dim : HDim
214   };
215   /** the scalar type of the coefficients */
216   typedef _Scalar Scalar;
217   typedef Eigen::Index StorageIndex;
218   typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
219   /** type of the matrix used to represent the transformation */
220   typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
221   /** constified MatrixType */
222   typedef const MatrixType ConstMatrixType;
223   /** type of the matrix used to represent the linear part of the transformation */
224   typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
225   /** type of read/write reference to the linear part of the transformation */
226   typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> LinearPart;
227   /** type of read reference to the linear part of the transformation */
228   typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> ConstLinearPart;
229   /** type of read/write reference to the affine part of the transformation */
230   typedef typename internal::conditional<int(Mode)==int(AffineCompact),
231                               MatrixType&,
232                               Block<MatrixType,Dim,HDim> >::type AffinePart;
233   /** type of read reference to the affine part of the transformation */
234   typedef typename internal::conditional<int(Mode)==int(AffineCompact),
235                               const MatrixType&,
236                               const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart;
237   /** type of a vector */
238   typedef Matrix<Scalar,Dim,1> VectorType;
239   /** type of a read/write reference to the translation part of the rotation */
240   typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
241   /** type of a read reference to the translation part of the rotation */
242   typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
243   /** corresponding translation type */
244   typedef Translation<Scalar,Dim> TranslationType;
245 
246   // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0
247   enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
248   /** The return type of the product between a diagonal matrix and a transform */
249   typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType;
250 
251 protected:
252 
253   MatrixType m_matrix;
254 
255 public:
256 
257   /** Default constructor without initialization of the meaningful coefficients.
258     * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */
259   EIGEN_DEVICE_FUNC inline Transform()
260   {
261     check_template_params();
262     internal::transform_make_affine<(int(Mode)==Affine || int(Mode)==Isometry) ? Affine : AffineCompact>::run(m_matrix);
263   }
264 
265   EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
266   {
267     check_template_params();
268     *this = t;
269   }
270   EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
271   {
272     check_template_params();
273     *this = s;
274   }
275   template<typename Derived>
276   EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
277   {
278     check_template_params();
279     *this = r;
280   }
281 
282   typedef internal::transform_take_affine_part<Transform> take_affine_part;
283 
284   /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
285   template<typename OtherDerived>
286   EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
287   {
288     EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
289       YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
290 
291     check_template_params();
292     internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
293   }
294 
295   /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
296   template<typename OtherDerived>
297   EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
298   {
299     EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
300       YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
301 
302     internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived());
303     return *this;
304   }
305 
306   template<int OtherOptions>
307   EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
308   {
309     check_template_params();
310     // only the options change, we can directly copy the matrices
311     m_matrix = other.matrix();
312   }
313 
314   template<int OtherMode,int OtherOptions>
315   EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
316   {
317     check_template_params();
318     // prevent conversions as:
319     // Affine | AffineCompact | Isometry = Projective
320     EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
321                         YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
322 
323     // prevent conversions as:
324     // Isometry = Affine | AffineCompact
325     EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
326                         YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)
327 
328     enum { ModeIsAffineCompact = Mode == int(AffineCompact),
329            OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
330     };
331 
332     if(EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact))
333     {
334       // We need the block expression because the code is compiled for all
335       // combinations of transformations and will trigger a compile time error
336       // if one tries to assign the matrices directly
337       m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
338       makeAffine();
339     }
340     else if(EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact))
341     {
342       typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
343       internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
344     }
345     else
346     {
347       // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
348       // if OtherMode were Projective, the static assert above would already have caught it.
349       // So the only possibility is that OtherMode == Affine
350       linear() = other.linear();
351       translation() = other.translation();
352     }
353   }
354 
355   template<typename OtherDerived>
356   EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
357   {
358     check_template_params();
359     other.evalTo(*this);
360   }
361 
362   template<typename OtherDerived>
363   EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
364   {
365     other.evalTo(*this);
366     return *this;
367   }
368 
369   #ifdef EIGEN_QT_SUPPORT
370   inline Transform(const QMatrix& other);
371   inline Transform& operator=(const QMatrix& other);
372   inline QMatrix toQMatrix(void) const;
373   inline Transform(const QTransform& other);
374   inline Transform& operator=(const QTransform& other);
375   inline QTransform toQTransform(void) const;
376   #endif
377 
378   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
379   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
380 
381   /** shortcut for m_matrix(row,col);
382     * \sa MatrixBase::operator(Index,Index) const */
383   EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
384   /** shortcut for m_matrix(row,col);
385     * \sa MatrixBase::operator(Index,Index) */
386   EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
387 
388   /** \returns a read-only expression of the transformation matrix */
389   EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
390   /** \returns a writable expression of the transformation matrix */
391   EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
392 
393   /** \returns a read-only expression of the linear part of the transformation */
394   EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
395   /** \returns a writable expression of the linear part of the transformation */
396   EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
397 
398   /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
399   EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
400   /** \returns a writable expression of the Dim x HDim affine part of the transformation */
401   EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
402 
403   /** \returns a read-only expression of the translation vector of the transformation */
404   EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
405   /** \returns a writable expression of the translation vector of the transformation */
406   EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
407 
408   /** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
409     *
410     * The right-hand-side \a other can be either:
411     * \li an homogeneous vector of size Dim+1,
412     * \li a set of homogeneous vectors of size Dim+1 x N,
413     * \li a transformation matrix of size Dim+1 x Dim+1.
414     *
415     * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be:
416     * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode),
417     * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode),
418     *
419     * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other.
420     *
421     * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type,
422     * or do your own cooking.
423     *
424     * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:
425     * \code
426     * Affine3f A;
427     * Vector3f v1, v2;
428     * v2 = A.linear() * v1;
429     * \endcode
430     *
431     */
432   // note: this function is defined here because some compilers cannot find the respective declaration
433   template<typename OtherDerived>
434   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
435   operator * (const EigenBase<OtherDerived> &other) const
436   { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
437 
438   /** \returns the product expression of a transformation matrix \a a times a transform \a b
439     *
440     * The left hand side \a other can be either:
441     * \li a linear transformation matrix of size Dim x Dim,
442     * \li an affine transformation matrix of size Dim x Dim+1,
443     * \li a general transformation matrix of size Dim+1 x Dim+1.
444     */
445   template<typename OtherDerived> friend
446   EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
447     operator * (const EigenBase<OtherDerived> &a, const Transform &b)
448   { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
449 
450   /** \returns The product expression of a transform \a a times a diagonal matrix \a b
451     *
452     * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
453     * product results in a Transform of the same type (mode) as the lhs only if the lhs
454     * mode is no isometry. In that case, the returned transform is an affinity.
455     */
456   template<typename DiagonalDerived>
457   EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
458     operator * (const DiagonalBase<DiagonalDerived> &b) const
459   {
460     TransformTimeDiagonalReturnType res(*this);
461     res.linearExt() *= b;
462     return res;
463   }
464 
465   /** \returns The product expression of a diagonal matrix \a a times a transform \a b
466     *
467     * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
468     * product results in a Transform of the same type (mode) as the lhs only if the lhs
469     * mode is no isometry. In that case, the returned transform is an affinity.
470     */
471   template<typename DiagonalDerived>
472   EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
473     operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
474   {
475     TransformTimeDiagonalReturnType res;
476     res.linear().noalias() = a*b.linear();
477     res.translation().noalias() = a*b.translation();
478     if (EIGEN_CONST_CONDITIONAL(Mode!=int(AffineCompact)))
479       res.matrix().row(Dim) = b.matrix().row(Dim);
480     return res;
481   }
482 
483   template<typename OtherDerived>
484   EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
485 
486   /** Concatenates two transformations */
487   EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
488   {
489     return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
490   }
491 
492   #if EIGEN_COMP_ICC
493 private:
494   // this intermediate structure permits to workaround a bug in ICC 11:
495   //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
496   //             (const Eigen::Transform<double, 3, 2, 0> &) const"
497   //  (the meaning of a name may have changed since the template declaration -- the type of the template is:
498   // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>,
499   //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const")
500   //
501   template<int OtherMode,int OtherOptions> struct icc_11_workaround
502   {
503     typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType;
504     typedef typename ProductType::ResultType ResultType;
505   };
506 
507 public:
508   /** Concatenates two different transformations */
509   template<int OtherMode,int OtherOptions>
510   inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType
511     operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
512   {
513     typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType;
514     return ProductType::run(*this,other);
515   }
516   #else
517   /** Concatenates two different transformations */
518   template<int OtherMode,int OtherOptions>
519   EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
520     operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
521   {
522     return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
523   }
524   #endif
525 
526   /** \sa MatrixBase::setIdentity() */
527   EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
528 
529   /**
530    * \brief Returns an identity transformation.
531    * \todo In the future this function should be returning a Transform expression.
532    */
533   EIGEN_DEVICE_FUNC static const Transform Identity()
534   {
535     return Transform(MatrixType::Identity());
536   }
537 
538   template<typename OtherDerived>
539   EIGEN_DEVICE_FUNC
540   inline Transform& scale(const MatrixBase<OtherDerived> &other);
541 
542   template<typename OtherDerived>
543   EIGEN_DEVICE_FUNC
544   inline Transform& prescale(const MatrixBase<OtherDerived> &other);
545 
546   EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
547   EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
548 
549   template<typename OtherDerived>
550   EIGEN_DEVICE_FUNC
551   inline Transform& translate(const MatrixBase<OtherDerived> &other);
552 
553   template<typename OtherDerived>
554   EIGEN_DEVICE_FUNC
555   inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
556 
557   template<typename RotationType>
558   EIGEN_DEVICE_FUNC
559   inline Transform& rotate(const RotationType& rotation);
560 
561   template<typename RotationType>
562   EIGEN_DEVICE_FUNC
563   inline Transform& prerotate(const RotationType& rotation);
564 
565   EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
566   EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
567 
568   EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
569 
570   EIGEN_DEVICE_FUNC
571   inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
572 
573   EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
574 
575   EIGEN_DEVICE_FUNC
576   inline Transform& operator=(const UniformScaling<Scalar>& t);
577 
578   EIGEN_DEVICE_FUNC
579   inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
580 
581   EIGEN_DEVICE_FUNC
582   inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
583   {
584     TransformTimeDiagonalReturnType res = *this;
585     res.scale(s.factor());
586     return res;
587   }
588 
589   EIGEN_DEVICE_FUNC
590   inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
591 
592   template<typename Derived>
593   EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
594   template<typename Derived>
595   EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
596   template<typename Derived>
597   EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
598 
599   typedef typename internal::conditional<int(Mode)==Isometry,ConstLinearPart,const LinearMatrixType>::type RotationReturnType;
600   EIGEN_DEVICE_FUNC RotationReturnType rotation() const;
601 
602   template<typename RotationMatrixType, typename ScalingMatrixType>
603   EIGEN_DEVICE_FUNC
604   void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
605   template<typename ScalingMatrixType, typename RotationMatrixType>
606   EIGEN_DEVICE_FUNC
607   void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
608 
609   template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
610   EIGEN_DEVICE_FUNC
611   Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
612     const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
613 
614   EIGEN_DEVICE_FUNC
615   inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
616 
617   /** \returns a const pointer to the column major internal matrix */
618   EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
619   /** \returns a non-const pointer to the column major internal matrix */
620   EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
621 
622   /** \returns \c *this with scalar type casted to \a NewScalarType
623     *
624     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
625     * then this function smartly returns a const reference to \c *this.
626     */
627   template<typename NewScalarType>
628   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
629   { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
630 
631   /** Copy constructor with scalar type conversion */
632   template<typename OtherScalarType>
633   EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
634   {
635     check_template_params();
636     m_matrix = other.matrix().template cast<Scalar>();
637   }
638 
639   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
640     * determined by \a prec.
641     *
642     * \sa MatrixBase::isApprox() */
643   EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
644   { return m_matrix.isApprox(other.m_matrix, prec); }
645 
646   /** Sets the last row to [0 ... 0 1]
647     */
648   EIGEN_DEVICE_FUNC void makeAffine()
649   {
650     internal::transform_make_affine<int(Mode)>::run(m_matrix);
651   }
652 
653   /** \internal
654     * \returns the Dim x Dim linear part if the transformation is affine,
655     *          and the HDim x Dim part for projective transformations.
656     */
657   EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
658   { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
659   /** \internal
660     * \returns the Dim x Dim linear part if the transformation is affine,
661     *          and the HDim x Dim part for projective transformations.
662     */
663   EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
664   { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
665 
666   /** \internal
667     * \returns the translation part if the transformation is affine,
668     *          and the last column for projective transformations.
669     */
670   EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
671   { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
672   /** \internal
673     * \returns the translation part if the transformation is affine,
674     *          and the last column for projective transformations.
675     */
676   EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
677   { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
678 
679 
680   #ifdef EIGEN_TRANSFORM_PLUGIN
681   #include EIGEN_TRANSFORM_PLUGIN
682   #endif
683 
684 protected:
685   #ifndef EIGEN_PARSED_BY_DOXYGEN
686     EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
687     {
688       EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
689     }
690   #endif
691 
692 };
693 
694 /** \ingroup Geometry_Module */
695 typedef Transform<float,2,Isometry> Isometry2f;
696 /** \ingroup Geometry_Module */
697 typedef Transform<float,3,Isometry> Isometry3f;
698 /** \ingroup Geometry_Module */
699 typedef Transform<double,2,Isometry> Isometry2d;
700 /** \ingroup Geometry_Module */
701 typedef Transform<double,3,Isometry> Isometry3d;
702 
703 /** \ingroup Geometry_Module */
704 typedef Transform<float,2,Affine> Affine2f;
705 /** \ingroup Geometry_Module */
706 typedef Transform<float,3,Affine> Affine3f;
707 /** \ingroup Geometry_Module */
708 typedef Transform<double,2,Affine> Affine2d;
709 /** \ingroup Geometry_Module */
710 typedef Transform<double,3,Affine> Affine3d;
711 
712 /** \ingroup Geometry_Module */
713 typedef Transform<float,2,AffineCompact> AffineCompact2f;
714 /** \ingroup Geometry_Module */
715 typedef Transform<float,3,AffineCompact> AffineCompact3f;
716 /** \ingroup Geometry_Module */
717 typedef Transform<double,2,AffineCompact> AffineCompact2d;
718 /** \ingroup Geometry_Module */
719 typedef Transform<double,3,AffineCompact> AffineCompact3d;
720 
721 /** \ingroup Geometry_Module */
722 typedef Transform<float,2,Projective> Projective2f;
723 /** \ingroup Geometry_Module */
724 typedef Transform<float,3,Projective> Projective3f;
725 /** \ingroup Geometry_Module */
726 typedef Transform<double,2,Projective> Projective2d;
727 /** \ingroup Geometry_Module */
728 typedef Transform<double,3,Projective> Projective3d;
729 
730 /**************************
731 *** Optional QT support ***
732 **************************/
733 
734 #ifdef EIGEN_QT_SUPPORT
735 /** Initializes \c *this from a QMatrix assuming the dimension is 2.
736   *
737   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
738   */
739 template<typename Scalar, int Dim, int Mode,int Options>
740 Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other)
741 {
742   check_template_params();
743   *this = other;
744 }
745 
746 /** Set \c *this from a QMatrix assuming the dimension is 2.
747   *
748   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
749   */
750 template<typename Scalar, int Dim, int Mode,int Options>
751 Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
752 {
753   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
754   if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
755     m_matrix << other.m11(), other.m21(), other.dx(),
756                 other.m12(), other.m22(), other.dy();
757   else
758     m_matrix << other.m11(), other.m21(), other.dx(),
759                 other.m12(), other.m22(), other.dy(),
760                 0, 0, 1;
761   return *this;
762 }
763 
764 /** \returns a QMatrix from \c *this assuming the dimension is 2.
765   *
766   * \warning this conversion might loss data if \c *this is not affine
767   *
768   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
769   */
770 template<typename Scalar, int Dim, int Mode, int Options>
771 QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const
772 {
773   check_template_params();
774   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
775   return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
776                  m_matrix.coeff(0,1), m_matrix.coeff(1,1),
777                  m_matrix.coeff(0,2), m_matrix.coeff(1,2));
778 }
779 
780 /** Initializes \c *this from a QTransform assuming the dimension is 2.
781   *
782   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
783   */
784 template<typename Scalar, int Dim, int Mode,int Options>
785 Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other)
786 {
787   check_template_params();
788   *this = other;
789 }
790 
791 /** Set \c *this from a QTransform assuming the dimension is 2.
792   *
793   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
794   */
795 template<typename Scalar, int Dim, int Mode, int Options>
796 Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other)
797 {
798   check_template_params();
799   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
800   if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
801     m_matrix << other.m11(), other.m21(), other.dx(),
802                 other.m12(), other.m22(), other.dy();
803   else
804     m_matrix << other.m11(), other.m21(), other.dx(),
805                 other.m12(), other.m22(), other.dy(),
806                 other.m13(), other.m23(), other.m33();
807   return *this;
808 }
809 
810 /** \returns a QTransform from \c *this assuming the dimension is 2.
811   *
812   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
813   */
814 template<typename Scalar, int Dim, int Mode, int Options>
815 QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
816 {
817   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
818   if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
819     return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
820                       m_matrix.coeff(0,1), m_matrix.coeff(1,1),
821                       m_matrix.coeff(0,2), m_matrix.coeff(1,2));
822   else
823     return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
824                       m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
825                       m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
826 }
827 #endif
828 
829 /*********************
830 *** Procedural API ***
831 *********************/
832 
833 /** Applies on the right the non uniform scale transformation represented
834   * by the vector \a other to \c *this and returns a reference to \c *this.
835   * \sa prescale()
836   */
837 template<typename Scalar, int Dim, int Mode, int Options>
838 template<typename OtherDerived>
839 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
840 Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
841 {
842   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
843   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
844   linearExt().noalias() = (linearExt() * other.asDiagonal());
845   return *this;
846 }
847 
848 /** Applies on the right a uniform scale of a factor \a c to \c *this
849   * and returns a reference to \c *this.
850   * \sa prescale(Scalar)
851   */
852 template<typename Scalar, int Dim, int Mode, int Options>
853 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
854 {
855   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
856   linearExt() *= s;
857   return *this;
858 }
859 
860 /** Applies on the left the non uniform scale transformation represented
861   * by the vector \a other to \c *this and returns a reference to \c *this.
862   * \sa scale()
863   */
864 template<typename Scalar, int Dim, int Mode, int Options>
865 template<typename OtherDerived>
866 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
867 Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
868 {
869   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
870   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
871   affine().noalias() = (other.asDiagonal() * affine());
872   return *this;
873 }
874 
875 /** Applies on the left a uniform scale of a factor \a c to \c *this
876   * and returns a reference to \c *this.
877   * \sa scale(Scalar)
878   */
879 template<typename Scalar, int Dim, int Mode, int Options>
880 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
881 {
882   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
883   m_matrix.template topRows<Dim>() *= s;
884   return *this;
885 }
886 
887 /** Applies on the right the translation matrix represented by the vector \a other
888   * to \c *this and returns a reference to \c *this.
889   * \sa pretranslate()
890   */
891 template<typename Scalar, int Dim, int Mode, int Options>
892 template<typename OtherDerived>
893 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
894 Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
895 {
896   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
897   translationExt() += linearExt() * other;
898   return *this;
899 }
900 
901 /** Applies on the left the translation matrix represented by the vector \a other
902   * to \c *this and returns a reference to \c *this.
903   * \sa translate()
904   */
905 template<typename Scalar, int Dim, int Mode, int Options>
906 template<typename OtherDerived>
907 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
908 Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
909 {
910   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
911   if(EIGEN_CONST_CONDITIONAL(int(Mode)==int(Projective)))
912     affine() += other * m_matrix.row(Dim);
913   else
914     translation() += other;
915   return *this;
916 }
917 
918 /** Applies on the right the rotation represented by the rotation \a rotation
919   * to \c *this and returns a reference to \c *this.
920   *
921   * The template parameter \a RotationType is the type of the rotation which
922   * must be known by internal::toRotationMatrix<>.
923   *
924   * Natively supported types includes:
925   *   - any scalar (2D),
926   *   - a Dim x Dim matrix expression,
927   *   - a Quaternion (3D),
928   *   - a AngleAxis (3D)
929   *
930   * This mechanism is easily extendable to support user types such as Euler angles,
931   * or a pair of Quaternion for 4D rotations.
932   *
933   * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
934   */
935 template<typename Scalar, int Dim, int Mode, int Options>
936 template<typename RotationType>
937 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
938 Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
939 {
940   linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
941   return *this;
942 }
943 
944 /** Applies on the left the rotation represented by the rotation \a rotation
945   * to \c *this and returns a reference to \c *this.
946   *
947   * See rotate() for further details.
948   *
949   * \sa rotate()
950   */
951 template<typename Scalar, int Dim, int Mode, int Options>
952 template<typename RotationType>
953 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
954 Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
955 {
956   m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
957                                          * m_matrix.template block<Dim,HDim>(0,0);
958   return *this;
959 }
960 
961 /** Applies on the right the shear transformation represented
962   * by the vector \a other to \c *this and returns a reference to \c *this.
963   * \warning 2D only.
964   * \sa preshear()
965   */
966 template<typename Scalar, int Dim, int Mode, int Options>
967 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
968 Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
969 {
970   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
971   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
972   VectorType tmp = linear().col(0)*sy + linear().col(1);
973   linear() << linear().col(0) + linear().col(1)*sx, tmp;
974   return *this;
975 }
976 
977 /** Applies on the left the shear transformation represented
978   * by the vector \a other to \c *this and returns a reference to \c *this.
979   * \warning 2D only.
980   * \sa shear()
981   */
982 template<typename Scalar, int Dim, int Mode, int Options>
983 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
984 Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
985 {
986   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
987   EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
988   m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
989   return *this;
990 }
991 
992 /******************************************************
993 *** Scaling, Translation and Rotation compatibility ***
994 ******************************************************/
995 
996 template<typename Scalar, int Dim, int Mode, int Options>
997 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
998 {
999   linear().setIdentity();
1000   translation() = t.vector();
1001   makeAffine();
1002   return *this;
1003 }
1004 
1005 template<typename Scalar, int Dim, int Mode, int Options>
1006 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
1007 {
1008   Transform res = *this;
1009   res.translate(t.vector());
1010   return res;
1011 }
1012 
1013 template<typename Scalar, int Dim, int Mode, int Options>
1014 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
1015 {
1016   m_matrix.setZero();
1017   linear().diagonal().fill(s.factor());
1018   makeAffine();
1019   return *this;
1020 }
1021 
1022 template<typename Scalar, int Dim, int Mode, int Options>
1023 template<typename Derived>
1024 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
1025 {
1026   linear() = internal::toRotationMatrix<Scalar,Dim>(r);
1027   translation().setZero();
1028   makeAffine();
1029   return *this;
1030 }
1031 
1032 template<typename Scalar, int Dim, int Mode, int Options>
1033 template<typename Derived>
1034 EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
1035 {
1036   Transform res = *this;
1037   res.rotate(r.derived());
1038   return res;
1039 }
1040 
1041 /************************
1042 *** Special functions ***
1043 ************************/
1044 
1045 namespace internal {
1046 template<int Mode> struct transform_rotation_impl {
1047   template<typename TransformType>
1048   EIGEN_DEVICE_FUNC static inline
1049   const typename TransformType::LinearMatrixType run(const TransformType& t)
1050   {
1051     typedef typename TransformType::LinearMatrixType LinearMatrixType;
1052     LinearMatrixType result;
1053     t.computeRotationScaling(&result, (LinearMatrixType*)0);
1054     return result;
1055   }
1056 };
1057 template<> struct transform_rotation_impl<Isometry> {
1058   template<typename TransformType>
1059   EIGEN_DEVICE_FUNC static inline
1060   typename TransformType::ConstLinearPart run(const TransformType& t)
1061   {
1062     return t.linear();
1063   }
1064 };
1065 }
1066 /** \returns the rotation part of the transformation
1067   *
1068   * If Mode==Isometry, then this method is an alias for linear(),
1069   * otherwise it calls computeRotationScaling() to extract the rotation
1070   * through a SVD decomposition.
1071   *
1072   * \svd_module
1073   *
1074   * \sa computeRotationScaling(), computeScalingRotation(), class SVD
1075   */
1076 template<typename Scalar, int Dim, int Mode, int Options>
1077 EIGEN_DEVICE_FUNC
1078 typename Transform<Scalar,Dim,Mode,Options>::RotationReturnType
1079 Transform<Scalar,Dim,Mode,Options>::rotation() const
1080 {
1081   return internal::transform_rotation_impl<Mode>::run(*this);
1082 }
1083 
1084 
1085 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
1086   * not necessarily positive.
1087   *
1088   * If either pointer is zero, the corresponding computation is skipped.
1089   *
1090   *
1091   *
1092   * \svd_module
1093   *
1094   * \sa computeScalingRotation(), rotation(), class SVD
1095   */
1096 template<typename Scalar, int Dim, int Mode, int Options>
1097 template<typename RotationMatrixType, typename ScalingMatrixType>
1098 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
1099 {
1100   // Note that JacobiSVD is faster than BDCSVD for small matrices.
1101   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1102 
1103   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
1104   VectorType sv(svd.singularValues());
1105   sv.coeffRef(Dim-1) *= x;
1106   if(scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
1107   if(rotation)
1108   {
1109     LinearMatrixType m(svd.matrixU());
1110     m.col(Dim-1) *= x;
1111     *rotation = m * svd.matrixV().adjoint();
1112   }
1113 }
1114 
1115 /** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
1116   * not necessarily positive.
1117   *
1118   * If either pointer is zero, the corresponding computation is skipped.
1119   *
1120   *
1121   *
1122   * \svd_module
1123   *
1124   * \sa computeRotationScaling(), rotation(), class SVD
1125   */
1126 template<typename Scalar, int Dim, int Mode, int Options>
1127 template<typename ScalingMatrixType, typename RotationMatrixType>
1128 EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
1129 {
1130   // Note that JacobiSVD is faster than BDCSVD for small matrices.
1131   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
1132 
1133   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1
1134   VectorType sv(svd.singularValues());
1135   sv.coeffRef(Dim-1) *= x;
1136   if(scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
1137   if(rotation)
1138   {
1139     LinearMatrixType m(svd.matrixU());
1140     m.col(Dim-1) *= x;
1141     *rotation = m * svd.matrixV().adjoint();
1142   }
1143 }
1144 
1145 /** Convenient method to set \c *this from a position, orientation and scale
1146   * of a 3D object.
1147   */
1148 template<typename Scalar, int Dim, int Mode, int Options>
1149 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
1150 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
1151 Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
1152   const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
1153 {
1154   linear() = internal::toRotationMatrix<Scalar,Dim>(orientation);
1155   linear() *= scale.asDiagonal();
1156   translation() = position;
1157   makeAffine();
1158   return *this;
1159 }
1160 
1161 namespace internal {
1162 
1163 template<int Mode>
1164 struct transform_make_affine
1165 {
1166   template<typename MatrixType>
1167   EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
1168   {
1169     static const int Dim = MatrixType::ColsAtCompileTime-1;
1170     mat.template block<1,Dim>(Dim,0).setZero();
1171     mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1);
1172   }
1173 };
1174 
1175 template<>
1176 struct transform_make_affine<AffineCompact>
1177 {
1178   template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
1179 };
1180 
1181 // selector needed to avoid taking the inverse of a 3x4 matrix
1182 template<typename TransformType, int Mode=TransformType::Mode>
1183 struct projective_transform_inverse
1184 {
1185   EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
1186   {}
1187 };
1188 
1189 template<typename TransformType>
1190 struct projective_transform_inverse<TransformType, Projective>
1191 {
1192   EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
1193   {
1194     res.matrix() = m.matrix().inverse();
1195   }
1196 };
1197 
1198 } // end namespace internal
1199 
1200 
1201 /**
1202   *
1203   * \returns the inverse transformation according to some given knowledge
1204   * on \c *this.
1205   *
1206   * \param hint allows to optimize the inversion process when the transformation
1207   * is known to be not a general transformation (optional). The possible values are:
1208   *  - #Projective if the transformation is not necessarily affine, i.e., if the
1209   *    last row is not guaranteed to be [0 ... 0 1]
1210   *  - #Affine if the last row can be assumed to be [0 ... 0 1]
1211   *  - #Isometry if the transformation is only a concatenations of translations
1212   *    and rotations.
1213   *  The default is the template class parameter \c Mode.
1214   *
1215   * \warning unless \a traits is always set to NoShear or NoScaling, this function
1216   * requires the generic inverse method of MatrixBase defined in the LU module. If
1217   * you forget to include this module, then you will get hard to debug linking errors.
1218   *
1219   * \sa MatrixBase::inverse()
1220   */
1221 template<typename Scalar, int Dim, int Mode, int Options>
1222 EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
1223 Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
1224 {
1225   Transform res;
1226   if (hint == Projective)
1227   {
1228     internal::projective_transform_inverse<Transform>::run(*this, res);
1229   }
1230   else
1231   {
1232     if (hint == Isometry)
1233     {
1234       res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
1235     }
1236     else if(hint&Affine)
1237     {
1238       res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
1239     }
1240     else
1241     {
1242       eigen_assert(false && "Invalid transform traits in Transform::Inverse");
1243     }
1244     // translation and remaining parts
1245     res.matrix().template topRightCorner<Dim,1>()
1246       = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
1247     res.makeAffine(); // we do need this, because in the beginning res is uninitialized
1248   }
1249   return res;
1250 }
1251 
1252 namespace internal {
1253 
1254 /*****************************************************
1255 *** Specializations of take affine part            ***
1256 *****************************************************/
1257 
1258 template<typename TransformType> struct transform_take_affine_part {
1259   typedef typename TransformType::MatrixType MatrixType;
1260   typedef typename TransformType::AffinePart AffinePart;
1261   typedef typename TransformType::ConstAffinePart ConstAffinePart;
1262   static inline AffinePart run(MatrixType& m)
1263   { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1264   static inline ConstAffinePart run(const MatrixType& m)
1265   { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
1266 };
1267 
1268 template<typename Scalar, int Dim, int Options>
1269 struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > {
1270   typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType;
1271   static inline MatrixType& run(MatrixType& m) { return m; }
1272   static inline const MatrixType& run(const MatrixType& m) { return m; }
1273 };
1274 
1275 /*****************************************************
1276 *** Specializations of construct from matrix       ***
1277 *****************************************************/
1278 
1279 template<typename Other, int Mode, int Options, int Dim, int HDim>
1280 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim>
1281 {
1282   static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1283   {
1284     transform->linear() = other;
1285     transform->translation().setZero();
1286     transform->makeAffine();
1287   }
1288 };
1289 
1290 template<typename Other, int Mode, int Options, int Dim, int HDim>
1291 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim>
1292 {
1293   static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1294   {
1295     transform->affine() = other;
1296     transform->makeAffine();
1297   }
1298 };
1299 
1300 template<typename Other, int Mode, int Options, int Dim, int HDim>
1301 struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim>
1302 {
1303   static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other)
1304   { transform->matrix() = other; }
1305 };
1306 
1307 template<typename Other, int Options, int Dim, int HDim>
1308 struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim>
1309 {
1310   static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other)
1311   { transform->matrix() = other.template block<Dim,HDim>(0,0); }
1312 };
1313 
1314 /**********************************************************
1315 ***   Specializations of operator* with rhs EigenBase   ***
1316 **********************************************************/
1317 
1318 template<int LhsMode,int RhsMode>
1319 struct transform_product_result
1320 {
1321   enum
1322   {
1323     Mode =
1324       (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
1325       (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
1326       (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
1327       (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
1328   };
1329 };
1330 
1331 template< typename TransformType, typename MatrixType, int RhsCols>
1332 struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
1333 {
1334   typedef typename MatrixType::PlainObject ResultType;
1335 
1336   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1337   {
1338     return T.matrix() * other;
1339   }
1340 };
1341 
1342 template< typename TransformType, typename MatrixType, int RhsCols>
1343 struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
1344 {
1345   enum {
1346     Dim = TransformType::Dim,
1347     HDim = TransformType::HDim,
1348     OtherRows = MatrixType::RowsAtCompileTime,
1349     OtherCols = MatrixType::ColsAtCompileTime
1350   };
1351 
1352   typedef typename MatrixType::PlainObject ResultType;
1353 
1354   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1355   {
1356     EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1357 
1358     typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs;
1359 
1360     ResultType res(other.rows(),other.cols());
1361     TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1362     res.row(OtherRows-1) = other.row(OtherRows-1);
1363 
1364     return res;
1365   }
1366 };
1367 
1368 template< typename TransformType, typename MatrixType, int RhsCols>
1369 struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
1370 {
1371   enum {
1372     Dim = TransformType::Dim,
1373     HDim = TransformType::HDim,
1374     OtherRows = MatrixType::RowsAtCompileTime,
1375     OtherCols = MatrixType::ColsAtCompileTime
1376   };
1377 
1378   typedef typename MatrixType::PlainObject ResultType;
1379 
1380   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1381   {
1382     EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1383 
1384     typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs;
1385     ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols()));
1386     TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other;
1387 
1388     return res;
1389   }
1390 };
1391 
1392 template< typename TransformType, typename MatrixType >
1393 struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
1394 {
1395   typedef typename TransformType::MatrixType TransformMatrix;
1396   enum {
1397     Dim = TransformType::Dim,
1398     HDim = TransformType::HDim,
1399     OtherRows = MatrixType::RowsAtCompileTime,
1400     WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
1401   };
1402 
1403   typedef typename MatrixType::PlainObject ResultType;
1404 
1405   static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
1406   {
1407     EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
1408 
1409     Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
1410     rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
1411     Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
1412     return res.template head<Dim>();
1413   }
1414 };
1415 
1416 /**********************************************************
1417 ***   Specializations of operator* with lhs EigenBase   ***
1418 **********************************************************/
1419 
1420 // generic HDim x HDim matrix * T => Projective
1421 template<typename Other,int Mode, int Options, int Dim, int HDim>
1422 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim>
1423 {
1424   typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1425   typedef typename TransformType::MatrixType MatrixType;
1426   typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1427   static ResultType run(const Other& other,const TransformType& tr)
1428   { return ResultType(other * tr.matrix()); }
1429 };
1430 
1431 // generic HDim x HDim matrix * AffineCompact => Projective
1432 template<typename Other, int Options, int Dim, int HDim>
1433 struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim>
1434 {
1435   typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1436   typedef typename TransformType::MatrixType MatrixType;
1437   typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType;
1438   static ResultType run(const Other& other,const TransformType& tr)
1439   {
1440     ResultType res;
1441     res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
1442     res.matrix().col(Dim) += other.col(Dim);
1443     return res;
1444   }
1445 };
1446 
1447 // affine matrix * T
1448 template<typename Other,int Mode, int Options, int Dim, int HDim>
1449 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim>
1450 {
1451   typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1452   typedef typename TransformType::MatrixType MatrixType;
1453   typedef TransformType ResultType;
1454   static ResultType run(const Other& other,const TransformType& tr)
1455   {
1456     ResultType res;
1457     res.affine().noalias() = other * tr.matrix();
1458     res.matrix().row(Dim) = tr.matrix().row(Dim);
1459     return res;
1460   }
1461 };
1462 
1463 // affine matrix * AffineCompact
1464 template<typename Other, int Options, int Dim, int HDim>
1465 struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim>
1466 {
1467   typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType;
1468   typedef typename TransformType::MatrixType MatrixType;
1469   typedef TransformType ResultType;
1470   static ResultType run(const Other& other,const TransformType& tr)
1471   {
1472     ResultType res;
1473     res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
1474     res.translation() += other.col(Dim);
1475     return res;
1476   }
1477 };
1478 
1479 // linear matrix * T
1480 template<typename Other,int Mode, int Options, int Dim, int HDim>
1481 struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim>
1482 {
1483   typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType;
1484   typedef typename TransformType::MatrixType MatrixType;
1485   typedef TransformType ResultType;
1486   static ResultType run(const Other& other, const TransformType& tr)
1487   {
1488     TransformType res;
1489     if(Mode!=int(AffineCompact))
1490       res.matrix().row(Dim) = tr.matrix().row(Dim);
1491     res.matrix().template topRows<Dim>().noalias()
1492       = other * tr.matrix().template topRows<Dim>();
1493     return res;
1494   }
1495 };
1496 
1497 /**********************************************************
1498 *** Specializations of operator* with another Transform ***
1499 **********************************************************/
1500 
1501 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1502 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false >
1503 {
1504   enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode };
1505   typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1506   typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1507   typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType;
1508   static ResultType run(const Lhs& lhs, const Rhs& rhs)
1509   {
1510     ResultType res;
1511     res.linear() = lhs.linear() * rhs.linear();
1512     res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
1513     res.makeAffine();
1514     return res;
1515   }
1516 };
1517 
1518 template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions>
1519 struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true >
1520 {
1521   typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs;
1522   typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs;
1523   typedef Transform<Scalar,Dim,Projective> ResultType;
1524   static ResultType run(const Lhs& lhs, const Rhs& rhs)
1525   {
1526     return ResultType( lhs.matrix() * rhs.matrix() );
1527   }
1528 };
1529 
1530 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1531 struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true >
1532 {
1533   typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs;
1534   typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs;
1535   typedef Transform<Scalar,Dim,Projective> ResultType;
1536   static ResultType run(const Lhs& lhs, const Rhs& rhs)
1537   {
1538     ResultType res;
1539     res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix();
1540     res.matrix().row(Dim) = rhs.matrix().row(Dim);
1541     return res;
1542   }
1543 };
1544 
1545 template<typename Scalar, int Dim, int LhsOptions, int RhsOptions>
1546 struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true >
1547 {
1548   typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs;
1549   typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs;
1550   typedef Transform<Scalar,Dim,Projective> ResultType;
1551   static ResultType run(const Lhs& lhs, const Rhs& rhs)
1552   {
1553     ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix());
1554     res.matrix().col(Dim) += lhs.matrix().col(Dim);
1555     return res;
1556   }
1557 };
1558 
1559 } // end namespace internal
1560 
1561 } // end namespace Eigen
1562 
1563 #endif // EIGEN_TRANSFORM_H
1564